PAGE
10
QNX_Nov0309

Slide 1:

Moderator:

Hello to everyone from around the world, and welcome to today’s webinar, “Intelligent Multi-Core for Intelligent Networks,” brought to you by QNX Software Systems and Cavium Networks, and TechOnLine. We have just a few short announcements before we begin.

This webinar is designed to be interactive. Please ask questions during the presentation by typing in the text area and clicking the “Submit a Question” button. Our presenters will answer your questions at the end of this webinar, but please enter them whenever they come to mind.

This presentation may also feature some detailed slides. By clicking on the “Enlarge Slides” button, you can increase the size of the slide window on your interface. These slides will continue to advance automatically throughout the webinar.

Later in the program, we’ll ask you to complete a short survey. Please take a moment and fill out and submit the survey. Your feedback is important to us, and will provide QNX Software Systems, Cavium Networks, and TechOnLine with valuable information on the subjects covered in this webinar and how we can improve future broadcasts. The survey will open for you at the beginning of the Q&A period. You can also launch the form by selecting the “Survey” button.

And now, onto the presentation. Discussing today’s topic will be Steve Kilnger and Kerry Johnson. Steve is Senior Product Line Marketing Manager at Cavium Networks, and Kerry works at QNX as an Ottawa Product Manager. Welcome, Steve and Kerry. Please begin.

Steve Kilnger:

Thank you very much. Again, this is Steve Kilnger. I am a Senior Product Line Manager for the Cavium Networks Octeon multi-core MIPS product line. I am based here at the Cavium Networks headquarters in Mountain View, California. And today, what Kerry and I will be talking about are the solutions that we are jointly offering for multi-core processing solutions in the market.

Slide 2:

Both QNX and Cavium have a long history in delivering multi-core technology. QNX from a software standpoint has been delivering solutions for over ten years with some of their initial multi-core solutions delivered back in 1997, and today have a very complete and robust set of both operating system products as well as tools. Cavium really has been a pioneer in the semiconductor industry in terms of delivering multi-core processors. And today, we’ve delivered five generations of multi-core processors successfully to the market, and these are today used really by all the top-tier networking OEMs, as well as OEMs in wireless, storage, security, and other markets.

What QNX and Cavium together have done over the last several months is really collaborated in our multi-core technology to offer joint solutions to the market, the first of which we will be able to provide the QNX Neutrino RTOS and BSP for the Cavium Networks Octeon 57XX, which is a 12-core multi-core processor family. And this will be the first entry point for joint solutions that we’re offering together on the market.
Slide 3:

When we look at the trends that are driving the multi-core processing solutions, first off, we have, from a top-level demand driver, a massive increase in the amount of bandwidth we are seeing in the network; really a 10x plus increase in line rates in both the LAN, the WAN, as well as the data center. Another trend that we see is that really, security processing requirements are pervasive throughout not just security-oriented network equipment functions, but it’s really a capability that’s being deployed really everywhere in the network, and in every particular box type. Another trend that we see is the requirement for higher-layer processing. So whereas in previous generations, a lot of networking equipment was mainly oriented at forwarding traffic, the designs now really need to be able to look deep into the packets and be able to make intelligent processing decisions based on higher-layer information contained within the data.

Looking at it more from a processor perspective, some of these things are driving the need for much, much more processing power in the CPUs. We also see our users wanting to integrate what used to be several different processors into a single processor, thereby having both a control and a data-plane integrated in a single chip, and then using hardware acceleration adjunct to the multi-core processors in order to get the best performance for some of these higher-layer processing functions and other things like security. The intelligence of the applications has really gone up to the application layer, and so as I mentioned before, previous generation equipment was typically making decisions based on Layer1, Layer2 type of information. Now, our users are really using application layer information in order to make intelligent switching and processing decisions. Of course, power consumption is key. As we try to integrate more processing power in a particular node, what we’ve got to do is make sure that the multi-core processors maintain very efficient power consumption.

Slide 4:

Moving on to the next slide, what we’re showing here is some typical programming models that users of our multi-core processors are employing. The top diagram really illustrates a case where the user is looking to use a multi-core processor for data-plane processing, and it can run any number of cores on one of our processors to accelerate the data-plane processing. There are also other users shown in the second diagram that would want to run either multiple instances of the same operating system or an SMP operating system across all of the cores on a multi-core processor. And then the third is really kind of a hybrid approach, where the user would run a few cores with an operating system, and then run more tuned data-plane code on the remainder of the cores as kind of a balance of control processing with optimized data-plane processing. And today, we really see all three of these models being used by our customers.

Slide 5:

If we look at what the Octeon multi-core processors are doing today, they are really replacing what in previous generation designs was a collection of devices: namely a general purpose CPU and its memory subsystem, some form of a bridge chipset, and then several specialized coprocessor devices that did things like encryption/decryption, TCP acceleration, compression/decompression, or pattern matching, each of which have their own memory subsystems and their programming models. This approach, of course, was both difficult to design in terms of fitting all the components on the board, resulted in very high power consumption and very high cost.

So what our Octeon processors do is really integrate all of that functionality into a single device. It makes it a much smaller form factor, dramatically reduces the power consumption and the cost, it takes a lot less board area, and offers a single programming model in order to let our users get to market very quickly.

Slide 6:

We have a wide variety of processors today. What we are showing here are really the capabilities of our Octeon Plus, which is the current generation in production, where we offer processors today ranging anywhere from single-core devices all the way up through 16 cores. These are a MIP 64 release two that Cavium has taken and extended the instruction set to add additional instructions, primarily to accelerate networking and security type of processing. If you look at the aggregate compute that that offers on the top end today, we have up to 12.8 GHz of total compute integrated into a single chip, and up to 2 MB of Level2 cache. We use DDR2 standard memory across the board across the Octeon Plus line. What we also have done is added hardware acceleration to do packet processing, to handle all of the load balancing and scaling across cores, and accelerate some of these other functions that previously required separate coprocessor chips, things like compression, crypto, pattern matching, so on and so forth. And we allow connectivity of the processors throughout the system, and to networking I/O with standards-based I/Os. So we have Gigabit Ethernet, 10GB Ethernet, as well as both PCI-X and PCI Express type of interfaces, where Octeon can either be a host or a target endpoint type of a device in the system. We have a very broad software-compatible product line. So all the Octeon processors today run the same software, are supported by the same SDK, and this allows us to scale across a very broad set of performance and price points, everywhere from very low cost, single/dual-core processors all the way up to the top end. And even with the top-end devices today, we are under 40 W total power consumption, but we scale also down to less than 3 W.

Slide 7:

An example of our Octeon Plus processors -- and this is actually the family that the QNX solution is running on first: these are our 56/57XX processors. These scale anywhere from eight to 12 of our cores, and offer core clock speeds anywhere from 600 to 700 MHz that in total get those up to about 9.6 GHz integrated on a single chip. These devices offer both PCI Express as well as SGMII and XAUI interfaces for GigE, 10 GigE, and PCI Express, either endpoints or root complex. So depending on the configuration of the I/Os on this part, we can get anywhere up to two XAUIs or eight SGMIIs, as well as two PCI Express by eights. And you can see the additional coprocessors surrounding the MIPS cores that we’ll talk a little bit about in some of the subsequent slides in terms of the functionality that those provide.

Slide 8:

First off, all of the Cavium Octeon products are based on our custom-designed MIPS 64 cores. These are the release two instruction set. But what Cavium’s done is really gone and extended these processor cores with additional instructions to optimize performance for the types of applications that we’re targeting. And what this very efficient design allows us to do is actually pack a very large number of cores in a very small silicon area, so we are able to deliver the type of compute that we have in a very small power envelope. We, across all the products, have large Level2 caches. These are EEC protected, and we also have very highly associative L1 caches, and we’re able to lock and partition the caches to allow users that want to partition various regions of the cache and to gate them to particular cores or groups of cores within our devices. And then we connect the cores to the rest of the system, the I/Os and the coprocessors, with a highly oversped interconnect, a coherent interconnect. And this allows us to ensure that the interconnect on the device is never a bottleneck, and we’re able to fully utilize the processor cycles available within the processor cores.

We do use standards-based memory. We allow our users to really benefit from the widely available, low cost DDR2 DIMMS in particular with the case of Octeon Plus family, and this allows the total solution [bottom?] cost to be optimized, as well as maximizes the availability of the memory. And on all of the I/Os, we go with standards. This allows our users to connect the Octeons into their system and interoperate with any number of switch or PHY or bridge or FPGA type of devices that are available on the market, simplifying the system design.

Slide 9:

Many of the areas where we’ve innovated within the Octeon family above and beyond the cores are in the areas of the hardware acceleration that we provide. So we have packet input and output processors that handle all of the reception and transmission of the packets, all of the CRC generation and checking, packet parsing, and flow identification. What this essentially means is that the CPU cores don’t spend any cycles until the data has been received into the device, is sitting in memory, and has been full parsed. So we can spend the CPU cycles on the real application value-add.

We also have what we call an application acceleration manager, and this in hardware handles all of the multi-core load balancing and scaling. So the hardware is able to determine which work should be processed by which cores, and also eliminates the need for running software logging across the cores, which is a technique used in many other multi-core processors that really kills the performance. So this is one of the things that really allows us to do linear scaling as we increase the core counts and frequencies across our devices.

Cavium is the market leader in security coprocessors, and we’ve also integrated that same technology within the Octeon as a per-core security engine. Today, we support really all of the security standards, including the capabilities to do IPsec, SSL, elliptical curve, and other applications. We have a very comprehensive set of encryption/decryption and hashing acceleration.

We also support pattern matching and deep packet inspection with regular expression engines. These allow us to really scan the full payload of the packets flowing through the device, and is very useful in applications like anti-virus, intrusion detection, prevention, and other applications where we don’t just want to look at packet headers -- we want to be able to scan and look for patterns anywhere in the packet, including the complete payload.

TCP is really a [table?] stakes requirement for doing higher-layer processing in a multi-core processor, and we have extensive hardware acceleration for TCP that allows us to get extremely high TCP throughput as well as very high connection setup and teardown rates. And so that having very high-performance TCP termination allows us to then build the higher-layer applications on top of TCP as a foundation.

We also have hardware compression for things like compression/decompression based on standard algorithms like inflate/deflate, so we can support things like GZIP and PKZIP in hardware. This is something that, done in software, consumes a huge number of processor cycles. And for more storage type of applications, we also accelerate in the 57XX the RAID 5 and 6, with the XOR and Galois Field acceleration.

Slide 10:

There are many product families within the Octeon product line. What we’re showing on this slide are several of those families. We initially introduced the CN38XX, which was our first-generation product line, up to 16 cores. And we followed that up with the 58XX; that goes anywhere up to 16 cores again, where we increase the core frequencies and improve the hardware acceleration. And then on the right-hand side of the slide here, we show our PCI Express and XAUI and SGMII SERDES-based devices. Three families we have here, anywhere from the eight to 12-core 56/57XX all the way down to the two to four-core 52XX. So there’s a wide variety of choices that we provide.

Slide 11:

And then on the lower end of the product line, we initially introduced the CN30XX single/dual-core processors, and following those up with the CN50XX single/dual-core. These are used in a variety of applications, including broadband gateways and 802.11n enterprise-class access points.

Slide 12:

Looking at some of the applications within networking in particular where we see the Octeon processors being used, one popular application is networking and unified threat management security appliances where Octeon is the main processor in the system, doing all of the control services and data-plane processing. So there is a wide variety of ODM available appliances that fit this model.

The second place where we have been very successful are in applications like integrated services routers, again where Octeon is the main processor in the system, handling both the control and the data-plane processing, and we connect to a variety of different I/O modules for LAN and WAN interfaces. Octeon as well as our Nitrox security processors can also be offload processors to an x86 type of an architecture. We do offer acceleration cards based on both of these products that can be plugged into either a PCI-X or PCI Express type of form factor in an x86 type of an appliance. And then the lower-end Octeons are popular and used in things like SMB routers, triple-play, fiber-to-the-home gateways, and low-end networking and security appliances.

Slide 13:

Looking at the wireless market, Octeons are used in things like 3G and LTE, as well as WiMAX base stations, where the Octeons can do anywhere from the Layer2 to the Layer7 processing integrated into a single chip, and connect up to FPGAs or DSPs. The higher-end Octeons are also being used in things like 3G/LTE and WiMAX gateways. And the single/dual-core Octeons today are used in a broad range of enterprise-class 802.11n wireless LAN access points, as well as wireless LAN controllers when we get up into the devices like the 56XX that QNX is supporting.

Slide 14:

Looking at the storage market, Octeons are increasingly being adopted here in applications like iSCIs adapters, fiber channel to SAS bridges, unified storage processing solutions, as well as backup and mirroring solutions.

Slide 15:

The nice thing about the Octeons, particularly when compared with previous-generation NPU type of architectures, is that they’re fully programmable in C/C++, and are based on a standard instruction set. So we can really leverage the installed code base, we don’t require any microcode, and the toolset that the user users for Octeon is a completely standard tool chain. So we use GNU, GCC, GDB, DDD type of a toolset. And Cavium’s taken those and added our support for our own instructions back into those tools. And we do have support for all the key operating systems, including QNX. And we use standard APIs in the application software that we provide.

So really, what Octeon allows you to do is really bring this technology to the entire software engineering user base within this company. It really isn’t a specialized microcoded NPU type of technology that can only be used by a subset of programmers.

Slide 16:

We do have a very complete set of software. So in addition to the Cavium software development kit that provides all the tools and libraries and so on and so forth that you need to program the device, we have partnerships and offer third-party operating system support including QNX, Linux, and other operating systems to provide a very flexible set of choices to our customers depending on what they are using today or are looking to in the future. And we augment that with a very broad set of application software. So we have taken and optimized a lot of protocol applications for things like TCP/IP, IPsec, SSL. These our customers can use as the building blocks of their own system-level applications, and they don’t have to spend the time to re-optimize these very common applications. We have put a lot of time and energy, and really deliver a production-quality solution here. These are also application software products available from our partners.

So with that, I’ll hand it over to Kerry, who can talk a little bit more about the solutions that QNX is offering and describe what we are doing together.

Kerry Johnson:

OK. Thank you, Steve. As Steve said, my name is Kerry Johnson. I am a Product Manager here at QNX. I work out of the Ottawa, Canada office. And what I wanted to talk a bit about today was the multi-core solution that we have for Cavium. It’s our general purpose networking solution.

Slide 17:

So the first slide here really speaks to some of the things that Steve touched on earlier, such as the complexity being built in today’s networking equipment. Of course, the complexity involved in a system when looking at kind of the higher-layer four through seven, doing packet inspection and Layer4 through seven processing and such, that all needs to be combined with the run of the mill processing required to run network equipment. And this slides provides a sampling of some of the software capabilities that would need to be put into a networking node, such as performance monitoring, remote network management through SNMP or your favorite protocol stack there, fault management and diagnostics, health monitoring, alarm reporting, etc., network topology discovery and restoration with MPLS or, you know, pick your favorite routing protocol, local and user interfaces, whether they be a simple command line interface or a web-based graphical interface. All of these technologies combine together to create an incredibly complex piece of software that needs to be scaled not only from a pure nodal processing perspective, where you would introduce a multi-core processor to scale the processing requirements of a single line card or control card, but also scaling through distribution in building large network systems that often run to multi-shelf, multi-bay configurations. And of course, this all has to be done in the backdrop of high availability, where the typical expectation is that these systems run with five-nines availability.

Slide 18:

So just a bit of background on that. As you can imagine, that complexity drives the need for high-performance processing, which drives the need for multi-core. And QNX has a long history of multi-core. In fact, from an RTOS perspective, we were the first to market with a symmetric multiprocessing solution in 1997, and have been building on that success for over 12 years.

Just by our definition of multi-core, we look at it in a number of ways. Symmetric multiprocessing on homogenous processors: so this would be the MIPS processors that Steve referred to, the general purpose processors, but it also includes a combination of those general purpose MIPS processors plus accelerator engines for doing the crypto offload and stuff. However, technically speaking, this could even apply to a number of single-core multiprocessor or multi-socket SMP systems. We don’t really distinguish between the various models of symmetric multiprocessing, and I’ll get into that in the next slide.

But the bottom line is that with our long experience in multi-core and symmetric multiprocessing, we’ve got deployments in thousands of systems in the field already, everything from medical imaging to high-capacity core routing driving the Internet, as well as distributed control systems in industrial applications.

Slide 19:

So Steve mentioned this earlier, and he talked about how the Octeon family supports a single software suite or a single programming model, from single/dual-core processors all the way up through their eight/12/32-core models. And from a QNX perspective, we see that the same way. We see processing the same way. Given the large investment in software, it’s important to establish a programming model that scales. And what this slide shows is a number of different processor configurations, everything from a single core to two single core multi-socket systems to a single dual-core, dual dual-cores, quad-cores, etc. They key is that your programming model should strive to keep the actual microprocessor model independent of the underlying hardware architecture, and with the Cavium solution that scales by adding more cores, by constructing your software to take advantage of POSIX threading -- QNX fully supports the POSIX Pthread library -- it basically allow you to introduce cores and scale your processing capacity automatically by just simply changing the processor. Of course, there are optimizations that go beyond that, so that is a little bit of a simplification of the actual solution that you would bring to an embedded system. However, if the lion’s share of your code is threaded and SMP aware, that scaling should be easy to accomplish.

Slide 20:

This slide describes a little bit about our networking solution, and it’s what you would typically see as the “Chiclet diagram” that shows all kinds of bubbles for various routing protocols and such, but obviously, I am not going to go into each one of these on today’s webinar. But suffice it to say that our networking solution consists of a number of partner protocols as well as a number of QNX-provided protocols in the light blue area that are all based on our standard networking stack offer, which is a NetBSD-based TCP/IP stack which supports some of the latest technology, such as Opencrypto for IP stack acceleration, etc. Underneath, we have the QNX Neutrino RTOS, which has the multi-core process and SMP capabilities, a high availability framework that I will talk about, other technologies such as adaptive partitioning, file systems, etc, and of course, a number of BSPs. And all of our product is available in source format on our Foundry27 portal, which is a portal for QNX developers where they can come and download and build their products from source. But of course, we route these all up into a commercial distribution, known as our Momentics and Neutrino operating system offer.

Slide 21:

So moving past that to look at one of the topics that is very important for networking gear is achieving high availability. So looking at the roots of availability, well, availability is simply mean time between failure divided by the mean time between failure and mean time to repair. So this is a bit of a simplification because in systems, you will typically have redundant systems, which actually increases the availability, and you will also have dependencies where if one component fails, it will cause another to fail, which negatively impacts your availability. But in essence, the two real components that you can influence are mean time between failure and mean time to repair.

So obviously, for mean time between failure, the way that you can most directly impact that is through good software programming practices and good software development practices, good system verification, mature software, etc. But this alone is not good enough, because you will often need to have a backup plan in case something does fail. And that’s where the mean time to repair comes in. If you can recover from a fault quickly, you can move that mean time to repair number to a very small number, which effectively increases your availability. So as you can see, as mean time to repair approaches zero, your availability approaches 100%.

Slide 22:

So what we offer in that regard: there really are three key technologies to what QNX’s offer involves for high-available solutions. One is the microkernel, which basically allows you to develop a system where a number of services that would typically be associated with an operating, such as files systems and networking stacks, etc., that would be bundled into the kernel with a monolithic system such as a Linux or even in a real-time executive, failures in those modules will actually cause the entire kernel to fail. And the microkernel basically provides you a way of separating those operating system services outside of the kernel, so that any failures in those modules can be restarted independently, and thereby limiting the impact of the failure, but also more quickly recovering. So this way, you can simply do a process restart on, say, the flash driver without restarting the entire system. OK?

Slide 23:

So the microkernel does lead to a high availability. But to augment that, we also have a high availability framework, which consists of a high availability monitor which you can register processes with to be notified of process death, or it also does heartbeat monitoring, so if it detects that a program is unresponsive or a process is unresponsive, it can restart that. It also provides a mechanism for recovering the inter-process communications between failed processes. And so that basically gives you a very quick way of easily detecting failures and restarting failed processes to decrease your mean time to repair.
Slide 24:

The other technology that we offer is a technology called “adaptive partitioning.” What adaptive partitioning allows you to do is to budget CPU time for a variety of subsystems, and those subsystems are expressed as either processes or threads. So in this particular example, we see that we have allocated 25% for fault management, 25% for management interfaces, a certain percentage for performance monitoring, and likewise for database and the high availability subsystem. What this allows you to do is it guarantees that CPU time is available for each of those subsystems to protect you from other subsystems that are misbehaving. So for example, if you have a process that runs amuck and starts consuming too many CPU cycles, that can be throttled by the operating system such that your process always has time to execute its critical function. In this example, by allocating 10% to the high availability monitor system, it creates a situation where that will always have CPU time to run regardless of the other activity in the system.

The other point to note about the adaptive partitioning solution is that these CPU times are a time guarantee, but they don’t consume that timeslot. So for example, if the database, which is shown to have a 15% CPU budget, if it is not using its 15% CPU budget at any given time, that 15% can be used elsewhere, by other systems that may need time. So what this allows you to do is it allows you to guarantee CPU time and still accommodate bursty processing needs without wasting CPU cycles.

So the overall combination of microkernel, high availability manager, and adaptive partitioning really do address the needs of a highly available system.

Slide 25:

So the other technology that applies, that is attractive for networking equipment, is known as two names: either “transparent distributed processing” or “QNET.” We have had this distributed processing capability available in our operating system since day one. What transparent distributed processing allows you to do is it allows you to scale your system. If you recall back to the multi-shelf, multi-card, multi-node type systems where you want to achieve scale by adding additional cards and CPUs, etc. -- that is the typical model for achieving scale -- you want to have a model whereby you can communicate efficiently between those cards, and between those circuit packs and systems, and also a model that allows simple redundancy so that you can recover from failures in different subsystems. So we’ll just go through an example of that in the next two slides, where what QNET provides is a auto discovery mechanism so that every node can advertise services that it has available, and those can be seamlessly networked together.

So in this example, we’ll see that a database is making use of a flash file system that’s on circuit pack number two. So in order to make use of the flash file system, it does a simple open of the flash file system, and then it reads and writes as you would expect, and that all happens on the local node. OK? Since each one of these yellow bubbles is actually a process, they can be addressed individually. And again, this goes back to the power of the microkernel: it actually allows you to have things that would typically be in kernel space in user space so they can be separately and individually addressed. So these services can then be exported.

Slide 26:

Moving to the next diagram, it shows how that database could actually make use of a flash file system on a completely different physical processor. And what that allows you to do is it basically allows you to build redundancy into your system quite easily. So for example, if a flash file system on circuit pack one becomes corrupt, it could easily use the flash file system on circuit pack two. And you’ll notice that the other real different here is just that I’ve changed the open call, where now it opens a flash system by its network name as opposed to its local name. Other than that, it’s completely seamless.

So this type of approach allows sharing of resources across a network in a very transparent manner. So I talked about sharing a flash file system; you could also share a networking stack. So for example, you could have Ethernet communication among a number of circuit packs over Ethernet or over a back plane of some type, but have that interfacing with external systems through a TCP/IP stack consuming memory footprint CPU time on a single node, but all other nodes could easily make use of those TCP/IP services.

Slide 27:

So moving on from that distributed processing concept, I wanted to spend a bit of time talking about our networking stack offer, and how this pertains to some of the hardware acceleration features offered by the Cavium Octeon.

So first off, our networking stack is based on, as I said earlier, NetBSD, and that provides us a very simple way of getting drivers, porting drivers for popular interfaces and chipsets, etc. Tooling, utilities, etc., are all based on -- there’s quite a broad support for NetBSD in industry. The stack is fully threaded at Layer2 for SMP operation, so if you have four or eight cores, each one of those cores would run on a separate thread in parallel, and at Layer2, you could get high-speed forwarding, where each core would operate independently.

It’s a complete user space implementation of the stack, so that means that you can have multiple stacks. And the applications to use multiple stacks would be if you had a highly secure environment where you wanted to do some form of red and black data separation. This provides you the ability to easily run two protocol stacks: one handling secure data, the other handling unencrypted data. Or even another, simpler application for that is just in the very nature of developing additional protocols or working with a stack to optimize it for a particular environment, you may have a stack that’s being used for development purposes, and one that’s more production that you can use for debug. So for example, you can connect your tools and et cetera through a known good stack implementation while you are working on another stack. So this provides you remote debugging capabilities while your main stack is in development.

This stack also provides hardware crypto acceleration using the BSD Opencrypto framework, and what this is QNX provides a software implementation for IP stack cryptography, but that can be swapped out using this standard driver API with a driver that supports some form of hardware acceleration. And this is the technique that is used to allow hardware crypto offload with the Cavium acceleration engine.

Also, again, being BSD, we provide a Berkley Packet Filter, which is a rules-based filtering that allows you to do all packet filtering and inspection in user space. And Berkeley Packet Filter, or “BPF,” is a well-known filtering technology that’s used in the industry for things such as -- for example, a TCP dump function uses the Berkley Packet Filter interface. This basically gives you the ability to filter things in user space.

The PF interface is used as a stack interface, and this actually offers you the ability to inspect and modify packets. So if we are doing firewall services or [NAVs?], those types of things, you actually need to hook directly into the stack to get and modify packets. The PF interface is provided, and again, we provided the BSD PF suite of tools to help with that, again, with the filtering rules, etc.

Slide 28:

So moving on from the actual OS into the toolset, obviously for multi-core development, you need a powerful set of tools to understand what’s going on in a number of cores. So our joint solution is the Neutrino RTOS, and for tooling, the QNX Momentix toolset is used for developing Neutrino applications.

Slide 29:

At a high level, we support a number of development hosts, anything from Windows, Linux, or Neutrino itself. But on the development host, your Momentix tool suite can interact directly with the target. In fact, we have very rich debugging and profiling capabilities for Neutrino targets. We have the concept of an instrumented kernel, which basically provides an in-depth logging capability and instrumenting capability, so for every activity that happens in the system, since it comes through the kernel, it can be logged. And it’s a one-step operation to invoke that logging capability, instruct the target to log, upload the trace file, and display the trace file in a simple, easy step. This basically provides you the ability to visualize system interaction. You can view interrupts, thread states, event timing, CPU usage, etc. It’s a very powerful profiling capability.
Slide 30:

Some of the multi-core visualization tools that are provided as part of Momentics are you can look at load balancing by looking at the CPU activity. This slide shows three simple screens that allow you to do that. So for example, if you want to look at CPU utilization across all cores, you can do this. This particular example shows a four-core CPU usage.

We also can do a system analysis, which basically again shows interrupts, what CPUs are running, what threads, etc. The middle line diagram shows a multiprocessor system where there are a number of threads running on a number of processor cores. The diagram shows things color-coded so that, you know, pink would be core one, blue would be core two, green would be core three, etc. So you can see at a glance where your software is running and how it migrates from core to core.

And finally, the bottom screen shows an optimization tool that we have. It’s called an application profiler, and what this allows you to do is to profile execution time so you can pinpoint slow spots in various functions, and it even provides the ability to do a comparative analysis of your test runs. So for example, you can do a test run, measure how long it takes to execute a particular function, improve that performance through threading or what have you, any kind of optimization technique you may choose, and rerun that test, and it will show you the improvement in execution time for that particular function.

Slide 31:

So that just gives a quick overview of the tool capabilities. So before we move to Q&A, I just want to do a quick summary of the overall solution. So QNX and Cavium are providing a high-level, high-performance solution for intelligent networks. The Octeon and QNX Neutrino RTOS are perfectly matched for doing high-performance control plane and data-plane applications, and the QNX Momentics tool suite for multi-core optimization and visualization. And for any information that you want on the QNX side, you can certainly contact me, and you have my contact information below.

And with that, I will turn it back over to TechOnLine for the Q&A.

Moderator:

All right. Thank you, Kerry.

Before we start the Q&A, please note the survey appearing on your screen. If you do not see the survey, please launch it now by clicking the “Survey” button on the left side of your interface. Thank you in advance for filling out and submitting the survey. Your feedback is important to us, and will provide QNX, Cavium Networks, and TechOnLine with feedback on how to improve future webinars.

We’ll now move into the question and answer section of the presentation, and if you have a question for our presenters, please submit it now by typing in the text area on the left-hand side of your screen and clicking “Submit.” And with that, I’ll hand it back to Steve and Kerry for the Q&A.

KILNGER:
OK, thanks. I’ll go ahead and take the first question here. The question is, “Is there a GNU tool chain C compiler that generates object code with the additional Cavium instructions that have been added to the MIPS 64 release two?” The answer is yes. Cavium has taken GCC and made the modifications to that to support these additional instructions. So the tool chains that you would get from us or from our partners would have that built in. Kerry, I will turn it to you for the next question.

JOHNSON:
OK. I will take the next question. Here is one. “What source code is available on Foundry27? Your networking stack, or other source?” Yes. So I briefly mentioned Foundry27. Foundry27 is a portal provided by QNX where developers can come and get source code, there are forums, etc. The source code is not limited to the networking stack. In fact, we introduced Foundry27 about two years ago. We started with our microkernel source, so our basic OS source code. We added networking. We have added utilities along the way. So our commitment was to provide a full QNX implementation with source available for our customers so that they can use it for a reference and for helping with debug, etc. And that’s available as source. It’s the entire operating system, utilities, etc. And over to you, Steve, if there’s another question.

KILNGER:
Yes. The next question was, “Does programming the Octeon processors require the use of any microcode?” The answer to that is no. It’s fully C/C++ programmable. So all of the software you can compile using the GCC compiler, and the access to all of the hardware acceleration engines on the Octeon is all done in C/C++ software. We provide the libraries to do that. So there’s no microcode that you have to write. This is different than what you’d need to do in a traditional NPU that does require microcode programming.

JOHNSON:
OK. Another question here. It says, “How does the QNX portioning work on a multi-core processor?” OK. So I talked about the technology called “adaptive partitioning,” and in the slide, I presented it as a set of percentages. So the way it works on a multi-core processor, if we assume that there are four cores on the multi-core processor, it’s still based on a ratio of 100%. So each core would contribute 25% to the overall processing pool of that to equal 100%. So if you were dividing up a CPU budget, you would still do it in terms of percentages, and, say, if you allocated 50% to a partition, that would effectively allow you to run on two full cores, or take two full cores’ worth of capacity. So as you add cores, you still deal with percentages, and it just works across multiple cores that way in an SMP configuration.

KILNGER:
OK. The next question here was, “What is the role of the schedule synch order unit block in the Octeon processor architecture?” And the role of this block is really that you could think of it as the work packet manager in the chip. So this hardware unit handles all of the load balancing of work across cores. It also maintains packet ordering. It also provides for [atomic?] accesses to various resources in the chip. So the role of this unit really is to replace complex software that would otherwise need to run on the MIPS cores to manage the balancing and synchronization of the work that is done, and it’s one of the key blocks that allows us to get linear scalability. So when we go from a four-core to an eight-core to a 16-core Octeon device, we get the exact linear scaling that we want to get for the application performance.

JOHNSON:
OK. There’s another one here for me. It says, “Is there any analysis tool to identify parallelization opportunity in legacy application programs?” So there are a few techniques that can be used using the Momentix tool set. And I touched very briefly on those tools. I know that we didn’t have much time to talk about it, but there is an application profiler tool and a system profiler tool. I’ll start with the system profiler. What the system profiler allows you to do is to determine which threads and which processes are consuming the most CPU time. So you could run that across an entire multi-core processor and find out where your CPU time is being spend. From that, once you have a rough understanding of which processes are using which CPU time, you can then use the application profiler to inspect that process a little bit more closely, and again, figure it out to the function layer what functions are taking the most CPU time. In terms of actually pointing out what the opportunity for parallelization is, the tool basically will provide you a view of bottlenecks. But through understanding what type of function is being performed, you can then optimize that and retest again. So it basically allows you to pinpoint bottlenecks. However, in terms of automatically parallelizing code, it doesn’t give you that capability.

MOD:
OK, great. Thank you, Kerry and Steve. Before we finish up, do either of you have any final comments?

KILNGER:
I would just like to thank everyone for taking the time today to listen to the presentation, and I hope that you found it informative as you search for multi-core processing solutions. And we look forward to working with many of you in the future.

JOHNSON:
Yes, likewise, and thank you for attending. And as I said earlier, you have my contact information if you have any questions on the QNX solution. And we’ll turn it back to TechOnLine.

Moderator:

All right, great. I’d like to thank the presenters for today’s discussion, and I’d also like to thank everyone for attending today’s webinar, “Intelligent Multi-core for Intelligent Networks,” brought to you by QNX Software Systems, Cavium Networks, and TechOnLine.

Please fill out and submit the survey at this time if you have not done so already. By completing this survey, you will provide QNX, Cavium Networks, and TechOnLine with valuable feedback on the subjects covered in today’s webinar and how we can improve future broadcasts.

This presentation will be available shortly in an on-demand format. As a registered user, you will receive an e-mail with detailed information on how you can access the on-demand version of this webinar. The on-demand replay will also include a PDF copy of the slides used in today’s discussion.

This webinar is copyright 2009 by TechOnLine. The presentation materials are owned by or copyright by QNX Software Systems and Cavium Networks, which are solely responsible for their content. Today’s speakers are solely responsible for their content and opinions.

We hope you will join us for future webinars. For a current schedule of live and on-demand events, please visit us at techonline.com. Thanks for joining us, and have a great day.

END OF AUDIO FILE

