

EE Times: Design News

Virtualization makes better use of open-source OSes and apps

Robert Day
(03/23/2009 12:01 AM EDT)
URL: http://www.eetimes.com/showArticle.jhtml?articleID=215901013

The increased use of software virtualization in embedded systems is enabling additional use of open-source operating systems (OSes) and
applications. The notion of providing a virtualized interface to hardware and using software separation to contain different applications
and OSes is presenting many new use cases for embedded software developers. One such new use more elegantly combines open-source
software with proprietary or commercial applications.

Before examining this interesting use case, it's important to understand how software virtualization works in embedded systems. The term
"virtualization" is overused and needs to be broken down to clearly see which virtualization technologies are most relevant to embedded
systems developers.

Hardware vs. software virtualization
Hardware and software virtualization are more complementary than competitive. Hardware virtualization is now being implemented by
many of the processor vendors and provides a more efficient mechanism for partition/OS switching and hardware resource allocation for
a software virtualized environment.

Software virtualization provides an application programming interface for OSes that enables embedded systems designers to take
advantage of these virtualized hardware features without having to make any changes to the OS. This has great advantages for the
embedded systems market as legacy applications on both legacy and open-source OSes can take advantage of new processor features
without new ports or modifications, allowing for an unprecedented migration path for embedded software.

Generally, software virtualization technologies are interchangeably referred to as hypervisors or virtual machine monitors (VMM) and
some different technologies are underneath the hood that enable guest OSes to run on top of them. In general, there are two types of
hypervisors--Type 1 (Native) and Type 2 (Hosted).

Type 2: Hosted VMM
Software emulation is a common approach to enabling multiple guest OSes to run on top of a real-time operating system (RTOS).
Emulation packages, such as open-source QEMU (available under GNU Lesser General Public License) can run as an application within
a process of an RTOS and then emulate the hardware environment that the guest OS is expecting. This type of virtualization is often
referred to as a hosted VMM (Type 2).

A hosted VMM has some advantages in that generally the guest OS and applications running on it don't need to be modified. The downside
is that this approach can have an impact on the performance of embedded systems because the guest environments are relying on an
emulation layer running on top of the underlying OS. Hosted VMMs also have memory-footprint issues because a process-based RTOS
plus an emulation layer plus a guest OS plus applications can consume lots of code and data space.

EETimes.com - Virtualization makes better use of open-source OSes an... http://www.eetimes.com/news/design/showArticle.jhtml?articleID=21...

1 of 3 27/11/2009 10:10

Type 1: Native hypervisor
A possibly more elegant and scalable approach for embedded systems is to use a small underlying separation kernel and native
hypervisor (Type 1) to provide the hardware interface. This combination provides a small, efficient embedded-software-virtualization
layer for running guest OSes. Although this approach requires a closer tie to the target processor, it can more easily take advantage of the
new processor features such as hardware virtualization. This technology can also take advantage of an extra virtualization optimization,
called paravirtualization, which isn't typically available in the hosted scenario.

Paravirtualization is a term used for a guest OS that's been modified to run on top of a hypervisor. In this case, the virtualization
environment that the embedded applications run on has been optimized for performance, both for the processor environment that it's
running on as well as the hypervisor. This approach--when combined with hardware virtualization extensions--offers a near-native
execution performance for the embedded applications.

With open-source OSes such as Linux, this approach is particularly appropriate, as the source to the kernel and board support packages
are available, and the performance gains of paravirtulization can make Linux more widely applicable as an embedded OS.

Another approach that can be used with this technology is full virtualization. This where the same hypervisor can offer a virtualization
environment to the guest OS that's similar to running on the native hardware. This requires no changes to the guest OSes, but because the
hypervisor is adding more virtualization, there's a small performance hit over the paravirtualized approach.

An interesting approach
Where things really start to get interesting is when these two approaches are combined. In today's embedded systems, there are often
components that are real time and others (such as user or file-access systems) that don't require real time but often need a GUI. These
components are often compartmentalized using different hardware and OSes (Linux or Windows for the GUI and an RTOS for the
real-time portion, for example) to give the best building blocks while keeping the real-time determinism intact.

With a separation kernel and hypervisor, these worlds can be combined on a single hardware platform. The separation kernel
communicates both with the underlying hardware platform to partition the appropriate resources and with the hypervisor to ensure that the
guest OSes have what they require. The separation kernel and hypervisor determine how to best make use of hardware optimizations and
extensions available. This includes hardware virtualization and multicore devices, offering separate secure partitions for each of the guest
OSes to run in.

This software separation means that the real-time performance of the RTOS partition isn't compromised by the other, often open-source,
guest OSes, and any fault conditions that occur in any of the partitions are confined to that partition. In a multicore system, the separation
kernel can also allocate processors to partitions, effectively mimicking the traditional hardware separation using a hardware/software
combination and not compromising system performance by sharing processors across different OSes. The separation kernel can also
determine inter-partition communication, using policies to determine which partitions can talk to one another and can also administer the
sharing of physical peripheral devices such as displays, network connections and I/O functions between the different partitions, OSes and
applications.

EETimes.com - Virtualization makes better use of open-source OSes an... http://www.eetimes.com/news/design/showArticle.jhtml?articleID=21...

2 of 3 27/11/2009 10:10

Click on image to enlarge.

Using today's modern multicore and virtualized hardware gives multiple applications and OSes (either paravirtualized or fully
virtualized) their own secure partitions to operate in. The relatively small size and efficient operation of this solution means that very
little compromise is required for embedded systems developers to adopt this technology today.

This solution also introduces open-source applications and OSes into embedded systems where their use has been traditionally prohibited
either due to performance or licensing issues. By allowing the separation kernel and hypervisor to partition different OSes, embedded
systems developers now have the opportunity to bring in open-source OSes for the user-interface portion of their system without
compromising the hard real-time aspects of their system. The separation kernel can also keep the proprietary applications of the
embedded system separate from the open-source parts. And, because no linking of GPL libraries is necessary (because they're loaded into
their own partitions), the possible copyleft issues of using open-source products are avoided.

This software virtualization environment gives embedded software developers the option of bringing non real-time applications into a
hard real-time system and open-source licensed solutions next to proprietary ones on the same hardware. Such a solution was previously
available only by using physical hardware separation.

Introducing open-source OSes and applications into embedded systems has often been difficult due to performance or licensing issues,
and hence the benefits of reusing existing open-source and commercial-software intellectual property has been missed. With the
introduction of the embedded hypervisor, open-source software is now becoming available to a wider range of embedded systems,
spreading the benefits of reuse and cost-effective software development across the spectrum of embedded devices.

Robert Day vice-president of marketing at LynuxWorks, is responsible for all global external and internal marketing functions. He
leads the company's program management teams. Based in San Jose, California, Day is a graduate of The University of Brighton,
England, where he earned a Bachelor of Science in computer science.

All materials on this site Copyright © 2009 TechInsights, a Division of United Business Media LLC. All
rights reserved.

Privacy Statement | Your California Privacy Rights | Terms of Service | About

EETimes.com - Virtualization makes better use of open-source OSes an... http://www.eetimes.com/news/design/showArticle.jhtml?articleID=21...

3 of 3 27/11/2009 10:10

