
QNX® Neutrino® Realtime Operating System
Building Embedded Systems

For targets running QNX® Neutrino® 6.4

© 2009, QNX Software Systems GmbH & Co. KG.

© 1996–2009, QNX Software Systems GmbH & Co. KG. All rights reserved.

Published under license by:

QNX Software Systems International Corporation
175 Terence Matthews Crescent
Kanata, Ontario
K2M 1W8
Canada
Voice: +1 613 591-0931
Fax: +1 613 591-3579
Email: info@qnx.com
Web: http://www.qnx.com/

Electronic edition published 2009.

QNX, Neutrino, Photon, Photon microGUI, Momentics, and Aviage are trademarks, registered in certain jurisdictions, of QNX Software Systems GmbH & Co. KG. and are
used under license by QNX Software Systems International Corporation. All other trademarks belong to their respective owners.

Contents

About This Book xiii
What you’ll find in this guide xv

Typographical conventions xv

Note to Windows users xvi

Technical support xvii

Overview of Building Embedded Systems 11
Introduction 3

The role of the IPL 3

The role of the startup program 5

Startup’s responsibilities 5

The role of Neutrino 7

Hardware aspects 8

Choice of processor 8

Source of initialization and configuration 8

Choice of filesystems 9

I/O devices 12

Getting started 12

Hardware design 13

Customizing the software 13

Working with a BSP 152
BSP Overview 17

Using BSPs in the IDE 17

Using BSPs on the command line 18

Structure of a BSP 19

Building source from the command line 22

Supporting additional devices 23

Transferring an OS image onto your board 23

Transferring an OS image 23

Working with a flash filesystem 24

Testing Neutrino on your board 27

Getting Photon on your board 27

April 20, 2009 Contents iii

© 2009, QNX Software Systems GmbH & Co. KG.

Where do I go from here? 27

Filename conventions 28

Making an OS Image 313
Images, images, images 33

What is an OS image? 33

The OS image as a filesystem 34

Configuring an OS image 34

A simple buildfile 34

The bootstrap file 35

The script file 37

Plain ordinary lists of files 38

Generating the image 42

Listing the contents of an image 43

Building a flash filesystem image 43

Using mkefs 43

Compressing files 45

Compression rules 47

Embedding an image 48

Combining image files using mkimage 49

Converting images using mkrec 49

Transferring an image to flash 50

System configuration 52

Establishing an output device 52

Running drivers/filesystems 53

Running applications 56

Debugging an embedded system 56

pdebug software debugging agent 57

Hardware debuggers and Neutrino 57

Producing debug symbol information for IPL and startup 58

Writing an IPL Program 634
Initial program loader (IPL) 65

Responsibilities of the IPL 65

Booting from a bank-switched device 66

Booting from a linear device 68

“Warm” vs “cold” start 68

Loading the image 69

Transferring control to the startup program 73

Customizing IPLs 74

Initialize hardware 74

iv Contents April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

Loading the image into RAM 74

Structure of the boot header 75

Relationship of struct startup_header fields 80

IPL structure 84

Creating a new IPL 86

The IPL library 86

Customizing Image Startup Programs 955
Introduction 97

Initialize hardware 97

Initialize system page 97

Initialize callouts 97

Anatomy of a startup program 97

Structure of a startup program 98

Creating a new startup program 99

Structure of the system page 99

size 100

total_size 100

type 101

num_cpu 101

system_private 101

asinfo 101

hwinfo 103

cpuinfo 109

syspage_entry cacheattr 111

syspage_entry qtime 114

callout 116

callin 116

typed_strings 116

strings 117

intrinfo 117

syspage_entry union un 123

un.x86 123

un.x86.smpinfo (deprecated) 123

un.ppc (deprecated) 123

un.ppc.kerinfo 124

un.mips 124

un.arm 124

un.sh 125

smp 125

pminfo 125

April 20, 2009 Contents v

© 2009, QNX Software Systems GmbH & Co. KG.

Callout information 126

Debug interface 126

Clock/timer interface 127

Interrupt controller interface 127

Cache controller interface 128

System reset callout 128

Power management callout 128

The startup library 129

add_cache() 129

add_callout() 129

add_callout_array() 129

add_interrupt() 129

add_interrupt_array() 129

add_ram() 130

add_string() 130

add_typed_string() 130

alloc_qtime() 130

alloc_ram() 130

as_add() 130

as_add_containing() 130

as_default() 131

as_find() 131

as_find_containing() 131

as_info2off() 132

as_off2info() 132

as_set_checker() 132

as_set_priority() 132

avoid_ram() 132

calc_time_t() 132

calloc_ram() 132

callout_io_map_indirect() 133

callout_memory_map_indirect() 133

callout_register_data() 133

chip_access() 133

chip_done() 134

chip_read8() 134

chip_read16() 134

chip_read32() 134

chip_write8() 134

chip_write16() 134

chip_write32() 134

vi Contents April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

copy_memory() 134

del_typed_string() 135

falcon_init_l2_cache() 135

falcon_init_raminfo() 135

falcon_system_clock() 135

find_startup_info() 135

find_typed_string() 135

handle_common_option() 135

hwi_add_device() 136

hwi_add_inputclk() 137

hwi_add_irq() 137

hwi_add_location() 137

hwi_add_nicaddr() 137

hwi_add_rtc() 137

hwi_alloc_item() 137

hwi_alloc_tag() 138

hwi_find_as() 138

hwi_find_item() 138

hwi_find_tag() 138

hwi_off2tag() 139

hwi_tag2off() 139

init_asinfo() 139

init_cacheattr() 139

init_cpuinfo() 139

init_hwinfo() 139

init_intrinfo() 139

init_mmu() 140

init_pminfo() 140

init_qtime() 140

init_qtime_sa1100() 141

init_raminfo() 141

init_smp() 141

init_syspage_memory() (deprecated) 141

init_system_private() 142

jtag_reserve_memory() 142

kprintf() 142

mips41xx_set_clock_freqs() 142

openbios_init_raminfo() 142

pcnet_reset() 142

ppc400_pit_init_qtime() 143

ppc405_set_clock_freqs() 143

April 20, 2009 Contents vii

© 2009, QNX Software Systems GmbH & Co. KG.

ppc600_set_clock_freqs() 143

ppc700_init_l2_cache() 143

ppc800_pit_init_qtime() 143

ppc800_set_clock_freqs() 143

ppc_dec_init_qtime() 144

print_syspage() 144

rtc_time() 145

startup_io_map() 146

startup_io_unmap() 146

startup_memory_map() 146

startup_memory_unmap() 147

tulip_reset() 147

uncompress() 147

x86_cpuid_string() 147

x86_cputype() 147

x86_enable_a20() 148

x86_fputype() 148

x86_init_pcbios() 148

x86_pcbios_shadow_rom() 148

x86_scanmem() 149

Writing your own kernel callout 149

Find out who’s gone before 150

Why are they in assembly language? 150

Starting off 151

“Patching” the callout code 151

Getting some R/W storage 153

The exception that proves the rule 154

PPC chips support 154

Adding a new CPU to the startup library 157

Customizing the Flash Filesystem 1596
Introduction 161

Driver structure 161

resmgr and iofunc layers 162

Flash filesystem component 162

Socket services component 162

Flash services component 163

Probe routine component 163

Building your flash filesystem driver 163

The source tree 163

The Makefile 165

viii Contents April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

Making the driver 165

The main() function 165

Socket services interface 167

Options parsing 170

Flash services interface 170

Choosing the right routines 176

Example: The devf-ram driver 177

main() 177

f3s_ram_open() 178

f3s_ram_page() 180

System Design Considerations 181A
Introduction 183

Before you design your system 183

Other design considerations 185

NMI 188

Design do’s and don’ts 188

Do: 188

Don’t: 189

Sample Buildfiles 191B
Introduction 193

Generic examples 193

Shared libraries 193

Running executables more than once 194

Multiple consoles 194

Complete example — minimal configuration 195

Complete example — flash filesystem 196

Complete example — disk filesystem 197

Complete example — TCP/IP with network filesystem 199

Processor-specific notes 200

Specifying the processor 200

Specifying the startup program 201

Specifying the serial device 201

Glossary 203

Index 223

April 20, 2009 Contents ix

List of Figures
An OS image loaded by the IPL. 4

You may select as many storage options as you need. 9

The three main branches of the Neutrino source tree. 13

The complete Neutrino source tree. 14

BSP directory structure. 19

A sample prebuilt directory. 20

Flash configuration options for your Neutrino-based embedded systems. 48

Linearly mapped device. 70

Bank-switched devices. 71

Large storage medium, bank-switched into a window. 72

IPL directory structure. 84

Startup directory structure. 98

Two-processor system with separate L1 instruction and data caches. 113

Structure of the flash filesystem driver. 162

Flash directory structure. 164

April 20, 2009 List of Figures xi

About This Book

April 20, 2009 About This Book xiii

© 2009, QNX Software Systems GmbH & Co. KG. Typographical conventions

What you’ll find in this guide
The Building Embedded Systems guide is intended for developers who are building
embedded systems that will run under the QNX Neutrino RTOS.

QNX Neutrino runs on several processor families (e.g. PowerPC, MIPS, ARM, SH-4,
x86). For information on getting started with Neutrino on a particular board, refer to
the appropriate BSP (Board Support Package) documentation for your board.

This guide is organized around these main topics:

Topic Chapter(s)

Getting the big picture Overview of Building Embedded
Systems

Getting started with your board support
package

Working with a BSP

Making an image Making an OS Image

Preparing your target Writing an IPL Program;
Customizing Image Startup Programs;
Customizing the Flash Filesystem;
Sample Buildfiles

Dealing with hardware issues System Design Considerations

Terms used in QNX docs Glossary

We assume that you’ve already installed QNX Neutrino and that you’re familiar with
its architecture. For a detailed overview, see the System Architecture manual.

For information about programming in Neutrino, see Getting Started with QNX
Neutrino: A Guide for Realtime Programmers and the Neutrino Programmer’s Guide.
If you plan to use the Photon microGUI in your embedded system, refer to the
“Photon in Embedded Systems” appendix in the Photon Programmer’s Guide.

Typographical conventions
Throughout this manual, we use certain typographical conventions to distinguish
technical terms. In general, the conventions we use conform to those found in IEEE
POSIX publications. The following table summarizes our conventions:

April 20, 2009 About This Book xv

Typographical conventions © 2009, QNX Software Systems GmbH & Co. KG.

Reference Example

Code examples if(stream == NULL)

Command options -lR

Commands make

Environment variables PATH

File and pathnames /dev/null

Function names exit()

Keyboard chords Ctrl-Alt-Delete

Keyboard input something you type

Keyboard keys Enter

Program output login:

Programming constants NULL

Programming data types unsigned short

Programming literals 0xFF, "message string"

Variable names stdin

User-interface components Cancel

We use an arrow (→) in directions for accessing menu items, like this:

You’ll find the Other... menu item under Perspective→Show View.

We use notes, cautions, and warnings to highlight important messages:

Notes point out something important or useful.

CAUTION: Cautions tell you about commands or procedures that may have
unwanted or undesirable side effects.!

WARNING: Warnings tell you about commands or procedures that could be
dangerous to your files, your hardware, or even yourself.

Note to Windows users
In our documentation, we use a forward slash (/) as a delimiter in all pathnames,
including those pointing to Windows files.

We also generally follow POSIX/UNIX filesystem conventions.

xvi About This Book April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Technical support

Technical support
To obtain technical support for any QNX product, visit the Support + Services area
on our website (www.qnx.com). You’ll find a wide range of support options,
including community forums.

April 20, 2009 About This Book xvii

Chapter 1

Overview of Building Embedded Systems

In this chapter. . .
Introduction 3
Hardware aspects 8
Getting started 12

April 20, 2009 Chapter 1 • Overview of Building Embedded Systems 1

© 2009, QNX Software Systems GmbH & Co. KG. Introduction

Introduction
In this chapter, we’ll take a “high-level” look at the steps necessary to build a complete
Neutrino-based embedded system, with pointers to the appropriate chapters for the
lower-level details.

First we’ll see what a Neutrino system needs to do in order to run. Then we’ll look at
the components and how they operate. Finally, we’ll do an overview of the steps you
may need to follow when customizing certain portions.

From the software perspective, the following steps occur when the system starts up:

1 Processor begins executing at the reset vector. The Initial Program Loader (IPL)
locates the OS image and transfers control to the startup program in the image.

2 Startup program configures the system and transfers control to the Neutrino
microkernel and process manager (procnto).

3 The procnto module loads additional drivers and application programs.

After we look at the software aspects in some more detail, we’ll consider the impact
that the hardware has on this startup process.

The role of the IPL
The first step performed by the software is to load the OS image. This is done by a
program called the Initial Program Loader (IPL).

The IPL’s initial task is to minimally configure the hardware to create an environment
that will allow the startup program, and consequently the Neutrino microkernel, to run.
Specifically, this task includes at least the following steps:

1 Start execution from the reset vector.

2 Configure the memory controller, which may include configuring chip selects
and/or PCI controller.

3 Configure clocks.

4 Set up a stack to allow the IPL lib to perform OS verification and setup (image
download, scan, setup, and jump).

The IPL is described in detail in the chapter on Writing an IPL Program.

April 20, 2009 Chapter 1 • Overview of Building Embedded Systems 3

Introduction © 2009, QNX Software Systems GmbH & Co. KG.

Other
files
...

procnto

Startup

An OS image loaded by the IPL.

Warm-start and cold-start IPL

There are two general types of IPL: warm-start and cold-start. Warm-start IPL is
typically invoked by a ROM-monitor or BIOS; some aspects of the hardware and
processor configuration will have already been set up.

With cold-start IPL, on the other hand, nothing has been configured or initialized —
the CPU and hardware have just been reset. Naturally, the work that needs to be done
within a warm-start IPL will be a subset of the work required in a cold-start IPL.

We’ll approach the discussion of the IPL’s responsibilities starting at the end,
describing the goal or final state that everything should be in just before the first
component of the image is started. Then we’ll take a look at the steps necessary to get
us to that final state.

Depending on the design of your target, you may have to take a number of steps,
ranging from none (e.g. you’re running on a standard platform with a ROM monitor or
BIOS, and have performed a warm-start IPL via disk or network boot; the boot ROM
has done all the work described below for you) to many (e.g. you have a custom
embedded system without firmware and the image is stored on a specialized piece of
hardware).

The final state (just before the first component of the image is started) is characterized
by the following:

• The memory controller has been configured to give access to the memory present
on the system.

• Minimal hardware configuration has been performed (e.g. chip selects to map
EPROMs have been programmed).

• The entire image is now located in linearly addressable memory.

• The first part of the image, the startup code, is now in RAM. (Note that the startup
code is relatively small and that the RAM area is reclaimed when the startup code
is finished.)

Either the IPL or the BIOS/ROM monitor code is responsible for transferring the
image to linearly addressable memory. The OS image must have been built in a format

4 Chapter 1 • Overview of Building Embedded Systems April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Introduction

that the IPL or ROM monitor code understands so that it can know where to place the
image in memory and to what address to pass control after the image has been loaded.

For example, an IBM PC BIOS system typically loads a raw binary and then jumps to
the first address. Other systems may accept an image in ELF format, using the ELF
header information to determine the location to place the image as well as the starting
address. Refer to the documentation that came with your hardware to find out what
image formats the IPL code can accept.

Once the IPL has located the image, and the entire image is now in linearly
addressable memory, control is transferred to the startup program. At that point, the
IPL is done and is out of the picture.

The role of the startup program
The second step performed by the software is to configure the processor and hardware,
detect system resources, and start the OS. This is done by the startup program. (For
details, see the chapter on Customizing Image Startup Programs.)

While the IPL did the bare minimum configuration necessary to get the system to a
state where the startup program can run, the startup program’s job is to “finish up” the
configuration. If the IPL detected various resources, it would communicate this
information to the startup program (so it wouldn’t have to redetect the same resources.)

To keep Neutrino as configurable as possible, we’ve given the startup program the
ability to program such things as the base timers, interrupt controllers, cache
controllers, and so on. It can also provide kernel callouts, which are code fragments
that the kernel can call to perform hardware-specific functions. For example, when a
hardware interrupt is triggered, some piece of code must determine the source of the
interrupt, while another piece of code must be able to clear the source of the interrupt.

Note that the startup program does not configure such things as the baud rate of serial
ports. Nor does it initialize standard peripheral devices like an Ethernet controller or
EIDE hard disk controller — these are left for the drivers to do themselves when they
start up later.

Once the startup code has initialized the system and has placed the information about
the system in the system page area (a dedicated piece of memory that the kernel will
look at later), the startup code is responsible for transferring control to the Neutrino
kernel and process manager (procnto), which perform the final loading step.

Startup’s responsibilities
Let’s take a look at the overall responsibilities and flow of the startup code:

1 Copy and decompress the image, if necessary.

2 Configure hardware.

3 Determine system configuration.

4 Start the kernel.

April 20, 2009 Chapter 1 • Overview of Building Embedded Systems 5

Introduction © 2009, QNX Software Systems GmbH & Co. KG.

Copying and decompressing the image

If the image isn’t in its final destination in RAM, the startup code copies it there. If the
image is compressed, the startup code automatically decompresses the image.
Compression is optional; you can create an image file that isn’t compressed, in which
case the startup code won’t bother trying to decompress it.

Configuring the hardware

The main task here is to set up the minimum required to be able to determine the
system configuration (and then perform the system configuration).

The details of what needs to be configured during the hardware configuration phase
depend on your particular hardware.

Determining system configuration

Depending on the nature of the embedded system, you may wish to dynamically
determine the configuration on startup or (in the case of a deeply embedded system)
simply “hardcode” the configuration information.

Regardless of the source of the information, the configuration part of the startup code
needs to store this information into a set of well-defined data structures that the OS
will then look at when it starts. Collectively known as the system page area, these data
structures contain information about:

• memory configuration

• hardware device configuration

• processor type

• time of day

Establishing callouts

To keep the Neutrino kernel as portable as possible (not only to different processors,
but also to different hardware configurations of those processors), a number of callouts
must be supplied by the startup code. Not all of the callouts require that you write code
— we have a library that provides many of these.

The following classes of callout functions can be provided for Neutrino:

• debug interface

• clock/timer interface

• interrupt controller interface

• cache controller interface

• power management

• miscellaneous

6 Chapter 1 • Overview of Building Embedded Systems April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Introduction

The callouts are described in detail in the chapter on Customizing Image Startup
Programs.

Starting the OS

The final step that the startup code performs is to start the operating system.

The startup library

If all of the above sounds like a lot of work, well, it is! Note, however, that we’ve
provided source code for some common startup programs and have created a library
that performs most of the above functions for you.

If you have one of the many platforms that we support, then you don’t have to do any
of this work — we’ve already done it for you.

To find out what processors and boards we currently support, please refer to the
following sources:

• the boards directory under
bsp_working_dir/src/hardware/startup/boards.

• QNX docs (BSP docs as well as startup-* entries in the Utilities Reference).

If you have a nonstandard embedded system, you can look at the source for the system
that most closely resembles yours and “clone” the appropriate functionality from the
examples provided.

This issue is discussed in detail in the chapter on Customizing Image Startup
Programs.

The role of Neutrino
The third step performed by the software is to start any executables that you want to be
running. The OS does this by reading and processing information stored in the startup
script — a sequence of commands stored within the image. The format of the startup
script, as well as the buildfile that it’s part of, is documented in detail in a variety of
places in this guide:

• Making an OS Image chapter — describes the steps required to build a
Neutrino-based system, including discussions of the script file and buildfile.

• Sample Buildfiles appendix in this guide — describes common “tricks” used within
the buildfile and also contains complete examples of sample configurations.

• mkifs doc — describes the mkifs utility, which is used to create the image from
the description passed to it in the buildfile. See the Utilities Reference for details.

• Building OS and Flash Images chapter in the IDE User’s Guide — describes the
how the OS and flash images are created in the IDE.

Basically, the OS processes the startup script file, which looks like a shell script. In the
startup script file, you’d specify which executables should be started up (and their
order), the command-line options that they should run with, and so on.

April 20, 2009 Chapter 1 • Overview of Building Embedded Systems 7

Hardware aspects © 2009, QNX Software Systems GmbH & Co. KG.

Hardware aspects
From the hardware point of view, the following components form the system:

• processor

• source of initialization and configuration info

• storage media

• I/O devices

Choice of processor
We support the following processor families:

• ARM (including XScale)

• MIPS

• PowerPC

• SH-4

• x86

At the “altitude” of this high-level discussion, the choice of processor is irrelevant —
the same basic steps need to be performed regardless of the particular CPU.

Source of initialization and configuration
When the processor (re)starts, it must be able to execute instructions. This is
accomplished by having some kind of nonvolatile storage media placed at the
processor’s reset vector. There is, of course, a choice as to who supplies this particular
piece of software:

• QNX Software Systems — you’ve chosen a standard, supported hardware platform;

• 3rd party — a BIOS or ROM monitor; or

• you — a custom IPL program.

Generally, the simplest development system is one in which you have to do the least
amount of work. If we’ve already done the work, meaning that the board that you’re
using is a standard, supported hardware platform, there’s very little work required
from you in this regard; you can instead focus on your software that’s going to run on
that board.

If a 3rd party supplies just the BIOS or ROM monitor, then your responsibilities are
increased by having to write the software that starts the operating system. As
mentioned earlier, we call this a “warm-start,” because the system is already
“warmed-up” — various devices are configured and initialized.

8 Chapter 1 • Overview of Building Embedded Systems April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Hardware aspects

If you’re supplying a custom IPL, then your responsibilities are further increased by
also having to deal with configuration issues for the hardware. This we call a
“cold-start,” because you are responsible for everything to do with initialization and
configuration.

Choice of filesystems
Once you’ve sorted out how the system is going to boot, you may still have additional
decisions to make regarding the system’s storage capabilities:

• none

• read-only

• read/write nonpersistent

• read/write persistent

No

No

Yes

Yes

Yes

No

Yes

Flash
filesystem

QNX

filesystem

No

Yes

Network

filesystem

Done

No

Is a
filesystem
needed?

Is
write access
required?

Is
persistent
storage

required?

Will
a rotating
medium
be used?

Is a
network

filesystem
used?

procnto memory
objects

procnto image
filesystem

You may select as many storage options as you need.

April 20, 2009 Chapter 1 • Overview of Building Embedded Systems 9

Hardware aspects © 2009, QNX Software Systems GmbH & Co. KG.

No additional storage required

If you don’t require any additional storage (i.e. your system is entirely self-contained
and doesn’t need to access any other files once it’s running), then your work in this
regard is done.

Additional read-only storage required

The simplest filesystem scenario is one where read-only access is required. There’s no
work for you to do — Neutrino provides this functionality as part of the OS itself.
Simply place the files that you wish to access/execute directly into the image (see the
chapter on Making an OS Image), and the OS will be able to access them.

Additional read/write nonpersistent storage required

If you require write access (perhaps for temporary files, logs, etc.), and the storage
doesn’t have to be persistent in nature (meaning that it doesn’t need to survive a reset),
then once again the work is done for you.

Neutrino allows the RAM in your system to be used as a RAM-disk, without any
additional coding or device drivers. The RAM-disk is implemented via the Process
Manager — you simply set up a Process Manager link (using the ln command).

For example, to mount the /tmp directory as a RAM-disk, execute the following
command:

ln -Ps /dev/shmem /tmp

Or place the following line in your buildfile (we’ll talk about buildfiles over the next
few chapters):

[type=link] /tmp=/dev/shmem

This instructs the Process Manager to take requests for any files under /tmp and
resolve them to the shared memory subsystem. For example, /tmp/AAA4533.tmp
becomes a request for /dev/shmem/AAA4533.tmp.

In order to minimize the size of the RAM filesystem code inside the Process Manager,
the shared memory filesystem specifically doesn’t include “big filesystem” features
such as file locking and directory creation.

If you need a relatively full-featured, POSIX-style filesystem on a RAM disk, use
devf-ram or the builtin RAM disk via io-blk instead.

Additional read/write persistent storage required

If you do require storage that must survive a power failure or processor reset, then
you’ll need to run an additional driver. We supply these classes of filesystems:

• flash filesystems

• rotating disk filesystems

10 Chapter 1 • Overview of Building Embedded Systems April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Hardware aspects

• network filesystems

All of these filesystems require additional drivers. The Sample Buildfiles appendix in
this guide gives detailed examples showing how to set up these filesystem drivers.

Flash filesystems and media

The flash driver can interface to the flash memory devices (boot block and regular) in
all combinations of bus widths (8, 16, and 32 bits) and interleave factors (1, 2, and 4).

To find out what flash devices we currently support, please refer to the following
sources:

• the boards and mtd-flash directories under
bsp_working_dir/src/hardware/flash.

• QNX docs (devf-* entries in the Utilities Reference).

• the QNX Software Systems website (www.qnx.com).

Using the source code provided, you may be able to tailor one of our filesystems (e.g.
devf-generic) to operate on your particular embedded system (if it isn’t currently
supported).

Rotating media and filesystems

Neutrino currently supports several filesystems, including DOS, Linux, Macintosh
HFS and HFS Plus, Windows NT, QNX 4, Power-Safe, Universal Disk Format (UDF),
and more. For details, see the fs-* entries in the Utilities Reference.

Drivers are available for many block-oriented devices. For up-to-date information, see
the devb-* entries in the Utilities Reference as well as the Community area of our
website, www.qnx.com.

Network media and filesystems

During development, or perhaps in a distributed data-gathering application, you may
wish to have a filesystem located on one machine and to be able to access that
filesystem from other machines. A network filesystem lets you do this.

In addition to its own transparent distributed processing system (Qnet), QNX Neutrino
also supports network filesystems such as CIFS (SMB), NFS 2, and NFS 3.

If possible, you should use fs-nfs3 instead of fs-nfs2.

Drivers are available for the several Ethernet controllers. For details, see the devn-*
and devnp-* entries in the Utilities Reference as well as the Community area of our
website, www.qnx.com.

April 20, 2009 Chapter 1 • Overview of Building Embedded Systems 11

Getting started © 2009, QNX Software Systems GmbH & Co. KG.

I/O devices
Ultimately, your Neutrino-based system will need to communicate with the outside
world. Here are some of the more common ways to do this:

• serial/parallel port

• network (described above)

• data acquisition/generation

• multimedia

Character I/O devices

For standard serial ports, Neutrino supports several devices (8250 family, Signetics,
etc.) For details, see the devc-* entries in the Utilities Reference, as well as the
Community area of our website, www.qnx.com.

Special/custom devices

One design issue you face is whether you can get off-the-shelf drivers for the hardware
or whether you’ll have to write your own. If it turns out that you need to write your
own, then the Writing a Resource Manager guide can help you do that.

Getting started
Depending on the ultimate system you’ll be creating, you may have a ton of work to
do or you may have very little. In any case, we recommend that you start with a
supported evaluation board. This approach minimizes the amount of low-level work
that you have to do initially, thereby allowing you to focus on your system rather than
on implementation details.

Start with an evaluation platform that most closely resembles your target platform —
there are many supported evaluation platforms from various vendors.

Once you’re comfortable with the development environment and have done a very
rudimentary “proof of concept,” you can move on to such development efforts as
creating your own hardware, writing your own IPL and startup code, writing drivers
for your hardware, and so on.

Your proof of concept should address such issues as:

• How much memory will be required?

• How fast a CPU will be required?

• Can standard off-the-shelf hardware do the job?

Once these are addressed, you can then decide on your plan of attack.

12 Chapter 1 • Overview of Building Embedded Systems April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Getting started

Hardware design
There are a number of ways of designing your hardware. We’ve seen many boards
come in from the field and have documented some of our experiences with them in the
System Design Considerations appendix in this book. You may be able to realize
certain savings (in both cost and time) by reading that appendix first.

Customizing the software
Ideally, the system you’re designing will look identical to a supported evaluation
platform. In reality, this isn’t always the case, so you’ll need to customize some of the
components in that system.

We’ve provided the source code to a large number of the “customizable” pieces of the
OS. This diagram gives you the high-level view of the directory structure for the
source tree we ship:

flashstartupipl

bsp_working_dir/src/hardware

The three main branches of the Neutrino source tree.

As you can see, we’ve divided the source tree into three major branches: ipl,
startup, and flash. Each branch consists of further subdirectories:

April 20, 2009 Chapter 1 • Overview of Building Embedded Systems 13

Getting started © 2009, QNX Software Systems GmbH & Co. KG.

bsp_working_dir/src/hardware

startup

boards

403evb
800fads
bios

ddb-vrc4373
explr2
mbx800
p5064
ppaq

vme603
vr41xx
...

bootfile

mipsbe
mipsle
ppcbe
x86

flash

boards

800fads
explr2
ppaq
ram

sc400
vr41xx
...

mips
ppc

x86

mtd-flash

amd
fujitsu
intel

sharp

rom
sram

...

ipl

boards

800fads
...

arm

sh

The complete Neutrino source tree.

Customizing the source

The following table relates the source tree branches to the individual chapters in this
book:

Source tree branch Relevant chapter

ipl Customizing IPL Programs

startup Customizing Image Startup Programs

flash Customizing the Flash Filesystem

For detailed information on the format of the Makefile present in these directories,
see Conventions for Recursive Makefiles and Directories in the QNX Neutrino
Programmer’s Guide.

14 Chapter 1 • Overview of Building Embedded Systems April 20, 2009

Chapter 2

Working with a BSP

In this chapter. . .
BSP Overview 17
Using BSPs in the IDE 17
Using BSPs on the command line 18
Transferring an OS image onto your board 23
Testing Neutrino on your board 27
Getting Photon on your board 27
Where do I go from here? 27
Filename conventions 28

April 20, 2009 Chapter 2 • Working with a BSP 15

© 2009, QNX Software Systems GmbH & Co. KG. BSP Overview

BSP Overview
Once you’ve installed the QNX Software Development Platform, you can download
processor-specific Board Support Packages (BSPs) from our website,
http://www.qnx.com/. These BSPs are designed to help you get Neutrino running
on certain platforms.

A BSP typically includes the following:

• IPL

• startup

• default buildfile

• networking support

• board-specific device drivers, system managers, utilities, etc.

The BSP is contained in an archive named after the industry-recognized name of the
board and/or reference platform that the BSP supports. BSP packages are available for
QNX Neutrino, Windows, or Linux hosts.

The BSP components are provided in source code form, unless there are restrictions
on the source code, in which case the component is provided only in binary form.
BSPs are provided in a zip archive. The same archive applies to all hosts.

The QNX community website, Foundry27, has more information about BSPs:

• For information about using BSPs from earlier releases, see:

http://community.qnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/PRE640BSP_migrationDoc

• For information about packaging a BSP, see:
http://community.qnx.com/sf/wiki/do/viewPage/projects.bsp/wiki/Packaging_BSP

You can also check out BSPs from a Subversion repository on Foundry27.

To use a BSP, you must either unzip the archive and build it on the command line, or
import it into the IDE.

Using BSPs in the IDE
Before working with a BSP in the IDE, you must first import it. When you import the
BSP source, the IDE creates a System Builder project.

To import the BSP source code:

1 Select File→Import.

2 Expand the QNX folder.

April 20, 2009 Chapter 2 • Working with a BSP 17

Using BSPs on the command line © 2009, QNX Software Systems GmbH & Co. KG.

3 Select QNX Board Support Package from the list. Click Next.

4 In the Select the package to import dialog, click Select Package, and then
choose the BSP archive using the file browser.

5 Choose the BSP you want. You’ll see a description of it.

6 Click Next.

7 Uncheck the entries you don’t want imported. (By default all the entries are
selected.)

8 Click Next.

9 Select a working set. Default names are provided for the Working Set Name
and the Project Name Prefix that you can override if you choose.

10 Click Finish. All the projects will be created and the source brought from the
archive. You’ll then be asked if you want to build all the projects you’ve
imported.

If you answer Yes, the IDE will start the build process. If you decide to build at
a later time, you can do a Rebuild All from the main Project menu when you’re
ready to build.

When you import a QNX BSP, the IDE opens the QNX BSP Perspective. This
perspective combines the minimum elements from the C\C++ Development
Perspective and the System Builder Perspective.

For more information, see the IDE User’s Guide in your documentation set. (Within
the IDE itself, go to: Help→Help Contents→QNX Documentation Roadmap).

Using BSPs on the command line
If you aren’t using the IDE and you want to manually install a BSP archive, we
recommend that you create a default directory with the same name as your BSP and
unzip the archive from there:

1 Change the directory to where you want to extract the BSP (e.g. /home/joe).
The archive will extract to the current directory, so you should create a directory
specifically for your BSP.

For example:

mkdir /home/joe/bspname

2 In the directory you’ve just created, extract the BSP:

cd /home/joe/bspname
unzip bspname.zip

18 Chapter 2 • Working with a BSP April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Using BSPs on the command line

See Foundry27 for instructions on how to get a BSP from Subversion.

Each BSP is rooted in whatever directory you copy it to. If you type make within this
directory, you’ll generate all of the buildable entities within that BSP no matter where
you move the directory.

When you build a BSP, everything it needs, aside from standard system headers, is
pulled in from within its own directory. Nothing that’s built is installed outside of the
BSP’s directory. The makefiles shipped with the BSPs copy the contents of the
prebuilt directory into the install directory. The binaries are built from the
source using include files and link libraries in the install directory.

Structure of a BSP
After you unzip a BSP archive, the resulting directory structure looks something like
this:

bsp_working_dir

images prebuiltinstall src

devc
devn
flash
ipl

startup

hardware lib utilstargetusrbin
lib
sbin

bin
include

lib
sbin

BSP directory structure.

In our documentation, we refer to the directory where you’ve installed a BSP (e.g.
/home/myID/my_BSPs/integrator) as the bsp_working_dir. This directory
includes the following subdirectories:

• src

• prebuilt

• install

• images

April 20, 2009 Chapter 2 • Working with a BSP 19

Using BSPs on the command line © 2009, QNX Software Systems GmbH & Co. KG.

The images subdirectory is where the resultant boot images are placed. It contains (as
a minimum) the Makefile needed to build the image(s). Other files that could reside
in this directory include:

• custom buildfiles (for flash, etc.)

• EFS buildfiles

• IPL build scripts

prebuilt subdirectory

The prebuilt subdirectory contains prebuilt binaries, and header files that are
shipped with the BSP.

Before the BSP is built, all of the files from the prebuilt directory are copied into
the install directory, maintaining the path structure.

In order to handle dependencies, the libraries, headers, and other files found in the
./prebuilt directory need to be copied correctly to your ./install directory. To
do this, you’ll need to run make at the bsp_working_dir directory level.

The “root” of the prebuilt directory requires the same structure as the system root.
The target-specific and usr directories mirror the structure of /.

All processor-specific binaries are located under the directory named for that
processor type.

For example, the prebuilt directory might look like this:

prebuilt

usr

includesbin

ppcbe

ppcdrvr sys

lib

libdrvrS.a
libstartup.a

devb-eide

eth.h
mdi.h

support.h

util.ah nic.h
platform.h
types.h

...

sys

boot

build

ipl-board
startup-board

board.build

sbin

devc-ser*
devc-tser*

pci-*

A sample prebuilt directory.

20 Chapter 2 • Working with a BSP April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Using BSPs on the command line

install subdirectory

The install directory gets populated at the beginning of the BSP build process. All
the files in the prebuilt directory are copied, then all generated binaries are installed
here as they’re compiled. The files stored in the install directory are taken first
when mkifs executes.

Before you make any components for your particular board, you must first make the
BSP sources at the top level:

cd bsp_working_dir
make

This builds everything under ./src and sets up the ./install and ./images

subdirectories correctly.

After this initial build is complete, you can build any of the source files individually.

If you change a library or header, be sure to run make install to rebuild the source
and copy the changes to your ./install directory.

src subdirectory

The BSP-specific source code is stored in this directory. Refer to the BSP release
notes to find the location of the source code for a specific driver.

The hardware directory contains separate directories for character, flash, and network
drivers, IPL, startup code, and so on, depending on the BSP.

The src directory contains one or more master buildfiles, typically
src/hardware/startup/boards/board/build. During make install the
build files are copied to install/target/boot/build/board.build. After the root
Makefile will make a link to, or make a copy of these files in the images subdirectory.
Care is required to modify the correct buildfile and to avoid losing changes to a
buildfile.

The lib directory contains separate directories for libraries that are required by driver
and other utilities that are included with the BSP.

Some drivers, such as the network drivers or USB host controller drivers, are
implemented as shared objects, but the source code for them is located under the
hardware directory.

The utils directory contains separate directories for minor utilities that are required
on the board. Some hardware-specific utilities can also be found in
hardware/support.

The services directory contains separate directories for additional services that
aren’t included in the base installation.

April 20, 2009 Chapter 2 • Working with a BSP 21

Using BSPs on the command line © 2009, QNX Software Systems GmbH & Co. KG.

Building source from the command line

When you build a BSP from the source code, you may occasionally observe warnings
from some of the tools used to generate the BSP, such as:

• objcopy: Warning: Output file cannot represent architecture

UNKNOWN!

• ntosh-ld: Warning: could not find any targets that match

endian ness requirement

These warnings result when information that’s contained in one particular file format
(endian ness, CPU architecture, etc.) can’t be retained when converting that file to a
different format, or when the originating file format doesn’t contain information that
the tool doing the conversion expects. These warnings are normal and expected, and
are no cause for concern.

In order to build a BSP from the command line, you must go to the root directory for
the BSP.

Use the make command to build the source code. The Makefile defines the
following targets:

all Invokes the install, links, and images targets.

prebuilt This recursively copies the prebuilt directory’s contents to the
install directory.

install Invokes the prebuilt target, and then performs the following in the
src directory:

• make hinstall to copy all public headers from src into the
install directory.

• make install to build all binaries in src and copy the results
into the install directory. This target also copies the buildfile
from src/hardware/startup/boards/board/build and
renames it board.build.

links Creates a symbolic link (a copy on Windows) from
install/cpu/boot/build/board.build to
images/board.build.

images Changes to the images directory and runs the Makefile there. This
Makefile creates an IFS file based on the buildfile linked in during
the make links target. Any extra work required (e.g. IPL padding,
conversion to an alternate format) is also handled from within this
Makefile.

If you don’t specify a target, make invokes the all target.

22 Chapter 2 • Working with a BSP April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Transferring an OS image onto your board

We recommend that you use make to build the OS image. If you use mkifs directly,
you need to use the -r option to specify where to find the binaries. For more
information, see the entry for mkifs in the Utilities Reference.

Supporting additional devices
All boards have some devices, whether they’re input, serial, flash, or PCI. Every BSP
includes a buildfile that you can use to generate an OS image that will run on the board
it was written for. The buildfile is in the
bsp_working_dir/src/hardware/startup/boards/board directory.

A BSP’s buildfile contains the commands — possibly commented out — for starting
the drivers associated with the devices. You will need to edit the buildfile to modify or
uncomment these commands. If you uncomment a command, make sure you
uncomment the lines that add any required binaries to the image.

For more information, see the documentation for each BSP, as well as the buildfile
itself; for general information about buildfiles, see the entry for mkifs in the Utilities
Reference.

Once you’ve modified the buildfile, follow the instructions given earlier in this chapter
for building an OS image.

Transferring an OS image onto your board
Once you’ve built an OS image, you’ll need to transfer it to your board.

The IDE lets you communicate with your target and download your OS image using
either a serial connection, or a network connection using the Trivial File Transfer
Protocol (TFTP). If your board doesn’t have a ROM monitor, you probably can’t use
the download services in the IDE; you’ll have to get the image onto the board some
other way (e.g. JTAG).

Transferring an OS image
There are several ways to transfer an OS image:

To: Use the:

Load an image from your network (e.g. TFTP) Network

Load an image serially (e.g. COM1, COM2) ROM monitor

Burn both the IPL and the OS image into the flash boot ROM,
then boot entirely from flash

IPL and OS

continued. . .

April 20, 2009 Chapter 2 • Working with a BSP 23

Transferring an OS image onto your board © 2009, QNX Software Systems GmbH & Co. KG.

To: Use the:

Burn an IPL (Initial Program Loader) into the flash boot
ROM, then load the OS image serially

IPL and boot ROM

Generate a flash filesystem, and then place various files and
utilities within it

Flash filesystem

The method you use to transfer an OS image depends on what comes with the board.
The BSP contains information describing the method that you can use for each
particular board. Each board will have all or some of these options for you to use.

To load an image serially:

1 Connect your target and host machine with a serial cable. Ensure that both
machines properly recognize the connection.

2 Specify the device (e.g.COM1) and the communications settings (e.g. the baud
rate, parity, data bits, stop bits, and flow control) to match your target machine’s
capabilities. You can now interact with your target by typing in the view.

To transfer a file using the Serial Terminal view:

1 Using either the serial terminal view or another method (outside the IDE),
configure your target so that it’s ready to receive an image.

2 In the serial terminal view, click Send File.

3 In the Select File to Send dialog, enter the name or your file (or click Browse).

4 Select a protocol (e.g. sendnto).

5 Click OK. The Builder transmits your file over the serial connection.

Working with a flash filesystem
The flash filesystem drivers implement a POSIX-like filesystem on NOR flash
memory devices. The flash filesystem drivers are standalone executables that contain
both the flash filesystem code and the flash device code. There are versions of the flash
filesystem driver for different embedded systems hardware as well as PCMCIA
memory cards.

The naming convention for the drivers is devf-system, where system describes the
embedded system. For example, the devf-800fads driver is for the 800FADS
PowerPC evaluation board.

To find out what flash devices we currently support, please refer to the following
sources:

• the boards and mtd-flash directories under
bsp_working_dir/src/hardware/flash

• QNX Neutrino OS docs (devf-* entries in Utilities Reference

24 Chapter 2 • Working with a BSP April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Transferring an OS image onto your board

• the QNX Software Systems website (www.qnx.com)

The flash filesystem drivers support one or more logical flash drives. Each logical
drive is called a socket, which consists of a contiguous and homogeneous region of
flash memory. For example, in a system containing two different types of flash device
at different addresses, where one flash device is used for the boot image and the other
for the flash filesystem, each flash device would appear in a different socket.

Each socket may be divided into one or more partitions. Two types of partitions are
supported:

• raw partitions

• flash filesystem partitions

Raw partitions

A raw partition in the socket is any partition that doesn’t contain a flash filesystem.
The flash filesystem driver doesn’t recognize any filesystem types other than the flash
filesystem. A raw partition may contain an image filesystem or some
application-specific data.

The flash filesystem uses a raw mountpoint to provide access to any partitions on the
flash that aren’t flash filesystem partitions. Note that the flash filesystem partitions are
available as raw partitions as well.

Flash filesystem partitions

A flash filesystem partition contains the POSIX-like flash filesystem, which uses a
QNX-proprietary format to store the filesystem data on the flash devices. This format
isn’t compatible with either the Microsoft FFS2 or PCMCIA FTL specification.

The flash filesystem allows files and directories to be freely created and deleted. It
recovers space from deleted files using a reclaim mechanism similar to garbage
collection.

The flash filesystem supports all the standard POSIX utilities such as ls, mkdir, rm,
ln, mv, and cp. There are also some QNX Neutrino utilities for managing the flash
filesystem:

flashctl Erase, format, and mount flash partitions.

deflate Compress files for flash filesystems.

mkefs Create flash filesystem image files.

The flash filesystem supports all the standard POSIX I/O functions such as open(),
close(), read(), and write(). Special functions such as erasing are supported using the
devctl() function.

April 20, 2009 Chapter 2 • Working with a BSP 25

Transferring an OS image onto your board © 2009, QNX Software Systems GmbH & Co. KG.

Flash filesystem source

Each BSP contains the binary and the source code for the appropriate flash filesystem
driver, but the QNX Software Development Platform contains the associated header
files and libraries.

Typing make in the bsp_working_dir generates the flash filesystem binary. Normally,
you won’t need to remake the flash filesystem driver unless you’ve changed the size or
configuration of the flash on the board — this can include the number of parts, size of
parts, type of parts, interleave, etc.

CAUTION: When an IPL/IFS (image filesystem) image is combined, you’ll need to
offset the beginning of the flash filesystem by at least the size of the IPL and IFS. For
example, if the combined IPL/IFS image is loaded at offset 0 on the flash, to avoid
overwriting the IPL and IFS, the flash filesystem must begin at an offset of the IPL/IFS
image size +1. If it doesn’t begin at an offset of the IPL/IFS image size +1, you’ll need
to create a partition.

!

How do I create a partition?

Regardless of which BSP you’re working with, the procedure requires that you:

1 Start the flash filesystem driver.

2 Erase the entire flash.

3 Format the partition.

4 Slay the flash filesystem driver.

5 Restart the flash filesystem driver.

The following example applies specifically to the Renesas Biscayne board, which can
be booted from DMON or flash.

1 To boot from DMON, enter the following command to start the flash filesystem
driver:

devf-generic -s0xe8000000,32M &

2 To boot from flash, enter the following command to start the flash system driver:

devf-generic -s0x0,32M
You should now see an fs0p0 entry under /dev.

3 To prepare the area for the partition, you must erase the entire flash. Enter the
following command:

flashctl -p/dev/fs0 -ev

4 To format the partition, enter the following command:

flashctl -p/dev/fs0p0 -f

26 Chapter 2 • Working with a BSP April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Testing Neutrino on your board

5 Now slay the flash filesystem driver:
slay devf-generic

6 Finally, restart the driver:

devf-generic &

You should now see the following entries:

Entry Description

/dev/fs0p0 OS image (32 MB)

/dev/fs0p1 Flash filesystem partition (32 MB)

Testing Neutrino on your board
You can test Neutrino simply by executing any shell builtin command or any
command residing within the OS image. For example, type:

ls

You’ll see a directory listing, since the ls command has been provided in the default
system image.

Getting Photon on your board
For instructions on adding the Photon microGUI to your embedded system, see the
documentation for the particular BSP; the buildfile could include the specific
commands (commented out) that you need to run. For even more details, see the
“Photon in Embedded Systems” appendix in the Photon Programmer’s Guide.

Where do I go from here?
Now that you have a better understanding of how BSPs work in an embedded system,
you’ll want to start working on your applications. The following table contains
references to the QNX documentation that may help you find the information you’ll
need to get going.

For information on: Go to:

Writing “hello world” The section “A simple example” in the chapter
Compiling and Debugging in the Neutrino
Programmer’s Guide, or the IDE User’s Guide.

continued. . .

April 20, 2009 Chapter 2 • Working with a BSP 27

Filename conventions © 2009, QNX Software Systems GmbH & Co. KG.

For information on: Go to:

Debugging your programs The section “Debugging” in the chapter Compiling
and Debugging in the Neutrino Programmer’s
Guide.

Setting up NFS The section “Complete example — TCP/IP with
network filesystem” in the appendix Sample
Buildfiles in this manual. See also the fs-nfs3
utility page in the Utilities Reference.

Setting up an Ethernet driver The section “Complete example — TCP/IP with
network filesystem” in the appendix Sample
Buildfiles in this manual. See also the various
network drivers (devn*, devnp-*) in the Utilities
Reference.

Writing device drivers and/or resource managers Writing a Resource Manager

If you need more information, see these chapters in this guide:

For more information on: Go to:

Building flash filesystems Customizing the Flash Filesystem

IPL Writing an IPL program

Startup Customizing Image Startup Programs

Filename conventions
In QNX Neutrino BSPs, we use the following conventions for naming files:

Part of filename Description Example

.bin Suffix for binary format file ifs-artesyn.bin

.build Suffix for buildfile sandpoint.build

efs- Prefix for QNX Embedded
Filesystem file; generated by
mkefs

efs-sengine.srec

.elf Suffix for ELF (Executable
and Linking Format) file

ipl-ifs-mbx800.elf

continued. . .

28 Chapter 2 • Working with a BSP April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Filename conventions

Part of filename Description Example

ifs- Prefix for QNX Image
Filesystem file; generated by
mkifs

ifs-800fads.elf

ipl- Prefix for IPL (Initial Program
Loader) file

ipl-eagle.srec

.openbios Suffix for OpenBIOS format
file

ifs-walnut.openbios

.prepboot Suffix for Motorola PRePboot
format file

ifs-prpmc800.prepboot

.srec Suffix for S-record format file ifs-malta.srec

April 20, 2009 Chapter 2 • Working with a BSP 29

Chapter 3

Making an OS Image

In this chapter. . .
Images, images, images 33
What is an OS image? 33
The OS image as a filesystem 34
Configuring an OS image 34
Building a flash filesystem image 43
Embedding an image 48
System configuration 52
Debugging an embedded system 56

April 20, 2009 Chapter 3 • Making an OS Image 31

© 2009, QNX Software Systems GmbH & Co. KG. What is an OS image?

Making an OS image involves a number of steps, depending on the hardware and
configuration of your target system.

In this chapter, we’ll take a look at the steps necessary to build an OS image. Then
we’ll examine the steps required to get that image to the target, whether it involves
creating a boot disk/floppy, a network boot, or burning the image into an EPROM or
flash device. We’ll also discuss how to put together some sample systems to show you
how to use the various drivers and resource managers that we supply.

For more information on using the various utilities described in this chapter, see the
Utilities Reference.

Images, images, images
In the embedded Neutrino world, an “image” can mean any of the following:

Image type Description Created by:

OS image A bootable or nonbootable
structure that contains files

mkifs

Flash filesystem image A structure that can be used in a
read-only, read/write, or
read/write/reclaim flash
filesystem

mkefs

Embedded transaction
filesystem image

A binary image file containing
the ETFS as a sequence of
transactions

mketfs

What is an OS image?
When you’ve created your executables (programs) that you want your embedded
system to run, you need to place them somewhere where they can be loaded from. An
OS image is simply a file that contains the OS, your executables, and any data files
that might be related to your programs. Actually, you can think of the image as a small
“filesystem” — it has a directory structure and some files in it.

An image can be bootable or nonbootable. A bootable image is one that contains the
startup code that the IPL can transfer control to (see the chapter on customizing IPL
programs in this book). Generally, a small embedded system will have only the one
(bootable) OS image.

A nonbootable image is usually provided for systems where a separate,
configuration-dependent setup may be required. Think of it as a second “filesystem”
that has some additional files in it (we’ll discuss this in more depth later). Since it’s
nonbootable, this image will typically not contain the OS, startup file, etc.

April 20, 2009 Chapter 3 • Making an OS Image 33

The OS image as a filesystem © 2009, QNX Software Systems GmbH & Co. KG.

The OS image as a filesystem
As previously mentioned, the OS image can be thought of as a filesystem. In fact, the
image contains a small directory structure that tells procnto the names and positions
of the files contained within it; the image also contains the files themselves. When the
embedded system is running, the image can be accessed just like any other read-only
filesystem:

cd /proc/boot
ls
.script ping cat data1 pidin

ksh ls ftp procnto devc-ser8250-abc123
cat data1
This is a data file, called data1, contained in the image.
Note that this is a convenient way of associating data
files with your programs.

The above example actually demonstrates two aspects of having the OS image
function as a filesystem. When we issued the ls command, the OS loaded ls from the
image filesystem (pathname /proc/boot/ls). Then, when we issued the cat
command, the OS loaded cat from the image filesystem as well, and opened the file
data1.

Let’s now take a look at how we configure the image to contain files.

Configuring an OS image
The OS image is created by a program called mkifs (make image f ilesystem), which
accepts information from two main sources: its command line and a buildfile.

For more information, see mkifs in the Utilities Reference.

A simple buildfile
Let’s look at a very simple buildfile, the one that generated the OS image used in the
example above:

A simple "ls", "ping", and shell.

This file is "shell.bld"

[virtual=armle,srec] .bootstrap = {

startup-abc123
PATH=/proc/boot procnto -vv

}

[+script] .script = {
procmgr_symlink ../../proc/boot/libc.so.3 /usr/lib/ldqnx.so.2

devc-ser8250-abc123 -F -e -c14745600 -b115200 0xc8000000 ˆ2,15 &

reopen

display_msg Serial Driver Started

}

[type=link] /dev/console=/dev/ser1

[type=link] /tmp=/dev/shmem
libc.so.2
libc.so

34 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Configuring an OS image

[data=copy]
devc-ser8250-abc123

ksh
ls
cat

data1
ping
ftp

pidin

In a buildfile, a pound sign (#) indicates a comment; anything between it and the end
of the line is ignored. Make sure there’s a space between a buildfile command and the
pound sign.

This buildfile consists of these sections:

• a bootfile — starting with [virtual=armle,srec]

• a script — starting with [+script]

• a list of links and files to include in the image — starting with [type=link]

/dev/console=/dev/ser1

Inline files

Although the three sections in the buildfile above seem to be distinct, in reality all
three are similar in that they’re lists of files.

Notice also how the buildfile itself is structured:

optional_attributes filename optional_contents

For example, the line:

[virtual=armle,srec] .bootstrap = {

has an attribute of [virtual=armle,srec] and a filename of .bootstrap. The
optional_contents part of the line is what we call an inline file; instead of getting the
contents of this file from the host machine, mkifs gets them from the buildfile itself,
enclosed by braces. The contents of the inline file can’t be on the same line as the
opening or closing brace.

Let’s examine these elements in some detail.

The bootstrap file
The first section of the bootfile (starting with [virtual=armle,srec]) specifies
that a virtual address system is being built. The CPU type appears next; “armle”
indicates a little-endian ARM processor. Then after the comma comes the name of the
bootfile (srec).

The rest of the line specifies an inline file (as indicated by the open brace) named
“.bootstrap”, which consists of the following:

startup-abc123
PATH=/proc/boot procnto -vv

April 20, 2009 Chapter 3 • Making an OS Image 35

Configuring an OS image © 2009, QNX Software Systems GmbH & Co. KG.

If you set the value of PATH in the bootstrap file, procnto sets the _CS_PATH
configuration string. Similarily, if you set LD_LIBRARY_PATH, procnto sets the
_CS_LIBPATH configuration string. It doesn’t pass these environment variables on to
the script, but you can set environment variables in the script itself.

You can bind in optional modules to procnto by using the [module=...] attribute.
For example, to bind in the adaptive partitioning scheduler, change the procnto line
to this:

[module=aps] PATH=/proc/boot procnto -vv

• Optional modules to procnto were introduced in the QNX Neutrino Core OS
6.3.2.

• For more information about the adaptive partitioning scheduler, see the Adaptive
Partitioning User’s Guide.

The actual name of the bootstrap file is irrelevant. However, nowhere else in the
buildfile did we specify the bootstrap or script files — they’re included automatically
when specified by a [virtual] or [physical] attribute.

The “virtual” attribute (and its sibling the “physical” attribute) specifies the
target processor (in our example, the armle part) and the bootfile (the srec part), a
very small amount of code between the IPL and startup programs. The target
processor is put into the environment variable $PROCESSOR and is used during
pathname expansion. You can omit the target processor specification, in which case it
defaults to the same as the host processor. For example:

[virtual=bios] .bootstrap = {
...

would assume an ARM target if you’re on an ARM host system.

Both examples find a file called $PROCESSOR/sys/bios.boot (the .boot part is
added automatically by mkifs), and process it for configuration information.

Compressing the image

While we’re looking at the bootstrap specification, it’s worth mentioning that you can
apply the +compress attribute to compress the entire image. The image is
automatically uncompressed before being started. Here’s what the first line would
look like:

[virtual=armle,srec +compress] .bootstrap = {

36 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Configuring an OS image

The script file
The second section of the buildfile starts with the [+script] attribute — this tells
mkifs that the specified file is a script file, a sequence of commands that you want
procnto to execute when it’s completed its own startup.

Script files look just like regular shell scripts, except that:

• special modifiers can be placed before the actual commands to run

• some commands are builtin

• the script file’s contents are parsed by mkifs before being placed into the image

In order to run a command, its executable must be available when the script is
executed. You can add the executable to the image or get it from a filesystem that’s
started before the executable is required. The latter approach results in a smaller
image.

In this case, the script file is an inline file (again indicated by the open brace). The file
(which happens to be called “.script”) contains the following:

procmgr_symlink ../../proc/boot/libc.so.3 /usr/lib/ldqnx.so.2

devc-ser8250-abc123 -F -e -c14745600 -b115200 0xc8000000 ˆ2,15 &
reopen

display_msg Serial Driver Started

This script file begins by creating a symbolic link to ../../proc/boot/libc.so.3

called /usr/lib/ldqnx.so.2. Next the script starts a serial driver (the fictional
devc-ser8250-abc123) in edited mode with hardware flow control disabled at a
baud rate of 115200 bps at a particular physical memory address. The script then does
a reopen to redirect standard input, output, and error. The last line simply displays a
message.

As mentioned above, the bootstrap file can set the _CS_PATH and _CS_LIBPATH
configuration strings. You can set PATH, LD_LIBRARY_PATH, and other
environment variables if the programs in your script need them.

CAUTION: If you specify an ampersand (&) after the command line, the program
runs in the background, and Neutrino doesn’t wait for the program to finish before
continuing with the next line in the script.

If you don’t specify the ampersand, and the program doesn’t exit, then the rest of the
script is never executed, and the system doesn’t become fully operational. In
particular, procnto doesn’t reap zombies that get reparented to it, resulting in a
system that accumulates zombie processes, all parented to procnto, that won’t go
away until you reboot.

!

April 20, 2009 Chapter 3 • Making an OS Image 37

Configuring an OS image © 2009, QNX Software Systems GmbH & Co. KG.

Bound multiprocessing attributes

You can specify which CPU to bind processes to when launching processes from the
startup script through the [CPU=] modifier.

The [CPU=] is used as any other modifier, and specifies the CPU on which to launch
the following process (or, if the attribute is used alone on a line without a command,
sets the default CPU for all following processes). Specify the CPU as a zero-based
processor number:

[cpu=0] my_program

A value of * allows the processes to run on all processors:

[cpu=*] my_program

At boot time, if there isn’t a processor with the given index, a warning message is
displayed, and the command is launched without any runmask restriction.

Due to a limitation in the boot image records, this syntax allows only the specification
of a single CPU and not a more generic runmask. Use the on utility to spawn a process
within a fully specified runmask.

The script file on the target

The script file stored on the target isn’t the same as the original specification of the
script file within the buildfile. That’s because a script file is “special” — mkifs parses
the text commands in the script file and stores only the parsed output on the target, not
the original ASCII text. The reason we did this was to minimize the work that the
process manager has to do at runtime when it starts up and processes the script file —
we didn’t want to have to include a complete shell interpreter within the process
manager!

Plain ordinary lists of files
Let’s return to our example. Notice the “list of files” (i.e. from “[type=link]
/dev/console=/dev/ser1” to “pidin”).

Including files from different places

In the example above, we specified that the files at the end were to be part of the
image, and mkifs somehow magically found them. Actually, it’s not magic — mkifs

simply looked for the environment variable MKIFS_PATH. This environment
variable contains a list of places to look for the files specified in the buildfile. If the
environment variable doesn’t exist, then the following are searched in this order:

1 current working directory if the filename contains a slash (but doesn’t start with
one).

2 ${QNX_TARGET}/${PROCESSOR}/sbin

3 ${QNX_TARGET}/${PROCESSOR}/usr/sbin

38 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Configuring an OS image

4 ${QNX_TARGET}/${PROCESSOR}/boot/sys

5 ${QNX_TARGET}/${PROCESSOR}/bin

6 ${QNX_TARGET}/${PROCESSOR}/usr/bin

7 ${QNX_TARGET}/${PROCESSOR}/lib

8 ${QNX_TARGET}/${PROCESSOR}/lib/dll

9 ${QNX_TARGET}/${PROCESSOR}/usr/lib

10 ${QNX_TARGET}/${PROCESSOR}/usr/photon/bin

(The ${PROCESSOR} component is replaced with the name of the CPU, e.g. arm.)

Since none of the filenames that we used in our example starts with the “/” character,
we’re telling mkifs that it should search for files (on the host) within the path list
specified by the MKIFS_PATH environment variable as described above. Regardless
of where the files came from on the host, in our example they’ll all be placed on the
target under the /proc/boot directory (there are a few subtleties with this, which
we’ll come back to).

For our example, devc-con will appear on the target as the file
/proc/boot/devc-con, even though it may have come from the host as
${QNX_TARGET}/armle/sbin/devc-con.

To include files from locations other than those specified in the MKIFS_PATH
environment variable, you have a number of options:

• Change the MKIFS_PATH environment variable (use the shell command export

MKIFS_PATH=newpath on the host).

• Modify the search path with the [search=] attribute.

• Specify the pathname explicitly (i.e. with a leading “/” character).

• Create the contents of the file in line.

Modifying the search path

By specifying the [search=newpath] attribute, we can cause mkifs to look in places
other than what the environment variable MKIFS_PATH specifies. The newpath
component is a colon-separated list of pathnames and can include environment
variable expansion. For example, to augment the existing MKIFS_PATH pathname
to also include the directory /mystuff, you would specify:

[search=${MKIFS_PATH}:/mystuff]

April 20, 2009 Chapter 3 • Making an OS Image 39

Configuring an OS image © 2009, QNX Software Systems GmbH & Co. KG.

Specifying the pathname explicitly

Let’s assume that one of the files used in the example is actually stored on your
development system as /release/data1. If you simply put /release/data1 in
the buildfile, mkifs would include the file in the image, but would call it
/proc/boot/data1 on the target system, instead of /release/data1.

Sometimes this is exactly what you want. But at other times you may want to specify
the exact pathname on the target (i.e. you may wish to override the prefix of
/proc/boot). For example, specifying /etc/passwd would place the host
filesystem’s /etc/passwd file in the target’s pathname space as
/proc/boot/passwd— most likely not what you intended. To get around this, you
could specify:

/etc/passwd = /etc/passwd

This tells mkifs that the file /etc/passwd on the host should be stored as
/etc/passwd on the target.

On the other hand, you may in fact want a different source file (let’s say
/home/joe/embedded/passwd) to be the password file for the embedded system.
In that case, you would specify:

/etc/passwd = /home/joe/embedded/passwd

Creating the contents of the file in line

For our tiny data1 file, we could just as easily have included it in line — that is to
say, we could have specified its contents directly in the buildfile itself, without the
need to have a real data1 file reside somewhere on the host’s filesystem. To include
the contents in line, we would have specified:

data1 = {
This is a data file, called data1, contained in the image.
Note that this is a convenient way of associating data
files with your programs.
}

A few notes. If your inline file contains the closing brace (“}”), then you must escape
that closing brace with a backslash (“\”). This also means that all backslashes must be
escaped as well. To have an inline file that contains the following:

This includes a {, a }, and a \ character.

you would have to specify this file (let’s call it data2) as follows:

data2 = {
This includes a {, a \}, and a \\ character.
}

Note that since we didn’t want the data2 file to contain leading spaces, we didn’t
supply any in the inline definition. The following, while perhaps “better looking,”
would be incorrect:

40 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Configuring an OS image

This is wrong, because it includes leading spaces!
data2 = {

This includes a {, a \}, and a \\ character.
}

If the filename that you’re specifying has “weird” characters in it, then you must quote
the name with double quote characters ("). For example, to create a file called I

"think" so (note the spaces and quotation marks), you would have to specify it as
follows:

"I \"think\" so" = ...

But naming files like this is discouraged, since the filenames are somewhat awkward
to type from a command line (not to mention that they look goofy).

Specifying file ownership and permissions

The files that we included (in the example above) had the owner, group ID, and
permissions fields set to whatever they were set to on the host filesystem they came
from. The inline files (data1 and data2) got the user ID and group ID fields from the
user who ran the mkifs program. The permissions are set according to the user’s
umask.

If we wanted to explicitly set these fields on particular files within the buildfile, we
would prefix the filenames with an attribute:

[uid=0 gid=0 perms=0666] file1
[uid=5 gid=1 perms=a+xr] file2

This marks the first file (file1) as being owned by root (the user ID 0), group zero,
and readable and writable by all (the mode of octal 666). The second file (file2) is
marked as being owned by user ID 5, group ID 1, and executable and readable by all
(the a+xr permissions).

When running on a Windows host, mkifs can’t get the execute (x), setuid (“set user
ID”), or setgid (“set group ID”) permissions from the file. Use the perms attribute to
specify these permissions explicitly. You might also have to use the uid and gid

attributes to set the ownership correctly. To determine whether or not a utility needs to
have the setuid or setgid permission set, see its entry in the Utilities Reference.

Notice how when we combine attributes, we place all of the attributes within one
open-square/close-square set. The following is incorrect:

Wrong way to do it!
[uid=0] [gid=0] [perms=0666] file1

If we wanted to set these fields for a bunch of files, the easiest way to do that would be
to specify the uid, gid, and perms attributes on a single line, followed by the list of
files:

[uid=5 gid=1 perms=0666]
file1
file2
file3
file4

April 20, 2009 Chapter 3 • Making an OS Image 41

Configuring an OS image © 2009, QNX Software Systems GmbH & Co. KG.

which is equivalent to:

[uid=5 gid=1 perms=0666] file1
[uid=5 gid=1 perms=0666] file2
[uid=5 gid=1 perms=0666] file3
[uid=5 gid=1 perms=0666] file4

Including a whole whack of files

If we wanted to include a large number of files, perhaps from a preconfigured
directory, we would simply specify the name of the directory instead of the individual
filenames. For example, if we had a directory called /release_1.0, and we wanted
all the files under that directory to be included in the image, our buildfile would have
the line:

/release_1.0

This would put all the files that reside under /release_1.0 into /proc/boot on the
target. If there were subdirectories under /release_1.0, then they too would be
created under /proc/boot, and all the files in those subdirectories would also be
included in the target.

Again, this may or may not be what you intend. If you really want the /release_1.0
files to be placed under /, you would specify:

/=/release_1.0

This tells mkifs that it should grab everything from the /release_1.0 directory and
put it into a directory called /. As another example, if we wanted everything in the
host’s /release_1.0 directory to live under /product on the target, we would
specify:

/product=/release_1.0

Generating the image
To generate the image file from our sample buildfile, you could execute the command:

mkifs shell.bld shell.ifs

This tells mkifs to use the buildfile shell.bld to create the image file shell.ifs.

You can also specify command-line options to mkifs. Since these command-line
options are interpreted before the actual buildfile, you can add lines before the
buildfile. You would do this if you wanted to use a makefile to change the defaults of a
generic buildfile.

The following sample changes the address at which the image starts to 64 KB (hex
0x10000):

mkifs -l "[image=0x10000]" buildfile image

For more information, see mkifs in the Utilities Reference.

42 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Building a flash filesystem image

Listing the contents of an image
If you’d like to see the contents of an image, you can use the dumpifs utility. The
output from dumpifs might look something like this:

Offset Size Name

0 100 Startup-header flags1=0x1 flags2=0 paddr_bias=0x80000000
100 a008 startup.*

a108 5c Image-header mountpoint=/

a164 264 Image-directory
---- ---- Root-dirent
---- 12 usr/lib/ldqnx.so.2 -> /proc/boot/libc.so

---- 9 dev/console -> /dev/ser1
a3c8 80 proc/boot/.script
b000 4a000 proc/boot/procnto

55000 59000 proc/boot/libc.so.3
---- 9 proc/boot/libc.so -> libc.so.3
ae000 7340 proc/boot/devc-ser8250

b6000 4050 proc/boot/esh
bb000 4a80 proc/boot/ls
c0000 14fe0 proc/boot/data1
d5000 22a0 proc/boot/data2

Checksums: image=0x94b0d37b startup=0xa3aeaf2

The more -v (“verbose”) options you specify to dumpifs, the more data you’ll see.

For more information on dumpifs, see its entry in the Utilities Reference.

Building a flash filesystem image
If your application requires a writable filesystem and you have flash memory devices
in your embedded system, then you can use a Neutrino flash filesystem driver to
provide a POSIX-compatible filesystem. The flash filesystem drivers are described in
the Filesystems chapter of the System Architecture guide. The chapter on customizing
the flash filesystem in this book describes how you can build a flash filesystem driver
for your embedded system.

You have two options when creating a flash filesystem:

• Create a flash filesystem image file on the host system and then write the image
into the flash on the target.

• Run the flash filesystem driver for your target system, and then copy files into the
flash filesystem on the target.

In this section we describe how to create a flash filesystem image file using the mkefs
(for make embedded f ilesystem) utility and a buildfile. How to transfer the flash
filesystem image onto your target system is described in the “Embedding an image”
section. For details on how to use the flash filesystem drivers, see the Utilities
Reference.

Using mkefs
The mkefs utility takes a buildfile and produces a flash filesystem image file. The
buildfile is a list of attributes and files to include in the filesystem.

April 20, 2009 Chapter 3 • Making an OS Image 43

Building a flash filesystem image © 2009, QNX Software Systems GmbH & Co. KG.

mkefs buildfile

The syntax of the buildfile is similar to that for mkifs, but mkefs supports a different
set of attributes, including the following:

block_size=bsize Specifies the block size of the flash device being used; defaults
to 64 KB. We’ll talk about interleave considerations for flash
devices below.

max_size=msize Specifies the maximum size of the flash device; is used to
check for overflows. The default is 4 Gbytes.

spare_blocks=sblocks

Specifies the number of spare blocks to set aside for the flash
filesystem; see “Spare blocks,” below.

min_size=tsize Specifies the minimum size of the filesystem. If the resultant
image is smaller than tsize, the image is padded out to tsize
bytes. The default is unspecified, meaning that the image won’t
be padded.

Refer to the Utilities Reference for a complete description of the buildfile syntax and
attributes supported by mkefs.

Here’s a very simple example of a buildfile:

[block_size=128k spare_blocks=1 filter=deflate]
/home/ejm/products/sp1/callp/imagedir

In this example, the attributes specify that the flash devices have a block size of 128
KB, that there should be one spare block, and that all the files should be processed
using the deflate utility, which compresses the files. A single directory is given. Just
as with mkifs, when we specify a directory, all files and subdirectories beneath it are
included in the resulting image. Most of the other filename tricks shown above for
mkifs also apply to mkefs.

Block size

The value you should specify for the block_size attribute depends on the physical
block size of the flash device given in the manufacturer’s data sheet and on how the
flash device is configured in your hardware (specifically the interleave).

Here are some examples:

44 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Building a flash filesystem image

If you have: Set block_size to:

An 8-bit flash interface and are using an 8-bit device with a 64
KB block size

64 KB

A 16-bit flash interface and are using two interleaved 8-bit
flash devices with a 64 KB block size

128 KB

A 16-bit flash interface and are using a 16-bit flash device with
a 64 KB block size

64 KB

A 32-bit flash interface and are using four interleaved 8-bit
flash devices with a 64 KB block size

256 KB

Notice that you don’t have to specify any details (other than the block size) about the
actual flash devices used in your system.

Spare blocks

The spare_blocks attribute indicates how many blocks should be left as spare. A
value of 0 implies a “read/write” (or “write-once”) flash filesystem, whereas a value
greater than 0 implies a “read/write/reclaim” filesystem.

The default is 1, but the number of spare blocks you’ll need depends on the amount of
writing you’ll do. You should specify an odd number of spare blocks, usually 1 or 3.

The filesystem doesn’t use a spare block until it’s time to perform a reclaim operation.
A nonspare block is then selected for “reclamation”, and the data contained in that
block is coalesced into one contiguous region in the spare block. The nonspare block
is then erased and becomes the new spare block. The former spare block takes the
place of the reclaimed block.

If you don’t set aside at least one spare block (i.e. the spare_blocks attribute is 0),
then the flash filesystem driver won’t be able to reclaim space — it won’t have any
place to put the new copy of the data. The filesystem will eventually fill up since
there’s no way to reclaim space.

Compressing files
The file compression mechanism provided with our flash filesystem is a convenient
way to cut flash memory costs for customers. The flash filesystem uses popular
deflate/inflate algorithms for fast and efficient compression/decompression.

You can use the deflate utility to compress files in the flash filesystem, either from a
shell or as the filter attribute to mkefs. The deflate algorithm provides excellent
lossless compression of data and executable files.

The flash filesystem drivers use the inflator utility to transparently decompress files
that have been compressed with deflate, which means that you can access
compressed files in the flash filesystem without having to decompress them first.

April 20, 2009 Chapter 3 • Making an OS Image 45

Building a flash filesystem image © 2009, QNX Software Systems GmbH & Co. KG.

Compressing files can result in significant space savings. But there’s a trade-off: it
takes longer to access compressed files. Always consider the slowdown of compressed
data access and increased CPU usage when designing a system. We’ve seen systems
with restricted flash budget increase their boot time by large factors when using
compression.

You can compress files:

• before or as you’re using mkefs to create the flash filesystem

• to add files to a running flash filesystem

The first method is the high-runner case. You can use the deflate utility as a filter
for mkefs to compress the files that get built into the flash filesystem. For example,
you could use this buildfile to create a 16-megabyte filesystem with compression:

[block_size=128K spare_blocks=1 min_size=16m filter=deflate]
/bin/

You can also precompress the files by using deflate directly. If mkefs detects a
compression signature in a file that it’s putting into the filesystem, it knows that the file
is precompressed, and so it doesn’t compress the file again. In either case, mkefs puts
the data on the flash filesystem and sets a simple bit in the metadata that tells the flash
filesystem that the file needs to be decompressed.

The second method is to use deflate to compress files and store them directly in the
flash filesystem. For example, here’s how to use deflate at the command line to
compress the ls file from the image filesystem into a flash filesystem:

$ deflate /proc/boot/ls -o /fs0p0/ls

Abstraction layer

The flash filesystem never compresses any files. It detects compressed files on the
media and uses inflator to decompress them as they’re accessed. An abstraction
layer in inflator achieves efficiency and preserves POSIX compliance. Special
compressed data headers on top of the flash files provide fast seek times.

This layering is quite straightforward. Specific I/O functions include handling the
three basic access calls for compressed files:

• read()

• lseek()

• lstat()

46 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Building a flash filesystem image

Two sizes

This is where compression gets tricky. A compressed file has two sizes:

Virtual size This is, for the end user, the real size of the decompressed data, such
as stat() would report.

Media size The size that the file actually occupies on the media.

For instance, running the disk usage utility du would be practically meaningless under
a flash directory with data that is decompressed on the fly. It wouldn’t reflect flash
media usage at all.

As a convenience, inflator supports a naming convention that lets you access the
compressed file: simply add .˜˜˜ (a period and three tildes) to the file name. If you
use this extension, the file isn’t decompressed, so read operations yield raw
compressed data instead of the decompressed data. For example, to get the virtual size
of a compressed file, type:

ls -l my_file

but to get the media size, type:

ls -l my_file.˜˜˜

Compression rules
If you read a file with the .˜˜˜ extension, the file isn’t decompressed for you, as it
would be normally. Now this is where we start talking about rules. All this reading
and getting the size of files is fairly simple; things get ugly when it’s time to write
those files.

• You can’t write all over the place! Although the flash filesystem supports random
writes in uncompressed files, the same isn’t true for compressed files.

• Compressed files are read-only; you can replace a compressed file, but you can’t
modify it in place.

• The flash filesystem never transparently compresses any data.

• If compressed data needs to be put on the flash during the life of a product, this data
has to be precompressed.

The exception

So those are the rules, and here is the exception: truncation. If a compressed file is
opened with O_TRUNC from the regular virtual namespace, the file status will become
just as if it were created from this namespace. This gives you full POSIX capabilities
and no compression with accompanying restrictions.

By the way, the ftruncate() functionality isn’t provided with compressed files, but is
supported with regular files.

April 20, 2009 Chapter 3 • Making an OS Image 47

Embedding an image © 2009, QNX Software Systems GmbH & Co. KG.

Embedding an image
After you’ve created your bootable OS image on the host system, you’ll want to
transfer it to the target system so that you can boot Neutrino on the target. The various
ways of booting the OS on a target system are described in the chapter on customizing
IPL programs in this guide.

If you’re booting the OS from flash, then you’ll want to write the image into the flash
devices on the target. The same applies if you have a flash filesystem image — you’ll
want to write the image into flash on the target.

Use mkifs
 to create Neutrino

image

No

Yes
Is flash

filesystem
required?

Use mkefs to
create flash

filesystem image

No

Yes

Are
flash

filesystem image
and Neutrino image
to go in the same

flash
device?

Done

Use mkimage
to combine images

Flash configuration options for your Neutrino-based embedded systems.

Depending on your requirements and the configuration of your target system, you may
want to embed:

• the IPL

• the boot image

• the boot image and other image filesystem

• the boot image and flash filesystem

• some other combination of the above.

Also, you may wish to write the boot image and the flash filesystem on the same flash
device or different devices. If you want to write the boot image and the flash

48 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Embedding an image

filesystem on the same device, then you can use the mkimage utility to combine the
image files into a single image file.

During the initial development stages, you’ll probably need to write the image into
flash using a programmer or a download utility. Later on if you have a flash filesystem
running on your target, you can then write the image file into a raw flash partition.

If your programmer requires the image file to be in some format other than binary,
then you can use the mkrec utility to convert the image file format.

Combining image files using mkimage
The mkimage utility combines multiple input image files into a single output image
file. It recognizes which of the image files contains the boot image and will place this
image at the start. Note that instead of using mkimage, some developers rely on a
flash programmer to burn the separate images with appropriate alignment.

For example:

mkimage nto.ifs fs.ifs > flash.ifs

will take the nto.ifs and fs.ifs image files and output them to the flash.ifs
file.

If you want more control over how the image files are combined, you can use other
utilities, such as:

• cat

• dd

• mkrec

• objcopy

Combining image files using the IDE

You’ll use the System Builder to generate OS images for your target board’s RAM or
flash. You can create:

• an OS image

• a Flash image

• a combined image.

For more information about this process, please see the documentation that comes
with the QNX Momentics IDE.

Converting images using mkrec
The mkrec utility takes a binary image file and converts it to either Motorola S records
or Intel hex records, suitable for a flash or EPROM programmer.

For example:

April 20, 2009 Chapter 3 • Making an OS Image 49

Embedding an image © 2009, QNX Software Systems GmbH & Co. KG.

mkrec -s 256k flash.ifs > flash.srec

will convert the image file flash.ifs to an S-record format file called flash.srec.
The -s 256k option specifies that the EPROM device is 256 KB in size.

If you have multiple image files that you wish to download, then you can first use
mkimage to combine the image files into a single file before downloading. Or, your
flash/EPROM programmer may allow you to download multiple image files at
different offsets.

Transferring an image to flash
There are many ways to transfer your image into your flash:

• Use an EPROM burner that supports your socketed flash.

• Use a flash burner that supports onboard flash via a special bus, such as JTAG.

• Use a low-level monitor or a BIOS page with a flash burn command.

• Use the flash filesystem raw mountpoints.

The details on how to transfer the image with anything other than the last method is
beyond the scope of this document. Using the raw mountpoint is a convenient way that
comes bundled with your flash filesystem library. You can actually read and write raw
partitions just like regular files, except that when the raw mountpoint is involved,
remember to:

• go down one level in the abstraction ladder

• perform the erase commands yourself.

For the sake of this discussion, we can use the devf-ram driver. This driver simulates
flash using regular memory. To start it, log in as root and type:

devf-ram &

You can use the flashctl command to erase a partition. You don’t need to be root
to do this. For instance:

$ flashctl -p /dev/fs0 -e

CAUTION: Be careful when you use this command. Make sure you aren’t erasing
something important on your flash — like your BIOS!!
On normal flash, the flashctl command on a raw partition should take a while
(about one second for each erase block). This command erases the /dev/fs0 raw
flash array. Try the hd command on this newly erased flash array; everything should
be 0xFF:

$ hd /dev/fs0
0000000: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
*

50 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Embedding an image

For more information on flashctl, see the Utilities Reference.

Let’s make a dummy IPL for the purpose of this example:

$ echo Hello, World! > ipl
$ mkrec -s 128k -f full ipl > ipl_image
Reset jmps to 0x1FFE0 (jmp 0xFFED)
ROM offset is 0x1FFE0

Of course, this IPL won’t work for real — it’s just for trying out the flash filesystem.
In any event, an IPL wouldn’t be very useful in RAM. Let’s make a dummy flash
filesystem for the purpose of this example (the ˆD means Ctrl-D):

$ mkefs -v - flash_image
[block_size=128k spare_blocks=1 min_size=384k]
/bin/ls
/bin/cat
ˆD
writing directory entry ->
writing file entry -> ls **
writing file entry -> cat *
Filesystem size = 384K
block size = 128K
1 spare block(s)

This flash filesystem actually works (unlike the IPL). Now, the flash partition images
can be transferred to the flash using any file-transfer utility (such as cp or ftp). We
have an IPL image created with mkrec (and properly padded to an erase block
boundary) and a flash image created with mkefs, so we can use cat to combine and
transfer both images to the flash:

$ cat ipl_image flash_image > /dev/fs0

If you use the hd utility on the raw mountpoint again, you’ll see that your flash that
had initially all bits set to ones (0xFF) now contains your partition images. To use the
flash filesystem partition, you need to slay the driver and start it again so it can
recognize the partitions and mount them. For instance, with devf-ram:

$ slay devf-ram
$ devf-ram &

From this point, you have a /fs0p1 mountpoint that’s in fact a directory and contains
the files you specified with mkefs to create your flash image. There’s no /fs0p0,
because the boot image isn’t recognized by the flash filesystem. It’s still accessible as
a raw mountpoint via /dev/fs0p0. You can do the same operations on /dev/fs0p0

that you could do with /dev/fs0. Even /dev/fs0p1 is accessible, but be careful not
to write to this partition while applications are using the flash filesystem at /fs0p1.
Try:

$ /fs0p1/ls /fs0p1

You’ve just executed ls from your flash filesystem and you’ve listed its contents. To
conclude, let’s say that what we did in this example is a good starting point for when
you customize the flash filesystem to your own platforms. These baby steps should be
the first steps to using a full-blown filesystem on your target.

April 20, 2009 Chapter 3 • Making an OS Image 51

System configuration © 2009, QNX Software Systems GmbH & Co. KG.

System configuration
In this section, we’ll look at some of the ways you can configure Neutrino systems.
Please refer to the Sample Buildfiles appendix in this guide for more detailed
examples.

What you want to do will, of course, depend on the type of system you’re building.
Our purpose in this section is to offer some general guidelines and to help clarify
which executables should be used in which circumstances, as well as which shared
libraries are required for their respective executables.

The general procedure to set up a system is as follows:

1 Establish an output device.

2 Run drivers.

3 Run applications.

Establishing an output device
One of the very first things to do in a buildfile is to start a driver that you then redirect
standard input, output, and error to. This allows all subsequent drivers and
applications to output their startup messages and any diagnostics messages they may
emit to a known place where you can examine the output.

Generally, you’d start either the console driver or a serial port driver. The console
driver is used when you’re developing on a fairly complete “desktop” type of
environment; the serial driver is suitable for most “embedded” environments.

But you may not even have any such devices in your deeply embedded system, in
which case you would omit this step. Or you may have other types of devices that you
can use as your output device, in which case you may require a specialized driver (that
you supply). If you don’t specify a driver, output will go to the debug output driver
provided by the startup code.

A simple desktop example

This example starts the standard console driver in edited mode (the -e option, which is
the default). To set up the output device, you would include the driver in your startup
script (the [+script] file). For example:

devc-con -e &
reopen /dev/con1

The following starts the 8250 serial port driver in edited mode (the -e option), with an
initial baud rate of 115200 baud (the -b option):

devc-ser8250 -e -b115200 &
reopen /dev/ser1

In both cases, the reopen command causes standard input, output, and error to be
redirected to the specified pathname (either /dev/con1 or /dev/ser1 in the above

52 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. System configuration

examples). This redirection holds until otherwise specified with another reopen
command.

The reopen used above is a mkifs internal command, not the shell builtin command
of the same name.

Running drivers/filesystems
The next thing you’ll want to run are the drivers and/or filesystems that will give you
access to the hardware. Note that the console or serial port that we installed in the
previous section is actually an example of such a driver, but it was a special case in
that it should generally be the first one.

We support several types of drivers/filesystems, including:

• disk drivers (devb-*)

• flash filesystems (devf-*)

• network drivers (devn-*, devnp-*)

• input drivers (devi-*)

• USB drivers (devu-*)

• filesystems (fs-*)

Which one you install first is generally driven by where your executables reside. One
of the goals for the image is to keep it small. This means that you generally don’t put
all the executables and shared libraries you plan to load directly into the image —
instead, you place those files into some other medium (whether a flash filesystem,
rotating disk, or a network filesystem). In that case, you should start the appropriate
driver to get access to your executables. Once you have access to your executables on
some medium, you would then start other drivers from that medium.

The alternative, which is often found in deeply embedded systems, is to put all the
executables and shared libraries directly into the image. You might want to do this if
there’s no secondary storage medium or if you wanted to have everything available
immediately, without the need to start a driver.

Let’s examine the steps required to start the disk, flash, and network drivers. All these
drivers share a common feature: they rely on one process that loads one or more .so
files, with the particular .so files selected either via the command line of the process
or via automatic configuration detection.

April 20, 2009 Chapter 3 • Making an OS Image 53

System configuration © 2009, QNX Software Systems GmbH & Co. KG.

Since the various drivers we’re discussing here use .so files (not just their own
driver-specific ones, but also standard ones like the C library), these .so files must be
present before the driver starts. Obviously, this means that the .so file cannot be on
the same medium as the one you’re trying to start the driver for! We recommend that
you put these .so files into the image filesystem.

Disk drivers

The first thing you need to determine is which hardware you have controlling the disk
interface. We support a number of interfaces, including various flavors of SCSI
controllers and the EIDE controller. For details on the supported interface controllers,
see the various devb-* entries in the Utilities Reference.

The only action required in your buildfile is to start the driver (e.g. devb-aha7). The
driver will then dynamically load the appropriate modules (in this order):

1 libcam.so — Common Access Method library

2 cam-*.so — Common Access Method module(s)

3 io-blk.so — block I/O module

4 fs-*.so — filesystem personality module(s)

The CAM .so files are documented under cam-* in the Utilities Reference. Currently,
we support CD-ROMs (cam-cdrom.so), hard disks (cam-disk.so), and optical
disks (cam-optical.so).

The io-blk.so module is responsible for dealing with a disk on a block-by-block
basis. It includes caching support.

The fs-* modules are responsible for providing the high-level knowledge about how
a particular filesystem is structured. We currently support the following:

Filesystem Module

MS-DOS fs-dos.so

Linux fs-ext2.so

Macintosh HFS and HFS Plus fs-mac.so

Windows NT fs-nt.so

QNX 4 fs-qnx4.so

Power-Safe fs-qnx6.so

ISO-9660 CD-ROM, Universal Disk Format (UDF) fs-udf.so

54 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. System configuration

Flash filesystems

To run a flash filesystem, you need to select the appropriate flash driver for your target
system. For details on the supported flash drivers, see the various devf-* entries in
the Utilities Reference.

The devf-generic flash driver that can be thought of as a universal driver whose
capabilities make it accessible to most flash devices.

The flash filesystem drivers don’t rely on any flash-specific .so files, so the only
module required is the standard C library (libc.so).

Since the flash filesystem drivers are written for specific target systems, you can
usually start them without command-line options; they’ll find the flash for the specific
system they were written for.

Network drivers

Network services are started from the io-pkt* command, which is responsible for
loading in the required .so files.

For dynamic control of network drivers, you can simply use mount and umount to
start and stop drivers at the command line. For example:

mount -T io-pkt devn-ne2000.so

For more information, see mount in the Utilities Reference.

Two levels of .so files are started, based on the command-line options given to
io-pkt*:

• -d specifies driver .so files

• -p specifies protocol .so files.

The -d option lets you choose the hardware driver that knows how to talk to a
particular card. For example, choosing -d ne2000 will cause io-pkt* to load
devn-ne2000.so to access an NE-2000-compatible network card. You may specify
additional command-line options after the -d, such as the interrupt vector to be used
by the card.

The -p option lets you choose the protocol driver that deals with a particular protocol.
As with the -d option, you would specify command-line options after the -p for the
driver, such as the IP address for a particular interface.

For more information about network services, see the devn-*, and io-pkt entries in
the Utilities Reference.

April 20, 2009 Chapter 3 • Making an OS Image 55

Debugging an embedded system © 2009, QNX Software Systems GmbH & Co. KG.

Network filesystems

We support two types of network filesystems:

• NFS (fs-nfs2, fs-nfs3), which allows file access over a network to a UNIX or
other system running an NFS server.

• CIFS (fs-cifs), which allows file access over a network to a Windows 98 or NT
system or to a UNIX system running an SMB server.

The CIFS protocol makes no attempt to conform to POSIX.

Although NFS is primarily a UNIX-based filesystem, you may find some versions of
NFS available for Windows.

Running applications
There’s nothing special required to run your applications. Generally, they’ll be placed
in the script file after all the other drivers have started. If you require a particular
driver to be present and “ready,” you would typically use the waitfor command in
the script.

Here’s an example. An application called peelmaster needs to wait for a driver (let’s
call it driver-spud) to be ready before it should start. The following sequence is
typical:

driver-spud &
waitfor /dev/spud
peelmaster

This causes the driver (driver-spud) to be run in the background (specified by the
ampersand character). The expectation is that when the driver is ready, it will register
the pathname /dev/spud. The waitfor command tries to stat() the pathname
/dev/spud periodically, blocking execution of the script until the pathname appears
or a predetermined timeout has occurred. Once the pathname appears in the pathname
space, we assume that the driver is ready to accept requests. At that point, the
waitfor will unblock, and the next program in the list (in our case, peelmaster)
will execute.

Without the waitfor command, the peelmaster program would run immediately
after the driver was started, which could cause peelmaster to miss the /dev/spud
pathname and fail.

Debugging an embedded system
When you’re developing embedded systems under some operating systems, you often
need to use a hardware debugger, a physical device that connects to target hardware
via a JTAG (Joint Test Action Group) interface. This is necessary for development of
drivers, and possibly user applications, because they’re linked into the same memory
space as the kernel. If a driver or application crashes, the kernel and system may crash

56 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Debugging an embedded system

as a result. This makes using software debuggers difficult, because they depend on a
running system.

Debugging target systems with Neutrino is different because its architecture is
significantly different from other embeddable realtime operating systems:

• All Neutrino applications (including drivers) run in their own memory-protected
virtual address space. This has the advantage that the software is more reliable and
fault tolerant. However, conventional hardware debuggers rely on decoding
physical memory addresses, making them incompatible with debugging user
applications based in a virtual memory environment.

• Neutrino lets you develop multithreaded applications, which hardware debuggers
generally don’t support.

Under Neutrino, you typically use:

• a hardware debugger for the IPL and startup

• a software debugger for the rest of the software

In other words, you rarely have to use a JTAG hardware debugger, especially if you’re
using one of our board support packages.

pdebug software debugging agent
We provide a software debugging agent called pdebug that makes it easier for you to
debug system drivers and user applications. The pdebug agent runs on the target
system and communicates with the host debugger over a serial or Ethernet connection.

For more information, see “The process-level debug agent” in the Compiling and
Debugging chapter of the Programmer’s Guide.

Hardware debuggers and Neutrino
The major constraint of using pdebug is that the kernel must already be running on
the target. In other words, you can’t use pdebug until the IPL and startup have
successfully started the kernel.

However, the IPL and startup program run with the CPU in physical mode, so you can
use conventional hardware debuggers to debug them. This is the primary function of
the JTAG debugger throughout the Neutrino software development phase. You use the
hardware debugger to debug the BSP (IPL and startup), and pdebug to debug drivers
and applications once the kernel is running. You can also use a hardware debugger to
examine registers and view memory while the kernel and applications are running, if
you know the physical addresses.

If hardware debuggers, such as SH or AMC have builtin Neutrino awareness, you can
use a JTAG to debug applications. These debuggers can interpret kernel information as
well as perform the necessary translation between virtual and physical memory
addresses to view application data.

April 20, 2009 Chapter 3 • Making an OS Image 57

Debugging an embedded system © 2009, QNX Software Systems GmbH & Co. KG.

Producing debug symbol information for IPL and startup
You can use hardware debuggers to debug Neutrino IPL and startup programs without
any extra information. However, in this case, you’re limited to assembly-level
debugging, and assembler symbols such as subroutine names aren’t visible. To
perform full source-level debugging, you need to provide the hardware debugger with
the symbol information and C source code.

This section describes the steps necessary to generate the symbol and debug
information required by a hardware debugger for source-level debugging. The steps
described are based on the PPC (PowerPC) Board Support Package available for
Neutrino 6.3.0 for both IPL and startup of the Motorola Sandpoint MPC750 hardware
reference platform.

The examples below are described for a Neutrino 6.3 self-hosted environment, and
assume that you’re logged in on the development host with root privileges.

Generating IPL debug symbols

To generate symbol information for the IPL, you must recompile both the IPL library
and the Sandpoint IPL with debug information. The general procedure is as follows:

1 Modify the IPL source.

2 Build the IPL library and Sandpoint IPL.

3 Burn the IPL into the flash memory of the Sandpoint board using a flash burner
or JTAG.

4 Modify the sandpoint.lnk file to output ELF format.

5 Recompile the IPL library and Sandpoint IPL source with debug options.

6 Load the Sandpoint IPL ELF file containing debug information into the
hardware debugger.

Be sure to synchronize the source code, the IPL burned into flash, and the IPL debug
symbols.

To build the IPL library with debug information:

cd bsp_working_dir/src/hardware/ipl/lib/ppc/a.be
make clean
make CCOPTS=-g
cp libipl.a bsp_working_dir/sandpoint/install/ppcbe/lib
make install

The above steps recompile the PowerPC IPL library (libipl.a) with DWARF debug
information and copy this library to the Sandpoint install directory. The Sandpoint
BSP is configured to look for this library first in its install directory. The make
install is optional, and copies libipl.a to /ppcbe/usr/lib.

58 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Debugging an embedded system

The Sandpoint BSP has been set up to work with SREC format files. However, to
generate debug and symbol information to be loaded into the hardware debugger, you
must generate ELF-format files.

Modify the sandpoint.lnk file to output ELF format:

cd bsp_working_dir/sandpoint/src/hardware/ipl/boards/sandpoint

Edit the file sandpoint.lnk, changing the first lines from:

TARGET(elf32-powerpc)
OUTPUT_FORMAT(srec)
ENTRY(entry_vec)

to:

TARGET(elf32-powerpc)
OUTPUT_FORMAT(elf32-powerpc)
ENTRY(entry_vec)

You can now rebuild the Sandpoint IPL to produce symbol and debug information in
ELF format. To build the Sandpoint IPL with debug information:

cd bsp_working_dir/sandpoint/src/hardware/ipl/boards/sandpoint/ppc/be
make clean

make CCOPTS=-g

The ipl-sandpoint file is now in ELF format with debug symbols from both the
IPL library and Sandpoint IPL.

To rebuild the BSP, you need to change the sandpoint.lnk file back to outputting
SREC format. It’s also important to keep the IPL that’s burned into the Sandpoint flash
memory in sync with the generated debug information; if you modify the IPL source,
you need to rebuild the BSP, burn the new IPL into flash, and rebuild the IPL symbol
and debug information.

You can use the objdump utility to view the ELF information. For example, to view
the symbol information contained in the ipl-sandpoint file:

objdump -t ipl-sandpoint | less

You can now import the ipl-sandpoint file into a hardware debugger to provide the
symbol information required for debugging. In addition, the hardware debugger needs
the source code listings found in the following directories:

• bsp_working_dir/sandpoint/src/hardware/ipl/boards/sandpoint

• bsp_working_dir/src/hardware/ipl/lib

• bsp_working_dir/src/hardware/ipl/lib/ppc

April 20, 2009 Chapter 3 • Making an OS Image 59

Debugging an embedded system © 2009, QNX Software Systems GmbH & Co. KG.

Generating startup debug symbols

To generate symbol information for startup, you must recompile both the startup
library and the Sandpoint startup with debug information. The general procedure is as
follows:

1 Modify the startup source.

2 Build the startup library and Sandpoint startup with debug information.

3 Rebuild the image and symbol file.

4 Load the symbol file into the hardware debugger program.

5 Transfer the image to the Sandpoint target (burn into flash, transfer over a serial
connection).

To build the startup library with debug information:

cd bsp_working_dir/src/hardware/startup/lib/ppc/a.be
make clean
make CCOPTS=-g
cp libstartup.a bsp_working_dir/sandpoint/install/ppcbe/lib
make install

The above steps recompile the PowerPC startup library (libstartup.a) with
DWARF debug information and copy this library to the Sandpoint install directory.
The Sandpoint BSP is configured to look for this library first in its install directory.
The make install is optional, and copies libstartup.a to /ppcbe/usr/lib.

To build the Sandpoint startup with debugging information:

cd bsp_working_dir/sandpoint/src/hardware/startup/boards/sandpoint/ppc/be
make clean

make CCOPTS=-g
make install

The above steps generate the file startup-sandpoint with symbol and debug
information. Again, you can use the -gstabs+ debug option instead of -g. The make
install is necessary, and copies startup-sandpoint into the Sandpoint install
directory, bsp_working_dir/sandpoint/install/ppcbe/boot/sys.

You can’t load the startup-sandpoint ELF file into the hardware debugger to obtain the
debug symbols, because the mkifs utility adds an offset to the addresses defined in
the symbols according to the offset specified in the build file.

Modify the build file to include the +keeplinked attribute for startup:

cd bsp_working_dir/sandpoint/images

Modify the startup line of your build file to look like:

[image=0x10000]
[virtual=ppcbe,binary +compress] .bootstrap = {

[+keeplinked] startup-sandpoint -vvv -D8250
PATH=/proc/boot procnto-600 -vv

}

60 Chapter 3 • Making an OS Image April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Debugging an embedded system

The +keeplinked option makes mkifs generate a symbol file that represents the
debug information positioned within the image filesystem by the specified offset.

To rebuild the image to generate the symbol file:

cd bsp_working_dir/sandpoint/images
make clean

Then, if you’re using one of the provided .build files:

make all

otherwise:

mkifs -v -r ../install myfile.build image

These commands create the symbol file, startup-sandpoint.sym. You can use the
objdump utility to view the ELF information.

To view the symbol information contained in the startup-sandpoint.sym file:

objdump -t startup-sandpoint.sym | less

You can now import the startup-sandpoint.sym file into a hardware debugger to
provide the symbol information required for debugging startup. In addition, the
hardware debugger needs the source code listings found in the following directories:

• bsp_working_dir/src/hardware/startup/lib

• bsp_working_dir/src/hardware/startup/lib/public/ppc

• bsp_working_dir/src/hardware/startup/lib/public/sys

• bsp_working_dir/src/hardware/startup/lib/ppc

• bsp_working_dir/sandpoint/src/hardware/startup/boards/sandpoint

April 20, 2009 Chapter 3 • Making an OS Image 61

Chapter 4

Writing an IPL Program

In this chapter. . .
Initial program loader (IPL) 65
Customizing IPLs 74
The IPL library 86

April 20, 2009 Chapter 4 • Writing an IPL Program 63

© 2009, QNX Software Systems GmbH & Co. KG. Initial program loader (IPL)

Initial program loader (IPL)
In this section, we’ll examine the IPL program in detail, including how to customize it
for your particular hardware, if you need to.

Responsibilities of the IPL
The initial task of the IPL is to minimally configure the hardware to create an
environment that allows the startup program (e.g. startup-bios,
startup-ixdp425, etc.), and consequently the Neutrino microkernel, to run. This
includes at least the following:

1 Start execution from the reset vector.

2 Configure the memory controller. This may include configuring the chip selects
and/or PCI controller.

3 Configure clocks.

4 Set up a stack to allow the IPL library to perform OS verification and setup
(download, scan, set up, and jump to the OS image).

The IPL’s initialization part is written entirely in assembly language (because it
executes from ROM with no memory controller). After initializing the hardware, the
IPL then calls the main() function to initiate the C-language environment.

Once the C environment is set up, the IPL can perform different tasks, depending on
whether the OS is booting from a linearly mapped device or a bank-switched device:

Linearly mapped The entire image is in the processor’s linear address space.

Bank-switched The image isn’t entirely addressable by the processor (e.g.
bank-switched ROM, disk device, network, etc.).

Note that we use the term “ROM” generically to mean any nonvolatile memory device
used to store the image (Flash, RAM, ROM, EPROM, flash, battery-backed SRAM,
etc.).

Linearly mapped images

For linearly mapped images, we have the following sources:

• ROM

Bank-switched images

For bank-switched images, we have the following sources:

• PC-Card (PCMCIA) (some implementations)

• ROM, RAM, bank-switched

• Network device

April 20, 2009 Chapter 4 • Writing an IPL Program 65

Initial program loader (IPL) © 2009, QNX Software Systems GmbH & Co. KG.

• Serial or parallel port

• Disk device

• Other.

Processors & configurations

In conjunction with the above, we have the following processors and configurations:

• 386 and higher processors, which power up in 16-bit real mode.

• PowerPC family of processors, (some are physical and some are virtual
processors), which power up in 32-bit physical or virtual mode.

• ARM family of processors (StrongARM, XScale), which power up in 32-bit
physical mode.

• MIPS architecture processors, which power up with virtual addressing enabled, but
mapped one-to-one.

• SH-4 family of processors, which power up with virtual addressing enabled, but
mapped one-to-one.

Booting from a bank-switched device
Let’s assume we’re booting from a bank-switched or paged device (e.g. paged flash,
disk device, network, etc.), and that the image is uncompressed. The IPL needs to
handle these main tasks:

1 The IPL must first use a C function to talk to the device in question. We’ll use a
serial download for this discussion. For serial downloads, the IPL uses
image_download_8250(), a function that specifically knows how to configure
and control the 8250 class of serial controllers.

Once the controller is set up, the function’s task is to copy the image via the
serial controller to a location in RAM.

2 We now have an OS image in RAM. The IPL then uses the image_scan()
function, which takes a start address and end address as its parameters. It returns
the address at which it found the image:

unsigned long image_scan (unsigned long start, unsigned long end)
The image_scan() function:

• Scans for a valid OS signature over the range provided. Note that this can be
multiple OS images.

• Copies the startup header from the image to a struct startup_header
variable.

• Authenticates the startup signature (STARTUP_HDR_SIGNATURE).

• Performs a checksum on the startup.

• Performs a checksum on the OS image filesystem.

66 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Initial program loader (IPL)

• Saves the address and version number of the OS in case it’s set up to scan for
multiple OS images.

3 Once the OS image has been found and validated, the IPL’s next function to call
is image_setup(), which takes the address of the image as its parameter and
always returns 0:

int image_setup (unsigned long address)
The image_setup() function:

• Copies the startup header from the image to a struct startup_header

variable. Although this was performed in image_scan() (and
startup_header is a global), it’s necessary here because image_scan() can
scan for multiple images, which will overwrite this structure.

• Calculates the address to which startup is to be copied, based on the
ram_paddr and paddr_bias structure members (from the startup header).

• Fills in the imagefs_paddr structure member, based on where the image is
stored. The startup program relies on this member, because it’s the one
responsible for copying the OS image filesystem to its final location in RAM.
The startup program doesn’t necessarily know where the image is stored.

• Copies the final startup structure to the ram_paddr address, and then copies
the startup program itself.

At this phase, the startup program has been copied to RAM (and it must always
execute from RAM), and the startup header has been patched with the address
of the OS image.

April 20, 2009 Chapter 4 • Writing an IPL Program 67

Initial program loader (IPL) © 2009, QNX Software Systems GmbH & Co. KG.

Since the startup program is responsible for copying the image filesystem to its final
destination in RAM, the IPL must copy the image to a location that’s linearly
accessible by the startup program, which has no knowledge of paged devices (serial,
disk, parallel, network, etc.).

Note also that if the image is compressed, then the IPL can copy the compressed
image to a location that won’t interfere with startup’s decompression of the image to
its final destination in RAM. When the image lives in flash (or ROM or whatever
linear storage device), this isn’t an issue. But when the image is stored on a paged
device, more care must be taken in placing the image in a RAM location that won’t
interfere with startup’s decompression of the image. Here are the rules:

Uncompressed If the image is uncompressed, then the IPL can copy the
image from the paged device directly to its destined location.
Startup will compare the addresses and realize that the
image doesn’t need to be copied.

Compressed If the image is compressed, then startup must copy and
decompress the image using a different location than the
final RAM location.

4 The last phase is to jump to the startup entry point. This is accomplished by
calling image_start():

int image_start (unsigned long address)
The image_start() function should never return; it returns -1 if it fails.

The function jumps to the startup_vaddr address as defined in the startup
header.

Booting from a linear device
For a system that boots from a linearly mapped device (e.g. linear flash, ROM, etc.),
the IPL’s tasks are the same as in the paged-device scenario above, but with one
notable exception: the IPL doesn’t need to concern itself with copying a full OS image
from the device to RAM.

“Warm” vs “cold” start
Your IPL code may be quite simple or fairly elaborate, depending on how your
embedded system is configured. We’ll use the terms warm start and cold start to
describe the different types of IPL:

Warm-start IPL If there’s a BIOS or ROM monitor already installed at the reset
vector, then your IPL code is simply an extension to the BIOS or
ROM monitor.

Cold-start IPL The system doesn’t have (or doesn’t use) a BIOS or ROM monitor
program. The IPL must be located at the reset vector.

68 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Initial program loader (IPL)

Warm-start IPL

In this case, the IPL doesn’t get control immediately after the reset, but instead gets
control from the BIOS or ROM monitor.

The x86 PC BIOS allows extensions, as do various ROM monitors. During the
power-up memory scan, the BIOS or ROM monitor attempts to detect extensions in
the address space. To be recognized as an extension, the extension ROM must have a
well-defined extension signature (e.g. for a PC BIOS, this is the sequence 0x55 and
then 0xAA as the first two bytes of the extension ROM). The extension ROM must be
prepared to receive control at the extension entry offset (e.g. for a PC BIOS, this is an
offset of 0x0003 into the extension ROM).

Note that this method is used by the various PC BOOTP ROMs available. The ROM
presents itself as an extension, and then, when control is transferred to it, gets an
image from the network and loads it into RAM.

Cold-start IPL

One of the benefits of Neutrino, especially in a cost-reduced embedded system, is that
you don’t require a BIOS or ROM monitor program. This discussion is primarily for
developers who must write their own IPL program or who (for whatever reason) don’t
wish to use the default IPL supplied by their BIOS/monitor.

Let’s take a look at what the IPL does in this case.

When power is first applied to the processor (or whenever the processor is reset), some
of its registers are set to a known state, and it begins executing from a known memory
location (i.e. the reset vector).

Your IPL software must be located at the reset vector and must be able to:

1 Set up the processor.

2 Locate the OS image.

3 Copy the startup program into RAM.

4 Transfer control to the startup program.

For example, on an x86 system, the reset vector is located at address 0xFFFFFFF0.
The device that contains the IPL must be installed within that address range. In a
typical x86 PC BIOS, the reset vector code contains a JMP instruction that then
branches to the code that performs diagnostics, setup, and IPL functionality.

Loading the image
Regardless of the processor being used, once the IPL code is started, it has to load the
image in a manner that meets the requirements of the Neutrino microkernel as
described above. The IPL code may also have to support a backup way of loading the
image (e.g. an .altboot in the case of a hard/floppy boot). This may also have to be
an automatic fallback in the case of a corrupted image.

April 20, 2009 Chapter 4 • Writing an IPL Program 69

Initial program loader (IPL) © 2009, QNX Software Systems GmbH & Co. KG.

Note, however, that the amount of work your IPL code has to do really depends on the
location of the image; there may be only a small amount of work for the IPL or there
may be a lot.

Let’s look again at the two classifications of image sources.

If the source is a linearly mapped device

This is the simplest scenario. In this case, the entire image is stored in some form of
directly addressable storage — either a ROM device or a form of PC-Card device that
maps its entire address space into the processor’s address space. All that’s required is
to copy the startup code into RAM. This is ideal for small or deeply embedded
systems.

Note that on x86 architectures, the device isn’t required to be addressable within the
first megabyte of memory. The startup program also needn’t be in the first megabyte
of RAM.

Note also that for PC-Card devices, some form of setup may be required before the
entire PC-Card device’s address space will appear in the address space of the
processor. It’s up to your IPL code to perform this setup operation. (We provide
library routines for several standard PC-Card interface chips.)

RAM

Flash ROM

Startup

procnto

Prog1

Prog2

IPLjmp
jmp

Flash/ROM

File

Low memory

High memory

Linearly mapped device.

70 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Initial program loader (IPL)

If the source is a bank-switched device

In this scenario, the image is stored in a device that isn’t directly mapped into linear
memory. An additional factor needs to be considered here — how will your IPL code
get at the image stored in the device?

Many types of hardware devices conform to this model:

• ROM

• Network boot

• Serial or parallel port

• Traditional disk

Let’s look at the common characteristics. In such systems, the IPL code knows how to
fetch data from some piece of hardware. The process is as follows:

1 The IPL receives control.

2 The IPL loads the image from the hardware into RAM.

3 The IPL then transfers control to the newly loaded image.

RAM

Startup

procnto

Prog1

Prog2

File

IPLjmp
jmp

Flash/ROM Low memory

High memory

Paged ROM,
Network,

Serial/Parallel port,
or Disk

Bank-switched devices.

April 20, 2009 Chapter 4 • Writing an IPL Program 71

Initial program loader (IPL) © 2009, QNX Software Systems GmbH & Co. KG.

ROM devices

In this scenario, a solid-state storage device (ROM, EPROM, flash, etc.) contains the
image, but the processor can see only a small portion of the contents of the device.
How is this implemented? The hardware has a small window (say 32 KB) into the
address space of the processor; additional hardware registers control which portion of
the device is manifested into that window.

Window

Top of address space

FFFC FFFF
Top of window

FFFC 8000
Bottom of window

Bottom of address space

Window

mapping

hardware

20M

storage

medium

Large storage medium, bank-switched into a window.

In order to load the image, your IPL code must know how to control the hardware that
maps the window. Your IPL code then needs to copy the image out of the window into
RAM and transfer control.

If possible, avoid the use of any mapping hardware (whether custom-designed or
“industry-standard”) — it only serves to complicate the hardware and software
designs. We strongly recommend linearly mapped devices. (See the appendix on
System Design Considerations for more information.)

Network boot

Depending on your embedded system’s requirements or on your development process,
you can load the image via an Ethernet network. On some embedded boards, the ROM
monitor contains the BOOTP code. On a PC with an ISA or PCI network card, some
form of boot ROM is placed into the address space of the processor, where we assume
the PC BIOS will transfer control to it. The BOOTP code knows how to talk to the
networking hardware and how to get the image from a remote system.

Using a BOOTP server

To boot a Neutrino system using BOOTP, you’ll need a BOOTP ROM for your OS
client and a BOOTP server (e.g. bootpd) for your server. Since the TFTP protocol is
used to move the image from the server to the client, you’ll also need a TFTP server

72 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Initial program loader (IPL)

— this is usually provided with a BOOTP server on most systems (Neutrino, UNIX,
Windows 95/98/NT.)

Serial port

A serial port on the target can be useful during development for downloading an image
or as a failsafe mechanism (e.g. if a checksum fails, you can simply reload the image
via the serial port).

A serial loader can be built into the IPL code so that the code can fetch the image from
an external hardware port. This generally has a minimal impact on the cost of an
embedded system; in most cases, the serial port hardware can be left off for final
assembly. Evaluation boards supplied by hardware chip vendors often have serial
ports. We supply source code for an embedded serial loader for the 8250 chip.

The IPL process in this case is almost identical to the one discussed above for the
Network boot, except that the serial port is used to fetch the image.

Traditional disk

In a traditional PC-style embedded system with a BIOS, this is the simplest boot
possible. The BIOS performs all the work for you — it fetches the image from disk,
transfers it to RAM, and starts it.

On the other hand, if you don’t have a BIOS but you wish to implement this kind of a
boot, then this method involves the most complicated processing discussed so far. This
is because you’ll need a driver that knows how to access the disk (whether it’s a
traditional rotating-medium hard disk or a solid-state disk). Your IPL code then needs
to look into the partition table of the device and figure out where the contents of the
image reside. Once that determination has been made, the IPL then needs to either
map the image portions into a window and transfer bytes to RAM (in the case of a
solid-state disk) or fetch the data bytes from the disk hardware.

None of the above?

It’s entirely conceivable that none of the above adequately describes your particular
embedded system. In that case, the IPL code you’ll write must still perform the same
basic steps as described above — handle the reset vector, fetch the image from some
medium, and transfer control to the startup routine.

Transferring control to the startup program
Once the image has either been loaded into RAM or is available for execution in
ROM, we must transfer control to the startup code (copied from the image to RAM).

For detailed information about the different types of startup programs, see the chapter
on Customizing Image Startup Programs.

Once the startup code is off and running, the work of the IPL process is done.

April 20, 2009 Chapter 4 • Writing an IPL Program 73

Customizing IPLs © 2009, QNX Software Systems GmbH & Co. KG.

Customizing IPLs
This section describes in detail the steps necessary to write the IPL for an embedded
system that boots from ROM or Flash.

Systems that boot from disk or over the network typically come with a BIOS or ROM
monitor, which already contains a large part of the IPL within it. If your embedded
system fits this category, you can probably skip directly to the chapter on Customizing
Image Startup Programs.

Your IPL loader gets control at reset time and performs the following main functions:

1 Initialize hardware (via assembly-language code).

2 Download the image into RAM (e.g. via serial using image_download_8250()).

3 Locate the OS image (via image_scan()).

4 Copy the startup program (via image_setup()).

5 Jump to the loaded image (via image_start()).

Initialize hardware
Basic hardware initialization is done at this time. This includes gaining access to the
system RAM, which may not be addressable after reset. The amount of initialization
done here will depend on what was done by any code before this loader gained
control. On some systems, the power-on-reset will point directly to this code, which
will have to do everything. On other systems, this loader may be called by an even
more primitive loader, which may have already performed some of these tasks.

Note that it’s not necessary to initialize standard peripheral hardware such as an IDE
interface or the baud rate of serial ports. This will be done by the OS drivers when
they’re started later. Technically, you need to initialize only enough hardware to allow
control to be transferred to the startup program in the image.

The startup program is written in C and is provided in full source-code format. The
startup code is structured in a readily customizable manner, providing a simple
environment for performing further initializations, such as setting up the system page
in-memory data structure.

Loading the image into RAM
The IPL code must locate the boot image (made with the mkifs utility) and copy part
or all of it into memory.

The loader uses information in the header to copy the header and startup into RAM.
The loader would be responsible for copying the entire image into RAM if the image
weren’t located in linearly addressable memory.

74 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Customizing IPLs

Structure of the boot header
The boot header structure struct startup_header is defined in the include file
<sys/startup.h>. It is 256 bytes in size and contains the following members,
which are examined by the IPL and/or startup code:

unsigned long signature

unsigned short version

unsigned char flags1

unsigned char flags2

unsigned short header_size

unsigned short machine

unsigned long startup_vaddr

unsigned long paddr_bias

unsigned long image_paddr

unsigned long ram_paddr

unsigned long ram_size

unsigned long startup_size

unsigned long stored_size

unsigned long imagefs_paddr

unsigned long imagefs_size

unsigned short preboot_size

unsigned short zero0

unsigned long zero [3]

unsigned long info [48]

A valid image (for bootable images) is detected by performing a checksum (via the
function call checksum()) over the entire image, as follows:

checksum (image_paddr, startup_size);
checksum (image_paddr + startup_size, stored_size - startup_size);

signature

This is the first 32 bits in the header and always contains 0x00FF7EEB in native byte
order. It’s used to identify the header. On a machine that can be either big-endian or
little-endian (a bi-endian machine, e.g. MIPS), there’s typically a hardware strap that
gets set on the board to specify the endianness.

version

The version of mkifs that made the image.

April 20, 2009 Chapter 4 • Writing an IPL Program 75

Customizing IPLs © 2009, QNX Software Systems GmbH & Co. KG.

flags1 and flags2

The following flags are defined for flags1 (flags2 is currently not used):

STARTUP_HDR_FLAGS1_VIRTUAL

If this flag is set, the operating system is to run with the Memory Management
Unit (MMU) enabled.

For this release of Neutrino, you should always specify a virtual system (by specifying
the virtual= attribute in your buildfile, which then sets the
STARTUP_HDR_FLAGS1_VIRTUAL flag).

STARTUP_HDR_FLAGS1_BIGENDIAN

The processor is big-endian. Processors should always examine this flag to
check that the ENDIAN is right for them.

STARTUP_HDR_FLAGS1_COMPRESS_NONE

The image isn’t compressed.

STARTUP_HDR_FLAGS1_COMPRESS_ZLIB

The image is compressed using libz (gzip).

STARTUP_HDR_FLAGS1_COMPRESS_LZO

The image is compressed with liblzo.

STARTUP_HDR_FLAGS1_COMPRESS_UCL

The image is compressed with libucl. This is the format chosen when using
the [+compress] attribute in the mkifs build script.

Currently, the startup-* programs are built to understand only the UCL
compression method. By twiddling the SUPPORT_CMP_* macro definitions in
startup/lib/uncompress.c, you can change to one of the other supported
compression methods.

The STARTUP_HDR_FLAGS1_COMPRESS_* constants aren’t really flags because
they may set more than one bit; they’re used as an enumeration of the types of
compression.

Note that both flag flags1 and flags2 are single-byte; this ensures that they’re
endian-neutral.

header_size

The size of the startup header (sizeof (struct startup_header)).

76 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Customizing IPLs

machine

Machine type, from <sys/elf.h>.

startup_vaddr

Virtual address to transfer to after IPL is done.

paddr_bias

Value to add to physical address to get a value to put into a pointer and indirect
through.

image_paddr

The physical address of the image. This can be in ROM or RAM, depending on the
type of image; for more information, see “Relationship of struct
startup_header fields,” later in this chapter.

ram_paddr

The physical address in RAM to copy the image to. You should copy startup_size
bytes worth of data.

ram_size

The number of bytes the image will occupy when it’s loaded into RAM. This value is
used by the startup code in the image and isn’t currently needed by the IPL code. This
size may be greater than stored_size if the image was compressed. It may also be
smaller than stored_size if the image is XIP.

startup_size

This is the size of the startup code. Copy this number of bytes from the start of the
image into RAM. Note that the startup code is never compressed, so this size is true in
all cases.

stored_size

This is the size of the image including the header. The stored_size member is also
used in the copy/decompress routines for non-XIP images.

imagefs_paddr

Set by the IPL to the physical address of the image filesystem. Used by the startup.

imagefs_size

Size of uncompressed image filesystem.

preboot_size

Contains the number of bytes from the beginning of the loaded image to the startup
header. Note that this value will usually be zero, indicating that nothing precedes the
startup portion. On an x86 with a BIOS, it will be nonzero, because there’s a small

April 20, 2009 Chapter 4 • Writing an IPL Program 77

Customizing IPLs © 2009, QNX Software Systems GmbH & Co. KG.

piece of code that gets data from the BIOS in real mode and then switches into
protected mode and performs the startup.

zero and zero0

Zero filler; reserved for future expansion.

info

An array of startup_info* structures. This is the communications area between the
IPL and the startup code. When the IPL code detects various system features (amount
of memory installed, current time, information about the bus used on the system, etc.),
it stores that information into the info array so that the startup code can fetch it later.
This saves the startup code from performing the same detection logic again.

Note that the info is declared as an array of longs — this is purely to allocate the
storage space. In reality, the info storage area contains a set of structures, each
beginning with this header:

struct startup_info_hdr {
unsigned short type;
unsigned short size;

};

The type member is selected from the following list:

STARTUP_INFO_SKIP

Ignore this field. If the corresponding size member is 0, it means that this is the
end of the info list.

STARTUP_INFO_MEM

A startup_info_mem or startup_info_mem_extended structure is
present.

STARTUP_INFO_DISK

A startup_info_disk structure is present.

STARTUP_INFO_TIME

A startup_info_time structure is present.

STARTUP_INFO_BOX

A startup_info_box structure is present.

Note that the struct startup_info_hdr header (containing the type and size
members) is encapsulated within each of the above mentioned struct

startup_info* structures as the first element.

Let’s look at the individual structures.

78 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Customizing IPLs

struct startup_info_skip

Contains only the header as the member hdr.

struct startup_info_mem and startup_info_mem_extended

These structures contain an address and size pair defining a chunk of memory that
should be added to procnto’s free memory pool.

The startup_info_mem structure is defined as follows:

struct startup_info_mem {
struct startup_info_hdr hdr;
unsigned long addr;
unsigned long size;

};

The addr and size fields are 32 bits long, so memory is limited to 4 GB. For larger
memory blocks, the startup_info_mem_extended structure is used:

struct startup_info_mem_extended {
struct startup_info_mem mem;
unsigned long addr_hi;
unsigned long size_hi;

};

For the extended structure, determine the address and size from the addr_hi and
size_hi members and the encapsulated startup_info_mem structure as follows:

((paddr64_t) addr_hi << 32) | mem.addr
((paddr64_t) size_hi << 32) | mem.size

More than one startup_info_mem or startup_info_mem_extended structure
may be present to accommodate systems that have free memory located in various
blocks throughout the address space.

Both these structures are indentified by a type member of STARTUP_INFO_MEM in
the startup_info_hdr structure; use the size field in the header to tell them apart.

struct startup_info_disk

Contains the following:

struct startup_info_disk {
struct startup_info_hdr hdr;
unsigned char drive;
unsigned char zero;
unsigned short heads;
unsigned short cylinders;
unsigned short sectors;
unsigned long blocks;

};

Contains information about any hard disks detected (on a PC with a BIOS). The
members are as follows:

drive Drive number.

April 20, 2009 Chapter 4 • Writing an IPL Program 79

Customizing IPLs © 2009, QNX Software Systems GmbH & Co. KG.

zero Reserved; must be zero.

heads Number of heads present.

cylinders Number of cylinders present.

sectors Number of sectors present.

blocks Total blocksize of device. Computed by the formula heads × cylinders
× sectors. Note that this assumes 512 bytes per block.

struct startup_info_time

Contains the following:

struct startup_info_time {
struct startup_info_hdr hdr;
unsigned long time;

};

The time member contains the current time as the number of seconds since 1970 01 01
00:00:00 GMT.

struct startup_info_box

Contains the following:

struct startup_info_box {
struct startup_info_hdr hdr;
unsigned char boxtype;
unsigned char bustype;
unsigned char spare [2];

};

Contains the boxtype and bustype information. For valid values, please see the chapter
on Customizing Image Startup Programs.

The spare fields are reserved and must be zero.

Relationship of struct startup_header fields
The following explains some of the fields used by the IPL and startup for various types
of boot. These fields are stuffed by mkifs.

Note that we’ve indicated which steps are performed by the IPL and which are done
by the startup.

Linear ROM execute-in-place boot image

The following illustration shows an XIP image:

80 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Customizing IPLs

RAM

ram_size

ram_paddr
ROM

Startup
startup_size

stored_size

Startup
header

Imagefs
header

Imagefsimagefs_size

image_paddr

Startup

Startup
header

Reserved
for

imagefs
data

startup_vaddr

Low memory

High memory

In the following pseudo-code examples, image_paddr represents the source location
of the image in linear ROM, and ram_paddr represents the image’s destination in
RAM.

Here are the steps required in the IPL:

checksum (image_paddr, startup_size)
checksum (image_paddr + startup_size, stored_size - startup_size)
copy (image_paddr, ram_paddr, startup_size)
jump (startup_vaddr)

Linear ROM compressed boot image

Here’s the same scenario, but with a compressed image:

RAM

ram_size

ram_paddr
ROM

Startup
startup_size

stored_size

Startup
header

Compressed
imagefs
header

Imagefs

image_paddr

Startup

Startup
header

startup_vaddr

Imagefs
header

Imagefs

imagefs_size

Low memory

High memory

Here are the steps required in the IPL:

checksum (image_paddr, startup_size)

April 20, 2009 Chapter 4 • Writing an IPL Program 81

Customizing IPLs © 2009, QNX Software Systems GmbH & Co. KG.

checksum (image_paddr + startup_size, stored_size - startup_size)
copy (image_paddr, ram_paddr, startup_size)
jump (startup_vaddr)

And here’s the step required in the startup:

uncompress (ram_paddr + startup_size, image_paddr + startup_size,
stored_size - startup_size)

ROM non-XIP image

In this scenario, the image doesn’t execute in place:

RAM

ram_size

ram_paddr
ROM

Startup
startup_size

stored_size

Startup
header

Imagefs
header

Imagefs

image_paddr

Startup

Startup
header

startup_vaddr

Imagefs
header

Imagefs imagefs_size

imagefs_size

Low memory

High memory

Here are the steps required in the IPL:

checksum (image_paddr, startup_size)
checksum (image_paddr + startup_size, stored_size - startup_size)
copy (image_paddr, ram_paddr, startup_size)
jump (startup_vaddr)

And here’s the step required in the startup:

copy (ram_paddr + startup_size, image_paddr + startup_size,
stored_size - startup_size)

Disk/network image (x86 BIOS)

In this case our full IPL isn’t involved. An existing BIOS IPL loads the image into
memory and transfers control to our IPL. Since the existing IPL doesn’t know where
in startup to jump, it always jumps to the start of the image. On the front of the image
we build a tiny IPL that jumps to startup_vaddr:

82 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Customizing IPLs

Startup
startup_size

stored_size,
ram_size

Startup
header

Imagefs
header

Imagefs

image_paddr,
ram_paddr

startup_vaddr

imagefs_size

jump ipl

RAM
Low memory

High memory

Here’s the step required in the IPL:

jump (startup_vaddr)

Disk/network compressed image

This is identical to the previous case, except that we need to decompress the image in
the startup:

Startup
startup_size

stored_size,
ram_size

Startup
header

Compressed
imagefs
header

Imagefs

image_paddr

startup_vaddr

imagefs_size

jump ipl

RAM

Imagefs
header

Imagefs

RAM

ram_paddr

Low memory

High memory

Here’s the step required in the startup:

uncompress (ram_paddr + startup_size, image_paddr + startup_size,
stored_size - startup_size)

The case of a bank-switched ROM is much like a disk/network boot except you get to
write the code that copies the image into RAM using the following steps in the IPL:

April 20, 2009 Chapter 4 • Writing an IPL Program 83

Customizing IPLs © 2009, QNX Software Systems GmbH & Co. KG.

bankcopy (image_paddr, ram_paddr, startup_size)
checksum (image_paddr, startup_size)
checksum (image_paddr + startup_size, stored_size - startup_size)
jump (startup_vaddr)

Your next step is to go to the disk/network or disk/network compressed scenario above.

You’ll need to map the physical addresses and sizes into bank-switching as needed.
Have fun and next time don’t bank-switch your rom! Make it linear in the address
space.

IPL structure
In this section, we’ll examine the structure of the IPL source tree directory, and also
the structure of a typical IPL source file.

IPL source directory structure

The Neutrino source tree structure looks like this:

startup flashipl

boards

800fads
...

bsp_working_dir/src/hardware

IPL directory structure.

The bsp_working_dir/src/hardware/ipl/boards directory is where the IPL
source code is stored for a particular board (e.g.
bsp_working_dir/src/hardware/ipl/boards/800fads contains the source code
for the Motorola MPC8xxFADS PowerPC motherboard.)

IPL code structure

The IPL code is structured in two stages. The first stage is written in assembly
language; it sets up just enough of an environment for the second stage, written in C,
to run. Generally, the minimum work done here is to set up the DRAM controllers,

84 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Customizing IPLs

initialize the various registers, and set up the chip selects so that you can address your
hardware.

Generally, the IPL assembly-language source name begins with “init” (e.g.
init8xx.s for the MPC8xxFADS board); the C file is always called main.c.

Once your assembly-language routine has set up the minimum amount required to
transfer control to the C language portion, the main() program calls the following
functions in order:

image_download_8250()

This function is responsible for getting the image from wherever it
may be located. If the image is located in linear memory, this
function isn’t required (the image is already “downloaded”).

If you’re downloading the image from a custom piece of hardware,
you should call your function image_download_hw(), where the
hw part is replaced with a descriptive name for the hardware, e.g.
image_download_x25().

image_scan() This function is given a start and an end address to search for a
boot image. If successful, it returns a pointer to the start of the
image. It’s possible to search within an address range that contains
more than one image. If there are multiple images, and one of them
has a bad checksum, then the next image is used. If there are
multiple images with good checksums, the startup header is
examined, and the one with the higher version number is used.
Note that the scan will occur only between the specified addresses.

image_setup() This function does the work of copying the necessary part of the
image into RAM.

image_start() This function will jump to the start of the image loaded into RAM,
which will turn control over to the startup program.

An example

Take the main.c from the FADS8xx system:

#include "ipl.h"

unsigned int image;

int
main (void)
{
/*
* Image is located at 0x2840000
* Therefore, we don’t require an image_download_8250 function
*/

image = image_scan (0x2840000, 0x2841000);

/*

April 20, 2009 Chapter 4 • Writing an IPL Program 85

The IPL library © 2009, QNX Software Systems GmbH & Co. KG.

* Copy startup to ram; it will do any necessary work on the image
*/

image_setup (image);

/*
* Set up link register and jump to startup entry point
*/

image_start (image);

return (0);
}

In this case, we have a linearly addressable flash memory device that contains the
image — that’s why we don’t need the image_download_8250() function.

The next function called is image_scan(), which is given a very narrow range of
addresses to scan for the image. We give it such a small range because we know where
the image is on this system — there’s very little point searching for it elsewhere.

Then we call image_setup() with the address that we got from the image_scan(). This
copies the startup code to RAM.

Finally, we call image_start() to transfer control to the startup program. We don’t
expect this function to return — the reason we have the return (0); statement is to
keep the C compiler happy (otherwise it would complain about “Missing return value
from function main”).

Creating a new IPL
To create a new IPL, it’s best to start with one we’ve provided that’s similar to the type
of CPU and board you have in your design.

The basic steps are:

1 Create a new directory under bsp_working_dir/src/hardware/ipl/boards
with your board name.

2 Copy all files and subdirectories from a similar board into the new directory.

3 Modify the files as appropriate.

The IPL library
The IPL library contains a set of routines for building a custom IPL. Here are the
available library functions:

Function Description

enable_cache Enable the on-chip cache (x86 only).

image_download_8250() Download an image from the specified serial port.

continued. . .

86 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The IPL library

Function Description

image_scan() Scan memory for a valid system image.

image_scan_ext() BIOS extension version of image_scan().

image_setup() Prepare an image for execution.

image_setup_ext() BIOS extension version of image_setup().

image_start() Transfer control to the image.

image_start_ext() BIOS extension version of image_start().

int15_copy() Copy data from high (above 1 MB) memory to a buffer
or to low (below 1 MB) memory (x86 only).

print_byte() Print a byte to video (x86 only).

print_char() Print a character to video (x86 only).

print_long() Print a long to video (x86 only).

print_sl() Print a string, followed by a long to video (x86 only).

print_string() Print a string to video (x86 only).

print_var() Print a variable to video (x86 only).

print_word() Print a word to video (x86 only).

protected_mode Switch the processor to protected mode (x86 only).

uart_hex8 Output an 8-bit hex number to the UART (x86 only).

uart_hex16 Output a 16-bit hex number to the UART (x86 only).

uart_hex32 Output a 32-bit hex number to the UART (x86 only).

uart_init Initialize the on-chip UART (x86 only).

uart_put Output a single character to the UART (x86 only).

uart_string Output a NULL-terminated string to the UART (x86
only).

uart32_hex8 Output an 8-bit hex number to the UART (for 32-bit
protected mode environment; x86 only).

uart32_hex16 Output a 16-bit hex number to the UART (for 32-bit
protected mode environment; x86 only).

uart32_hex32 Output a 32-bit hex number to the UART (for 32-bit
protected mode environment; x86 only).

uart32_init Initialize the on-chip UART (for 32-bit protected mode
environment; x86 only).

continued. . .

April 20, 2009 Chapter 4 • Writing an IPL Program 87

The IPL library © 2009, QNX Software Systems GmbH & Co. KG.

Function Description

uart32_put Output a single character to the UART (for 32-bit
protected mode environment; x86 only).

uart32_string Output a NULL-terminated string to the UART (for
32-bit protected mode environment; x86 only).

enable_cache
enable_cache

The enable_cache() function takes no parameters. The function is meant to be called
before the x86 processor is switched to protected mode. Note that the function is for a
non-BIOS system.

image_download_8250()
unsigned int image_download_8250 (port, span, address)

Downloads an image from the specified serial port (port) to the specified address
(address) using a custom protocol. On the host side, this protocol is implemented via
the utility sendnto (you may need a NULL-modem cable — the protocol uses only
TX, RX, and GND). The span parameter indicates the offset from one port to the next
port on the serial device.

image_scan()
unsigned long image_scan (unsigned long start, unsigned long end)

The image_scan() function scans memory for a valid system image. It looks on 4 KB
boundaries for the image identifier bytes and then does a checksum on the image.

The function scans between start and end. If a valid image is found, image_scan()
returns the image’s address. If no valid image is found, it returns -1.

Note that image_scan() will search for all images within the given range, and will pick
the “best” one as described above (in the “IPL code structure” section).

image_scan_ext()
unsigned long image_scan_ext (unsigned long start, unsigned long end)

This is a BIOS extension version of the image_scan() function. The image_scan_ext()
function operates in a 16-bit real-mode environment.

image_setup()
int image_setup (unsigned long address)

The image_setup() function prepares an image for execution. It copies the
RAM-based startup code from ROM.

The function takes the image’s address as its parameter and always returns 0.

88 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The IPL library

image_setup_ext()
int image_setup_ext (unsigned long address)

This is a BIOS extension version of the image_setup() function. The
image_setup_ext() function operates in a 16-bit real-mode environment and makes use
of the int15_copy() function to perform its tasks on the OS image.

image_start()
int image_start (unsigned long address)

The image_start() function starts the image by jumping to the startup_vaddr address
as defined in the startup header.

The function should never return; if it fails, it returns -1.

image_start_ext()
int image_start_ext (unsigned long address)

This is a BIOS extension version of the image_start() function. The image_start_ext()
function operates in a 16-bit real-mode environment.

int15_copy()
unsigned char int15_copy (long from, long to, long len)

The int15_copy() function is intended for an x86 system with a BIOS running in real
mode. The function lets you copy data from high memory (above 1 MB) to a buffer or
to low memory (below 1 MB).

The int15_copy() function also allows functions such as image_scan() and
image_setup() to perform scanning and setup of images living in high memory.

print_byte()
void print_byte (int n)

Using int10, this function displays a byte to video (x86 only).

print_char()
void print_char (int c)

Using int10, this function displays a character to video (x86 only).

print_long()
void print_long (unsigned long n)

Using int10, this function displays a long to video (x86 only).

print_sl()
void print_sl (char *s, unsigned long n)

Using int10, this function displays to video a string, followed by a long (x86 only).

print_string()
void print_string (char *msg)

Using int10, this function displays a string to video (x86 only).

April 20, 2009 Chapter 4 • Writing an IPL Program 89

The IPL library © 2009, QNX Software Systems GmbH & Co. KG.

print_var()
void print_var (unsigned long n, int l)

Using int10, this function displays a variable to video (x86 only).

print_word()
void print_word (unsigned short n)

Using int10, this function displays a word to video (x86 only).

protected_mode()

This assembly call switches the x86 processor into protected mode. The function is for
non-BIOS systems.

Upon return, the DS and ES registers will be set to selectors that can access the entire
4 GB address space. This code is designed to be completely position-independent.

This routine must be called with a pointer to a 16-byte area of memory that’s used to
store the GDT. The pointer is in ds:ax.

The following selectors are defined:

8 Data selector for 0-4 GB.

16 Code selector for 0-4 GB.

uart_hex8

This assembly call outputs an 8-bit hex number to the UART. The function is set up
for a 16-bit real-mode environment (x86 only).

On entry:

DX UART base port.

AL Value to output.

uart_hex16

This assembly call outputs a 16-bit hex number to the UART. The function is set up
for a 16-bit real-mode environment (x86 only).

On entry:

DX UART base port.

AX Value to output.

90 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The IPL library

uart_hex32

This assembly call outputs a 32-bit hex number to the UART. The function is set up
for a 16-bit real-mode environment (x86 only).

On entry:

DX UART base port.

EAX Value to output.

uart_init

This assembly call initializes the on-chip UART to 8 data bits, 1 stop bit, and no parity
(8250 compatible). The function is set up for a 16-bit real-mode environment (x86
only).

On entry:

EAX Baud rate.

EBX Input clock in Hz (normally 1843200).

ECX UART internal divisor (normally 16).

DX UART base port.

uart_put

This assembly call outputs a single character to the UART. The function is set up for a
16-bit real-mode environment (x86 only).

On entry:

AL Character to output.

DX UART base port.

uart_string

This assembly call outputs a NULL-terminated string to the UART. The function is set
up for a 16-bit real-mode environment (x86 only).

On entry:

DX UART base port address, return address, string.

For example:

mov UART_BASE_PORT, %dx
call uart_string
.ascii "string\r\n"
...

April 20, 2009 Chapter 4 • Writing an IPL Program 91

The IPL library © 2009, QNX Software Systems GmbH & Co. KG.

uart32_hex8

This assembly call outputs an 8-bit hex number to the UART. The function is set up
for a 32-bit protected-mode environment (x86 only).

On entry:

DX UART base port.

AL Value to output.

uart32_hex16

This assembly call outputs a 16-bit hex number to the UART. The function is set up
for a 32-bit protected-mode environment (x86 only).

On entry:

DX UART base port.

AX Value to output.

uart32_hex32

This assembly call outputs a 32-bit hex number to the UART. The function is set up
for a 32-bit protected-mode environment (x86 only).

On entry:

DX UART base port.

EAX Value to output.

uart32_init

This assembly call initializes the on-chip UART to 8 data bits, 1 stop bit, and no parity
(8250 compatible). The function is set up for a 32-bit protected-mode environment
(x86 only).

On entry:

EAX Baud rate.

EBX Input clock in Hz (normally 1843200).

ECX UART internal divisor (normally 16).

DX UART base port.

92 Chapter 4 • Writing an IPL Program April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The IPL library

uart32_put

This assembly call outputs a single character to the UART. The function is set up for a
32-bit protected-mode environment (x86 only).

On entry:

AL Character to output.

DX UART base port.

uart32_string

This assembly call outputs a NULL-terminated string to the UART. The function is set
up for a 32-bit protected-mode environment (x86 only).

On entry:

DX UART base port address, return address, string.

For example:

mov UART_BASE_PORT, %dx
call uart_string
.ascii "string\r\n"
...

April 20, 2009 Chapter 4 • Writing an IPL Program 93

Chapter 5

Customizing Image Startup Programs

In this chapter. . .
Introduction 97
Anatomy of a startup program 97
Structure of the system page 99
Callout information 126
The startup library 129
Writing your own kernel callout 149
PPC chips support 154

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 95

© 2009, QNX Software Systems GmbH & Co. KG. Introduction

Introduction
The first program in a bootable Neutrino image is a startup program whose purpose is
to:

1 Initialize the hardware.

2 Initialize the system page.

3 Initialize callouts.

4 Load and transfer control to the next program in the image.

You can customize Neutrino for different embedded-system hardware by changing the
startup program.

Initialize hardware
You do basic hardware initialization at this time. The amount of initialization done
here will depend on what was done in the IPL loader.

Note that you don’t need to initialize standard peripheral hardware such as an IDE
interface or the baud rate of serial ports. This will be done by the drivers that manage
this hardware when they’re started.

Initialize system page
Information about the system is collected and placed in an in-memory data structure
called the system page. This includes information such as the processor type, bus type,
and the location and size of available system RAM.

The kernel as well as applications can access this information as a read-only data
structure. The hardware/system-specific code to interrogate the system for this
information is confined to the startup program. This code doesn’t occupy any system
RAM after it has run.

Initialize callouts
Another key function of the startup code is that the system page callouts are bound in.
These callouts are used by the kernel to perform various hardware- and
system-specific functions that must be specified by the systems integrator.

Anatomy of a startup program
Each release of Neutrino ships with a growing number of startup programs for many
boards. To find out what boards we currently support, please refer to the following
sources:

• the boards directory under bsp_working_dir/src/hardware/startup

• QNX docs (BSP docs as well as startup-* entries in the Utilities Reference)

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 97

Anatomy of a startup program © 2009, QNX Software Systems GmbH & Co. KG.

• the Community area of our website, www.qnx.com

Each startup program is provided as a ready-to-execute binary. Full source and a
Makefile are also available so you can customize and remake each one. The files are
kept in this directory structure as illustrated:

flashstartupipl

boards

403evb
800fads
bios

ddb-vrc4373
explr2
mbx800
p5064
ppaq

vme603
vr41xx
...

bootfile

mipsbe
mipsle
ppcbe
x86

bsp_working_dir/src/hardware

Startup directory structure.

Generally speaking, the following directory structure applies in the startup source for
the startup-boardname module:

bsp_working_dir/src/hardware/startup/boards/boardname

Structure of a startup program
Each startup program consists of a main() with the following structure (in pseudo
code):

Global variables

main()
{

Call add_callout_array()

98 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

Argument parsing (Call handle_common_option())

Call init_raminfo()
Remove ram used by modules in the image

if (virtual) Call init_mmu() to initialize the MMU

Call init_intrinfo()
Call init_qtime()
Call init_cacheattr()
Call init_cpuinfo()

Set hardware machine name

Call init_system_private()

Call print_syspage() to print debugging output
}

You should examine the commented source for each of the functions within the library
to see if you need to replace a library function with one of your own.

Creating a new startup program
To create a new startup program, you should make a new directory under
bsp_working_dir/src/hardware/startup/boards and copy the files from one of
the existing startup program directories. For example, to create something close to the
Intel PXA250TMDP board, called my_new_board, you would:

1 cd bsp_working_dir/src/hardware/startup/boards

2 mkdir my_new_board

3 cp -r pxa250tmdp/* my_new_board

4 cd my_new_board

5 make clean

For descriptions of all the startup functions, see “The startup library” section in this
chapter.

Structure of the system page
As mentioned earlier (see the section “Initialize system page”), one of the main jobs of
the startup program is to initialize the system page.

The system page structure struct syspage_entry is defined in the include file
<sys/syspage.h>. The structure contains a number of constants, references to other
structures, and a union shared between the various processor platforms supported by
Neutrino.

It’s important to realize that there are two ways of accessing the data within the system
page, depending on whether you’re adding data to the system page at startup time or

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 99

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

reading data from the system page later (as would be done by an application program
running after the system has been booted). Regardless of which access method you
use, the fields are the same.

Here’s the system page structure definition, taken from <sys/syspage.h>:

/*
* contains at least the following:
*/

struct syspage_entry {
uint16_t size;
uint16_t total_size;
uint16_t type;
uint16_t num_cpu;
syspage_entry_info system_private;
syspage_entry_info asinfo;
syspage_entry_info hwinfo;
syspage_entry_info cpuinfo;
syspage_entry_info cacheattr;
syspage_entry_info qtime;
syspage_entry_info callout;
syspage_entry_info callin;
syspage_entry_info typed_strings;
syspage_entry_info strings;
syspage_entry_info intrinfo;
syspage_entry_info smp;
syspage_entry_info pminfo;

union {
struct x86_syspage_entry x86;
struct ppc_syspage_entry ppc;
struct mips_syspage_entry mips;
struct arm_syspage_entry arm;
struct sh_syspage_entry sh;

} un;
};

Note that some of the fields presented here may be initialized by the code provided in
the startup library, while some may need to be initialized by code provided by you.
The amount of initialization required really depends on the amount of customization
that you need to perform.

Let’s look at the various fields.

size
The size of the system page entry. This member is set automatically by the library.

total_size
The size of the system page entry plus the referenced substructures; effectively the
size of the entire system-page database. This member is set automatically by the
library and adjusted later (grown) as required by other library calls.

100 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

type
This is used to indicate the CPU family for determining which union member in the un
element to use. Can be one of:
SYSPAGE_ARM, SYSPAGE_MIPS, SYSPAGE_PPC, SYSPAGE_SH4, or SYSPAGE_X86.

The library sets this member automatically.

num_cpu
The num_cpu member indicates the number of CPUs present on the given system.
This member is initialized to the default value 1 in the library and adjusted by the
library call init_smp() if additional processors are detected.

system_private
The system_private area contains information that the operating system needs to know
when it boots. This is filled in by the startup library’s init_system_private() function.

Member Description

user_cpupageptr User address (R/O) for cpupage pointer

user_syspageptr User address (R/O) for syspage pointer

kern_cpupageptr Kernel address (R/W) for cpupage pointer

kern_syspageptr Kernel address (R/W) for syspage pointer

pagesize Granularity of the OS memory allocator (usually 16 in physical
mode or 4096 in virtual mode).

asinfo
The asinfo section consists of an array of the following structure. Each entry describes
the attributes of one section of address space on the machine.

struct asinfo_entry {
uint64_t start;
uint64_t end;
uint16_t owner;
uint16_t name;
uint16_t attr;
uint16_t priority;
int (*alloc_checker)(struct syspage_entry *__sp,

uint64_t *__base,
uint64_t *__len,
size_t __size,
size_t __align);

uint32_t spare;
};

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 101

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

Member Description

start Gives the first physical address of the range being described.

end Gives the last physical address of the range being described. Note that
this is the actual last byte, not one beyond the end.

owner An offset from the start of the section giving the owner of this entry (its
“parent” in the tree). It’s set to AS_NULL_OFF if the entry doesn’t
have an owner (it’s at the “root” of the address space tree).

name An offset from the start of the strings section of the system page giving
the string name of this entry.

attr Contains several bits affecting the address range (see below).

priority Indicates the speed of the memory in the address range. Lower
numbers mean slower memory. The macro AS_PRIORITY_DEFAULT
is defined to use a default value for this field (currently defined as 100).

The alloc_checker isn’t currently used. When implemented, it will let you provide
finer-grain control over how the system allocates memory (e.g. making sure that ISA
memory used for DMA doesn’t cross 64 KB boundaries).

The attr field

The attr field can have the following bits:

#define AS_ATTR_READABLE 0x0001

Address range is readable.

#define AS_ATTR_WRITABLE 0x0002

Address range is writable.

#define AS_ATTR_CACHABLE 0x0004

Address range can be cached (this bit should be off if you’re using device
memory).

#define AS_ATTR_KIDS 0x0010

Indicates that there are other entries that use this one as their owner. Note that
the library turns on this bit automatically; you shouldn’t specify it when creating
the section.

#define AS_ATTR_CONTINUED 0x0020

Indicates that there are multiple entries being used to describe one “logical”
address range. This bit will be on in all but the last one. Note that the library
turns on this bit and uses it internally; you shouldn’t specify it when creating the
section.

102 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

Address space trees

The asinfo section contains trees describing address spaces (where RAM, ROM, flash,
etc. are located).

The general hierarchy for address spaces is:

/memory/memclass/....

Or:

/io/memclass/....

Or:

/memory/io/memclass/....

The memory or io indicates whether this is describing something in the memory or
I/O address space (the third form is used on a machine without separate in/out
instructions and where everything is memory-mapped).

The memclass is something like: ram, rom, flash, etc. Below that would be further
classifications, allowing the process manager to provide typed memory support.

hwinfo
The hwinfo area contains information about the hardware platform (type of bus,
devices, IRQs, etc). This is filled in by the startup library’s init_hwinfo() function.

This is one of the more elaborate sections of the Neutrino system page. The hwinfo
section doesn’t consist of a single structure or an array of the same type. Instead, it
consists of a sequence of symbolically “tagged” structures that as a whole describe the
hardware installed on the board. The following types and constants are all defined in
the <hw/sysinfo.h> file.

The hwinfo section doesn’t have to describe all the hardware. For instance, the startup
program doesn’t have to do PCI queries to discover what’s been plugged into any slots
if it doesn’t want to. It’s up to you as the startup implementor to decide how full to
make the hwinfo description. As a rule, if a component is hardwired on your board,
consider putting it into hwinfo.

Tags

Each structure (or tag) in the section starts the same way:

struct hwi_prefix {
uint16_t size;
uint16_t name;

};

The size field gives the size, in 4-byte quantities, of the structure (including the
hwi_prefix).

The name field is an offset into the strings section of the system page, giving a
zero-terminated string name for the structure. It might seem wasteful to use an ASCII

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 103

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

string rather than an enumerated type to identify the structure, but it actually isn’t. The
system page is typically allocated in 4 KB granularity, so the extra storage required by
the strings doesn’t cost anything. On the upside, people can add new structures to the
section without requiring QNX Software Systems to act as a central repository for
handing out enumerated type values. When processing the section, code should ignore
any tag that it doesn’t recognize (using the size field to skip over it).

Items

Each piece of hardware is described by a sequence of tags. This conglomeration of
tags is known as an item. Each item describes one piece of hardware. The first tag in
each item always starts out with the following structure (note that the first thing in it is
a hwi_prefix structure):

struct hwi_item {
struct hwi_prefix prefix;
uint16_t itemsize;
uint16_t itemname;
uint16_t owner;
uint16_t kids;

};

The itemsize field gives the distance, in 4-byte quantities, until the start of the next
item tag.

The itemname gives an offset into the strings section of the system page for the name
of the item being described. Note that this differs from the prefix.name field, which
tells what type of the structure the hwi_item is buried in.

The owner field gives the offset, in bytes, from the start of the hwinfo section to the
item that this item is owned by. This field allows groups of items to be organized in a
tree structure, similar to a filesystem directory hierarchy. We’ll see how this is used
later. If the item is at the root of a tree of ownership, the owner field is set to
HWI_NULL_OFF.

The kids field indicates how many other items call this one “daddy.”

The code currently requires that the tag name of any item structure must start with an
uppercase letter; nonitem tags have to start with a lowercase letter.

Device trees

The hwinfo section contains trees describing the various hardware devices on the
board.

The general hierarchy for devices is:

/hw/bus/devclass/device

where:

hw the root of the hardware tree.

104 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

bus the bus the hardware is on (pci, eisa, etc.).

devclass the general class of the device (serial, rtc, etc.).

device the actual chip implementing the device (8250, mc146818, etc.).

Building the section

Two basic calls in the startup library are used to add things to the hwinfo section:

• hwi_alloc_tag()

• hwi_alloc_item()

void *hwi_alloc_tag(const char *name, unsigned size, unsigned align);

This call allocates a tag of size size with the tag name of name. If the structure
contains any 64-bit integer fields within it, the align field should be set to 8; otherwise,
it should be 4. The function returns a pointer to memory that can be filled in as
appropriate. Note that the hwi_prefix fields are automatically filled in by the
hwi_alloc_tag() function.

void *hwi_alloc_item(const char *name, unsigned size,
unsigned align, const char *itemname,
unsigned owner);

This call allocates an item structure. The first three parameters are the same as in the
hwi_alloc_tag() function.

The itemname and owner parameters are used to set the itemname and owner fields of
the hwi_item structure. All hwi_alloc_tag() calls done after a hwi_alloc_item() call
are assumed to belong to that item and the itemsize field is adjusted appropriately.

Here are the general steps for building an item:

1 Call hwi_alloc_item() to build a top-level item (one with the owner field to be
HWI_NULL_OFF).

2 Add whatever other tag structures you want in the item.

3 Use hwi_alloc_item() to start a new item. This item could be either another
top-level one or a child of the first.

Note that you can build the items in any order you wish, provided that the parent is
built before the child.

When building a child item, suppose you’ve remembered its owner in a variable or you
know only its item name. In order to find out the correct value of the owner parameter,
you can use the following function (which is defined in the C library, since it’s useful
for people processing the section):

unsigned hwi_find_item(unsigned start, ...);

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 105

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

The start parameter indicates where to start the search for the given item. For an initial
call, it should be set to HWI_NULL_OFF. If the item found isn’t the one wanted, then
the return value from the first hwi_find_item() is used as the start parameter of the
second call. The search will pick up where it left off. This can be repeated as many
times as required (the return value from the second call going into the start parameter
of the third, etc). The item being searched is identified by a sequence of char *
parameters following start. The sequence is terminated by a NULL. The last string
before the NULL is the bottom-level itemname being searched for, the string in front
of that is the name of the item that owns the bottom-level item, etc.

For example, this call finds the first occurrence of an item called “foobar”:

item_off = hwi_find_item(HWI_NULL_OFF, "foobar", NULL);

The following call finds the first occurrence of an item called “foobar” that’s owned by
“sam”:

item_off = hwi_find_item(HWI_NULL_OFF, "sam", "foobar", NULL);

If the requested item can’t be found, HWI_NULL_OFF is returned.

Other functions

The following functions are in the C library for use in processing the hwinfo section:

unsigned hwi_tag2off(void *);

Given a pointer to the start of a tag, return the offset, in bytes, from the
beginning of the start of the hwinfo section.

void *hwi_off2tag(unsigned);

Given an offset, in bytes, from the start of the hwinfo section, return a pointer to
the start of the tag.

unsigned hwi_find_tag(unsigned start, int curr_item, const char

*tagname);
Find the tag named tagname. The start parameter works the same as the one in
hwi_find_item(). If curr_item is nonzero, the search stops at the end of the
current item (whatever item the start parameter points into). If curr_item is
zero, the search continues until the end of the section. If the tag isn’t found,
HWI_NULL_OFF is returned.

Defaults

Before main() is invoked in the startup program, the library adds some initial entries to
serve as a basis for later items.

HWI_TAG_INFO() is a macro defined in the <startup.h> header and expands out
to the three name, size, align parameters for hwi_alloc_tag() and hwi_alloc_item()
based on some clever macro names.

106 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

void
hwi_default() {

hwi_tag *tag;
hwi_tag *tag;

hwi_alloc_item(HWI_TAG_INFO(group), HWI_ITEM_ROOT_AS,
HWI_NULL_OFF);

tag = hwi_alloc_item(HWI_TAG_INFO(group), HWI_ITEM_ROOT_HW,
HWI_NULL_OFF);

hwi_alloc_item(HWI_TAG_INFO(bus), HWI_ITEM_BUS_UNKNOWN,
hwi_tag2off(tag));

loc = hwi_find_item(HWI_NULL_OFF, HWI_ITEM_ROOT_AS, NULL);

tag = hwi_alloc_item(HWI_TAG_INFO(addrspace),
HWI_ITEM_AS_MEMORY, loc);

tag->addrspace.base = 0;
tag->addrspace.len = (uint64_t)1 << 32;
#ifndef __X86__

loc = hwi_tag2off(tag);
#endif
tag = hwi_alloc_item(HWI_TAG_INFO(addrspace), HWI_ITEM_AS_IO,

loc);
tag->addrspace.base = 0;
#ifdef __X86__

tag->addrspace.len = (uint64_t)1 << 16;
#else

tag->addrspace.len = (uint64_t)1 << 32;
#endif

}

Predefined items and tags

These are the items defined in the hw/sysinfo.h file. Note that you’re free to create
additional items — these are just what we needed for our own purposes. You’ll notice
that all things are defined as HWI_TAG_NAME_*, HWI_TAG_ALIGN_*, and struct

hwi_*. The names are chosen that way so that the HWI_TAG_INFO() macro in
startup works properly.

Group item
#define HWI_TAG_NAME_group "Group"
#define HWI_TAG_ALIGN_group (sizeof(uint32_t))
struct hwi_group {

struct hwi_item item;
};

The Group item is used when you wish to group a number of items together. It serves
the same purpose as a directory in a filesystem. For example, the devclass level of the
/hw tree would use a Group item.

Bus item
#define HWI_TAG_NAME_bus "Bus"
#define HWI_TAG_ALIGN_bus (sizeof(uint32))
struct hwi_bus {

struct hwi_item item;
};

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 107

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

The Bus item tells the system about a hardware bus. Item names can be (but are not
limited to):

#define HWI_ITEM_BUS_PCI "pci"
#define HWI_ITEM_BUS_ISA "isa"
#define HWI_ITEM_BUS_EISA "eisa"
#define HWI_ITEM_BUS_MCA "mca"
#define HWI_ITEM_BUS_PCMCIA "pcmcia"
#define HWI_ITEM_BUS_UNKNOWN "unknown"

Device item
#define HWI_TAG_NAME_device "Device"
#define HWI_TAG_ALIGN_device (sizeof(uint32))
struct hwi_device {

struct hwi_item item;
uint32_t pnpid;

};

The Device item tells the system about an individual device (the device level from the
“Trees” section — the devclass level is done with a “Group” tag). The pnpid field is
the Plug and Play device identifier assigned by Microsoft.

location tag
#define HWI_TAG_NAME_location "location"
#define HWI_TAG_ALIGN_location (sizeof(uint64))
struct hwi_location {

struct hwi_prefix prefix;
uint32_t len;
uint64_t base;
uint16_t regshift;
uint16_t addrspace;

};

Note that location is a simple tag, not an item. It gives the location of the hardware
device’s registers, whether in a separate I/O space or memory-mapped. There may be
more than one of these tags in an item description if there’s more than one grouping of
registers.

The base field gives the physical address of the start of the registers. The len field
gives the length, in bytes, of the registers. The regshift tells how much each register
access is shifted by. If a register is documented at offset of a device, then the driver
will actually access offset offset2ˆregshift to get to that register.

The addrspace field is an offset, in bytes, from the start of the asinfo section. It should
identify either the memory or io address space item to tell whether the device registers
are memory-mapped.

irq tag
#define HWI_TAG_NAME_irq "irq"
#define HWI_TAG_ALIGN_irq (sizeof(uint32))
struct hwi_irq {

struct hwi_prefix prefix;
uint32_t vector;

};

Note that this is a simple tag, not an item. The vector field gives the logical interrupt
vector number of the device.

108 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

diskgeometry tag
#define HWI_TAG_NAME_diskgeometry "diskgeometry"
#define HWI_TAG_ALIGN_diskgeometry (sizeof(uint32))
struct hwi_diskgeometry {

struct hwi_prefix prefix;
uint8_t disknumber;
uint8_t sectorsize; /* as a power of two */
uint16_t heads;
uint16_t cyls;
uint16_t sectors;
uint32_t nblocks;

};

Note that this is a simple tag, not an item. This is an x86-only mechanism used to
transfer the information from the BIOS about disk geometry.

pad tag
#define HWI_TAG_NAME_pad "pad"
#define HWI_TAG_ALIGN_pad (sizeof(uint32))
struct hwi_pad {

struct hwi_prefix prefix;
};

Note that this is a simple tag, not an item. This tag is used when padding must be
inserted to meet the alignment constraints for the subsequent tag.

cpuinfo
The cpuinfo area contains information about each CPU chip in the system, such as the
CPU type, speed, capabilities, performance, and cache sizes. There are as many
elements in the cpuinfo structure as the num_cpu member indicates (e.g. on a
dual-processor system, there will be two cpuinfo entries).

This table is filled automatically by the library function init_cpuinfo().

Member Description

cpu This is a number that represents the type of CPU. Note that this
number will vary with the CPU architecture. For example, on the x86
processor family, this number will be the processor chip number (e.g.
386, 586). On MIPS and PowerPC, this is filled with the contents of
the version registers.

speed Contains the MHz rating of the processor. For example, on a 300
MHz MIPS R4000, this number would be 300.

flags See below.

name Contains an index into the strings member in the system page
structure. The character string at the specified index contains an
ASCII, NULL-terminated machine name (e.g. on a MIPS R4000 it
will be the string “R4000”).

continued. . .

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 109

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

Member Description

ins_cache Contains an index into the cacheattr array, described below. This
index points to the first definition in a list for the instruction cache.

data_cache Contains an index into the cacheattr array, described below. This
index points to the first definition in a list for the data cache.

The flags member contains a bitmapped indication of the capabilities of the CPU chip.
Note that the prefix for the manifest constant indicates which CPU family it applies to
(e.g. PPC_ indicates this constant is for use by the PowerPC family of processors). In
the case of no prefix, it indicates that it’s generic to any CPU.

Here are the constants and their defined meanings:

This constant: Means that the CPU has or
supports:

CPU_FLAG_FPU Floating Point Unit (FPU).

CPU_FLAG_MMU Memory Management Unit (MMU),
and the MMU is enabled (i.e. the
CPU is currently in virtual
addressing mode).

X86_CPU_CPUID CPUID instruction.

X86_CPU_RDTSC RDTSC instruction.

X86_CPU_INVLPG INVLPG instruction.

X86_CPU_WP WP bit in the CR0 register.

X86_CPU_BSWAP BSWAP instruction.

X86_CPU_MMX MMX instructions.

X86_CPU_CMOV CMOVxx instructions.

X86_CPU_PSE Page size extensions.

X86_CPU_PGE TLB (Translation Lookaside Buffer)
global mappings.

X86_CPU_MTRR MTRR (Memory Type Range
Register) registers.

X86_CPU_SEP SYSENTER/SYSEXIT instructions.

X86_CPU_SIMD SIMD instructions.

X86_CPU_FXSR FXSAVE/FXRSTOR instructions.

X86_CPU_PAE Extended addressing.

continued. . .

110 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

This constant: Means that the CPU has or
supports:

PPC_CPU_EAR EAR (External Address Register)
register.

PPC_CPU_HW_HT Hardware hash table.

PPC_CPU_HW_POW Power management.

PPC_CPU_FPREGS Floating point registers.

PPC_CPU_SW_HT Software hash table.

PPC_CPU_ALTIVEC AltiVec extensions.

PPC_CPU_XAEN Extended addressing.

PPC_CPU_SW_TLBSYNC Sync TLBs.

PPC_CPU_TLB_SHADOW Shadow registers in TLB handler.

PPC_CPU_DCBZ_NONCOHERENT DCBZ problems.

PPC_CPU_STWCX_BUG Requires a workaround to avoid a
hardware problem with an unpaired
stwcx. instruction when the kernel
switches contexts.

MIPS_CPU_FLAG_PFNTOPSHIFT_MASK Construct TLB entries.

MIPS_CPU_FLAG_MAX_PGSIZE_MASK Maximum number of masks.

MIPS_CPU_FLAGS_MAX_PGSIZE_SHIFT Maximum number of shifts.

MIPS_CPU_FLAG_L2_PAGE_CACHE_OPS L2 cache.

MIPS_CPU_FLAG_64BIT 64-bit registers.

MIPS_CPU_FLAG_128BIT 128-bit registers.

MIPS_CPU_FLAG_SUPERVISOR Supervisor mode.

MIPS_CPU_FLAG_NO_WIRED No wired register.

MIPS_CPU_FLAG_NO_COUNT No count register.

syspage_entry cacheattr
The cacheattr area contains information about the configuration of the on-chip and
off-chip cache system. It also contains the control() callout used for cache control
operations. This entry is filled by the library routines init_cpuinfo() and
init_cacheattr().

Note that init_cpuinfo() deals with caches implemented on the CPU itself;
init_cacheattr() handles board-level caches.

Each entry in the cacheattr area consists of the following:

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 111

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

Member Description

next index to next lower level entry

line_size size of cache line in bytes

num_lines number of cache lines

flags See below

control callout supplied by startup code (see below).

The total number of bytes described by a particular cacheattr entry is defined by
line_size × num_lines.

The flags parameter is a bitmapped variable consisting of the following:

This constant: Means that the cache:

CACHE_FLAG_INSTR Holds instructions.

CACHE_FLAG_DATA Holds data.

CACHE_FLAG_UNIFIED Holds both instructions and data.

CACHE_FLAG_SHARED Is shared between multiple processors in an
SMP system.

CACHE_FLAG_SNOOPED Implements a bus-snooping protocol.

CACHE_FLAG_VIRTUAL Is virtually tagged.

CACHE_FLAG_WRITEBACK Does write-back, not write-through.

CACHE_FLAG_CTRL_PHYS Takes physical addresses via its control()
function.

CACHE_FLAG_SUBSET Obeys the subset property. This means that one
cache level caches something from another
level as well. As you go up each cache level, if
something is in a particular level, it will also be
in all the lower-level caches as well. This
impacts the flushing operations of the cache in
that a “subsetted” level can be effectively
“ignored” by the control() function, since it
knows that the operation will be performed on
the lower-level cache.

CACHE_FLAG_NONCOHERENT Is noncoherent on SMP.

CACHE_FLAG_NONISA Doesn’t obey ISA cache instructions.

The cacheattr entries are organized in a linked list, with the next member indicating
the index of the next lower cache entry. This was done because some architectures will

112 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

have separate instruction and data caches at one level, but a unified cache at another
level. This linking allows the system page to efficiently contain the information. Note
that the entry into the cacheattr tables is done through the cpuinfo’s ins_cache and
data_cache. Since the cpuinfo is an array indexed by the CPU number for SMP
systems, it’s possible to construct a description of caches for CPUs with different
cache architectures. Here’s a diagram showing a two-processor system, with separate
L1 instruction and data caches as well as a unified L2 cache:

L1
instruction

cache

Memory

L1
data
cache

L2 unified

L1
instruction

cache

L1
data
cache

L2 unified

CPU 1 CPU 2

Two-processor system with separate L1 instruction and data caches.

Given the above memory layout, here’s what the cpuinfo and cacheattr fields will look
like:

/*
* CPUINFO
*/

cpuinfo [0].ins_cache = 0;
cpuinfo [0].data_cache = 1;

cpuinfo [1].ins_cache = 0;
cpuinfo [1].data_cache = 1;

/*
* CACHEATTR
*/

cacheattr [0].next = 2;
cacheattr [0].linesize = linesize;
cacheattr [0].numlines = numlines;
cacheattr [0].flags = CACHE_FLAG_INSTR;

cacheattr [1].next = 2;
cacheattr [1].linesize = linesize;
cacheattr [1].numlines = numlines;
cacheattr [1].flags = CACHE_FLAG_DATA;

cacheattr [2].next = CACHE_LIST_END;

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 113

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

cacheattr [2].linesize = linesize;
cacheattr [2].numlines = numlines;
cacheattr [2].flags = CACHE_FLAG_UNIFIED;

Note that the actual values chosen for linesize and numlines will, of course, depend on
the actual configuration of the caches present on the system.

syspage_entry qtime
The qtime area contains information about the timebase present on the system, as well
as other time-related information. The library routine init_qtime() fills these data
structures.

Member Description

intr Contains the interrupt vector that the clock chip uses to interrupt
the processor.

boot_time Seconds since Jan 1 1970 00:00:00 GMT when the system was
booted.

nsec This 64-bit field holds the number of nanoseconds since the
system was booted.

nsec_tod_adjust When added to the nsec field, this field gives the number of
nanoseconds from the start of the epoch (1970).

nsec_inc Number of nanoseconds deemed to have elapsed each time the
clock triggers an interrupt.

adjust Set to zero at startup — contains any current timebase
adjustment runtime parameters (as specified by the kernel call
ClockAdjust()).

timer_rate Used in conjunction with timer_scale (see below).

timer_scale See below.

timer_load Timer chip divisor value. The startup program leaves this zero.
The kernel sets it based on the last ClockPeriod() and
timer_rate/timer_scale values to a number, which is then put
into the timer chip by the timer_load/timer_reload kernel
callouts.

cycles_per_sec For ClockCycles().

epoch Currently set to 1970, but not used.

flags Indicates when timer hardware is specific to CPU0.

114 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

The nsec field is always monotonically increasing and is never affected by setting the
current time of day via ClockTime() or ClockAdjust(). Since both nsec and
nsec_tod_adjust are modified in the kernel’s timer interrupt handler and are too big to
load in an atomic read operation, to inspect them you must either:

• disable interrupts

or:

• get the value(s) twice and make sure that they haven’t changed between the first
and second read.

The parameters timer_rate and timer_scale relate to the external counter chip’s input
frequency, in Hz, as follows:

1

timer_scale
timer_rate x 10

Yes, this does imply that timer_scale is a negative number. The goal when expressing
the relationship is to make timer_rate as large as possible in order to maximize the
number of significant digits available during calculations.

For example, on an x86 PC with standard hardware, the values would be
838095345UL for the timer_rate and -15 for the timer_scale. This indicates that the
timer value is specified in femtoseconds (the -15 means “ten to the negative fifteen”);
the actual value is 838,095,345 femtoseconds (approximately 838 nanoseconds).

If you need to change the number of nsecs that the OS adds to the time when a tick
fires, you can manually adjust the nsec_inc value in SYSPAGE_ENTRY (qtime).

The idea is to adjust for differences between the clock interval and the real expired
time. The closer they become the less need there is for ClockAdjust() calls.

What you’ll need to do is find out the physical address of the syspage. If it’s already in
nsec_inc you won’t need to modify startup. If not, modify startup to put it there. Then
use the mmap_device_memory() function to make the physical address of the syspage
writable. That is, get the offset to the read-only page, and map a new block of memory
to the address.

You could give ClockAdjust() a value of 0 for the number of ticks, to indicate that you
want to make this adjustment “permanent”. If you don’t want to do that, you can give
the ClockAdjust() function the maximum possible value for tick_count.

When you call and modify nsec_inc, you overwrite the ClockPeriod() function. The
timer_rate and timer_scale fields are used as the input frequency to the clock
hardware. The code uses these fields and the requested tick rate to calculate the
number of input frequency clocks to count before generating an interrupt. The number
of input frequency clocks that are counted, combined with timer_rate and timer_scale
provides the nsec_inc value. For example:

timer_load = requested_ticksize / (timer_rate ** timer_scale)

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 115

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

nsec_inc = timer_load * (timer_rate ** timer_scale)

The nsec_inc value is used to adjust the time of day when the clock interrupt goes off.

The changed value in ClockPeriod() is used to determine the new ticksize.

callout
The callout area is where various callouts get bound into. These callouts allow you to
“hook into” the kernel and gain control when a given event occurs. The callouts
operate in an environment similar to that of an interrupt service routine — you have a
very limited stack, and you can’t invoke any kernel calls (such as mutex operations,
etc.). On standard hardware platforms (MIPS and PowerPC eval boards, x86-PC
compatibles), you won’t have to supply any functionality — it’s already provided by
the startup code we supply.

Member Description

reboot Used by the kernel to reset the system.

power Provided for power management.

timer_load
timer_reload
timer_value

The kernel uses these timer_* callouts to deal
with the hardware timer chip.

debug Used by the kernel when it wishes to interact
with a serial port, console, or other device (e.g.
when it needs to print out some internal
debugging information or when there’s a fault).

For details about the characteristics of the callouts, please see the sections “Callout
information” and “Writing your own kernel callout” later in this chapter.

callin
For internal use.

typed_strings
The typed_strings area consists of several entries, each of which is a number and a
string. The number is 4 bytes and the string is NULL-terminated as per C. The number
in the entry corresponds to a particular constant from the system include file
<confname.h> (see the C function confname() for more information).

Generally, you wouldn’t access this member yourself; the various init_*() library
functions put things into the typed strings literal pool themselves. But if you need to
add something, you can use the function call add_typed_string() from the library.

116 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

strings
This member is a literal pool used for nontyped strings. Users of these strings would
typically specify an index into strings (for example, cpuinfo’s name member).

Generally, you wouldn’t access this member yourself; the various init_*() library
functions put things into the literal pool themselves. But if you need to add something,
you can use the function call add_string() from the library.

intrinfo
The intrinfo area is used to store information about the interrupt system. It also
contains the callouts used to manipulate the interrupt controller hardware.

On a multicore system, each interrupt is directed to one (and only one) CPU, although
it doesn’t matter which. How this happens is under control of the programmable
interrupt controller chip(s) on the board. When you initialize the PICs at startup, you
can program them to deliver the interrupts to whichever CPU you want to; on some
PICs you can even get the interrupt to rotate between the CPUs each time it goes off.

For the startups we write, we typically program things so that all interrupts (aside from
the one(s) used for interprocessor interrupts) are sent to CPU 0. This lets us use the
same startup for both procnto and procnto-smp. According to a study that Sun did
a number of years ago, it’s more efficient to direct all interrupts to one CPU, since you
get better cache utilization.

The intrinfo area is automatically filled in by the library routine init_intrinfo().

If you need to override some of the defaults provided by init_intrinfo(), or if the
function isn’t appropriate for your custom environment, you can call
add_interrupt_array() directly with a table of the following format:

In all probability, you will need to modify this for non-x86 platforms.

Member Description

vector_base The base number of the logical interrupt numbers that programs
will use (e.g. the interrupt vector passed to InterruptAttach()).

num_vectors The number of vectors starting at vector_base described by this
entry.

cascade_vector If this interrupt entry describes a set of interrupts that are
cascaded into another interrupt controller, then this variable
contains the logical interrupt number that this controller cascades
into.

continued. . .

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 117

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

Member Description

cpu_intr_base The association between this set of interrupts and the CPU’s
view of the source of the interrupt (see below).

cpu_intr_stride The spacing between interrupt vector entries for interrupt
systems that do autovectoring. On an x86 platform with the
standard 8259 controller setup, this is the value 1, meaning that
the interrupt vector corresponding to the hardware interrupt
sources is offset by 1 (e.g. interrupt vector 0 goes to interrupt
0x30, interrupt vector 1 goes to interrupt 0x31, and so on). On
non-x86 systems it’s usually 0, because those interrupt systems
generally don’t do autovectoring. A value of 0 indicates that it’s
not autovectored.

flags Used by the startup code when generating the kernel’s interrupt
service routine entry points. See below under INTR_FLAG_* and
PPC_INTR_FLAG_*.

id A code snippet that gets copied into the kernel’s interrupt service
routine used to identify the source of the interrupt, in case of
multiple hardware events being able to trigger one CPU-visible
interrupt. Further modified by the INTR_GENFLAG_* flags,
defined below.

eoi A code snippet that gets copied into the kernel’s interrupt service
routine that provides the EOI (End Of Interrupt) functionality.
This code snippet is responsible for telling the controller that the
interrupt is done and for unmasking the interrupt level. For CPU
fault-as-an-interrupt handling, eoi identifies the cause of the fault.

mask An outcall to mask an interrupt source at the hardware controller
level. The numbers passed to this function are the interrupt
vector numbers (starting at 0 to num_vectors - 1).

unmask An outcall to unmask an interrupt source at the hardware
controller level. Same vector numbers as mask, above.

config Provides configuration information on individual interrupt levels.
Passed the system page pointer (1st argument), a pointer to this
interrupt info entry (2nd argument), and the zero-based interrupt
level. Returns a bitmask; see INTR_CONFIG_FLAG* below.

patch_data Provides information about patched data. The patched data is
passed to the patcher() routine that gets called once for each
callout in a startup_intrinfo() structure.

118 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

Each group of callouts (i.e. id, eoi, mask, unmask) for each level of interrupt controller
deals with a set of interrupt vectors that start at 0 (zero-based). Set the callouts for
each level of interruption accordingly.

Interrupt vector numbers are passed without offset to the callout routines. The
association between the zero-based interrupt vectors the callouts use and the
system-wide interrupt vectors is configured within the startup-intrinfo structures.
These structures are found in the init_intrinfo() routine of startup.

The cpu_intr_base member

The interpretation of the cpu_intr_base member varies with the processor:

Processor Interpretation

x86 The IDT (Interrupt Descriptor Table) entry, typically 0x30.

PPC The offset from the beginning of the exception table where
execution begins when an external interrupt occurs. A sample value
is 0x0140, calculated by 0x0500 ÷ 4.

PPC/BE Interrupts no longer start at fixed locations in low memory. Instead
there’s a set of IVOR (Interrupt Vector Offset Register) registers.
Each exception class has a different IVOR. When you specify the
interrupt layout to startup, you’ll need to identify the particular
IVOR register the processor will use when the interrupt occurs. For
example, PPCBKE_SPR_IVOR4 is used for normal external
interrupts; PPCBKE_SPR_IVOR10 is used for decrementer
interrupts. See startup/boards/440rb/init_intrinfo.c
for an example of what to do on bookE CPUs.

PPC/Non-BE —

MIPS The value in the “cause” register when an external interrupt occurs.
A sample value is 0.

ARM This value should be 0, since all ARM interrupts are handled via
the IRQ exception.

SH The offset from the beginning of the exception table where
execution starts when an interrupt occurs. For example, for 7750,
the value is 0x600.

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 119

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

The flags member

The flags member takes two sets of flags. The first set deals with the characteristics of
the interrupts:

INTR_FLAG_NMI Indicates that this is a NonMaskable Interrupt (NMI). An NMI
is an interrupt which can’t be disabled by clearing the CPU’s
interrupt enable flag, unlike most normal interrupts.
NonMaskable interrupts are typically used to signal events that
require immediate action, such as a parity error, a hardware
failure, or imminent loss of power. The address for the
handler’s NMI is stored in the BIOS’s Interrupt Vector table at
position 02H. For this reason an NMI is often referred to as
INT 02H.

The code in the kernel needs to differentiate between normal
interrupts and NMIs, because with an NMI the kernel needs to
know that it can’t protect (mask) the interrupt (hence the “N”
in NonMaskable Interrupt). We strongly discourage the use of
the NMI vector in x86 designs; we don’t support it on any
non-x86 platforms.

Regular interrupts that are normally used and referred to by number are called
maskable interrupts. Unlike non maskable interrupts, maskable interrupts are those
that can be masked, or ignored, to allow the processor to complete a task.

INTR_FLAG_CASCADE_IMPLICIT_EOI

Indicates that an EOI to the primary interrupt controller is not
required when handling a cascaded interrupt (e.g. it’s done
automatically). Only used if this entry describes a cascaded
controller.

INTR_FLAG_CPU_FAULT

Indicates that one or more of the vectors described by this
entry is not connected to a hardware interrupt source, but
rather is generated as a result of a CPU fault (e.g. bus fault,
parity error). Note that we strongly discourage designing your
hardware this way. The implication is that a check needs to be
inserted for an exception into the generated code stream; after
the interrupt has been identified, an EOI needs to be sent to the
controller. The EOI code burst has the additional responsibility
of detecting what address caused the fault, retrieving the fault
type, and then passing the fault on. The primary disadvantage
of this approach is that it causes extra code to be inserted into
the code path.

120 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

PPC_INTR_FLAG_400ALT

Similar to INTR_FLAG_NMI, this indicates to the code
generator that a different kernel entry sequence is required.
This is because the PPC400 series doesn’t have an NMI, but
rather has a critical interrupt that can be masked. This interrupt
shows up differently from a “regular” external interrupt, so this
flag indicates this fact to the kernel.

PPC_INTR_FLAG_CI

Same as PPC_INTR_FLAG_400ALT, where CI refers to critical
interrupt.

PPC_INTR_FLAG_SHORTVEC

Indicates that exception table doesn’t have normal 256 bytes of
memory space between this and the next vector.

The second set of flags deals with code generation:

INTR_GENFLAG_LOAD_SYSPAGE

Before the interrupt identification or EOI code sequence is generated, a piece of
code needs to be inserted to fetch the system page pointer into a register so that
it’s usable within the identification code sequence.

INTR_GENFLAG_LOAD_INTRINFO

Same as INTR_GENFLAG_LOAD_SYSPAGE, except that it loads a pointer to
this structure.

INTR_GENFLAG_LOAD_INTRMASK

Used only by EOI routines for hardware that doesn’t automatically mask at the
chip level. When the EOI routine is about to reenable interrupts, it should
reenable only those interrupts that are actually enabled at the user level (e.g.
managed by the functions InterruptMask() and InterruptUnmask()). When this
flag is set, the existing interrupt mask is stored in a register for access by the EOI
routine. A zero in the register indicates that the interrupt should be unmasked; a
nonzero indicates it should remain masked.

INTR_GENFLAG_NOGLITCH

Used by the interrupt ID code to cause a check to be made to see if the interrupt
was due to a glitch or to a different controller. If this flag is set, the check is
omitted — you’re indicating that there’s no reason (other than the fact that the
hardware actually did generate an interrupt) to be in the interrupt service routine.
If this flag is not set, the check is made to verify that the suspected hardware
really is the source of the interrupt.

INTR_GENFLAG_LOAD_CPUNUM

Same as INTR_GENFLAG_LOAD_SYSPAGE, except that it loads a pointer to the
number of the CPU this structure uses.

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 121

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

INTR_GENFLAG_ID_LOOP

Some interrupt controllers have read-and-clear registers indicating the active
interrupts. That is, the first read returns a bitset with the pending interrupts, and
then immediately zeroes the register. Since the interrupt ID callout can return
only one interrupt number at a time, that means that we might fail to process all
the interrupts if there’s more than one bit on in the status register.

When INTR_GENFLAG_ID_LOOP is on, the kernel generates code to jump back
to the ID callout after the EOI has finished.

In the ID callout, you need to allocate read-write storage as per the usual
procedures. This storage is initially set to zero (done by default). When the
callout runs, the first thing it does is check the storage area:

• If the storage is nonzero, the callout uses it to identify another interrupt to
process, knocks that bit down, writes the new value back into the storage
location and returns the identified interrupt number.

• If the storage location is zero, the callout reads the hardware status register
(clearing it) and identifies the interrupt number from it. It then knocks that bit
off, writes the value to the storage location, and then returns the appropriate
interrupt number.

• If both the storage and hardware register are zero, the routine returns -1 to
indicate no interrupt is present as per usual.

config return values

The config callout may return zero or more of the following flags:

INTR_CONFIG_FLAG_PREATTACH

Normally, an interrupt is masked off until a routine attaches to it via
InterruptAttach() or InterruptAttachEvent(). If CPU fault indications are routed
through to a hardware interrupt (not recommended!), the interrupt would, by
default, be disabled. Setting this flag causes a “dummy” connection to be made
to this source, causing this level to become unmasked.

INTR_CONFIG_FLAG_DISALLOWED

Prevents user code from attaching to this interrupt level. Generally used with
INTR_CONFIG_FLAG_PREATTACH, but could be used to prevent user code
from attaching to any interrupt in general.

INTR_CONFIG_FLAG_IPI

Identifies the vector that’s used as the target of an inter-processor interrupt in an
SMP system.

122 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

syspage_entry union un
The un union is where processor-specific system page information is kept. The
purpose of the union is to serve as a demultiplexing point for the various CPU
families. It is demultiplexed based on the value of the type member of the system page
structure.

Member Processor type

x86 The x86 family SYSPAGE_X86

ppc PowerPC family SYSPAGE_PPC

mips The MIPS family SYSPAGE_MIPS

arm The ARM family SYSPAGE_ARM

sh The Hitachi SH family of processors. SYSPAGE_SH

un.x86
This structure contains the x86-specific information. On a standard PC-compatible
platform, the library routines (described later) fill these fields:

smpinfo Contains info on how to manipulate the SMP control hardware; filled in
by the library call init_smp().

gdt Contains the Global Descriptor Table (GDT); filled in by the library.

idt Contains the Interrupt Descriptor Table (IDT); filled in by the library.

pgdir Contains pointers to the Page Directory Table(s); filled in by the library.

real_addr The virtual address corresponding to the physical address range 0
through 0xFFFFF inclusive (the bottom 1 megabyte).

un.x86.smpinfo (deprecated)
The members of this field are filled automatically by the function init_smp() within
the startup library.

un.ppc (deprecated)
This structure contains the PowerPC-specific information. On a supported evaluation
platform, the library routines (described later) fill these fields. On customized
hardware, you’ll have to supply the information.

smpinfo Contains info on how to manipulate the SMP control hardware; filled in
by the library call init_smp().

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 123

Structure of the system page © 2009, QNX Software Systems GmbH & Co. KG.

kerinfo Kernel information, filled by the library.

exceptptr Points at system exception table, filled by the library.

un.ppc.kerinfo
Contains information relevant to the kernel:

pretend_cpu Allows us to specify an override for the CPU ID register so that
the kernel can pretend it is a “known” CPU type. This is done
because the kernel “knows” only about certain types of PPC
CPUs; different variants require specialized support. When a
new variant is manufactured, the kernel will not recognize it. By
stuffing the pretend_cpu field with a CPU ID from a known
CPU, the kernel will pretend that it’s running on the known
variant.

init_msr Template of what bits to have on in the MSR when creating a
thread. Since the MSR changes among the variants in the PPC
family, this allows you to specify some additional bits that the
kernel doesn’t necessarily know about.

ppc_family Indicates what family the PPC CPU belongs to.

asid_bits Identifies what address space bits are active.

callout_ts_clear Lets callouts know whether to turn off data translation to get at
their hardware.

un.mips
This structure contains the MIPS-specific information:

shadow_imask A shadow copy of the interrupt mask bits for the builtin MIPS
interrupt controller.

un.arm
This structure contains the ARM-specific information:

L1_vaddr Virtual address of the MMU level 1 page table used to map the
kernel.

L1_paddr Physical address of the MMU level 1 page table used to map the
kernel.

startup_base Virtual address of a 1-1 virtual-physical mapping used to map the
startup code that enables the MMU. This virtual mapping is removed
when the kernel is initialized.

124 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Structure of the system page

startup_size Size of the mapping used for startup_base.
cpu Structure containing ARM core-specific operations and data.

Currently this contains the following:

page_flush A routine used to implement CPU-specific
cache/TLB flushing when the memory
manager unmaps or changes the access
protections to a virtual memory mapping for
a page. This routine is called for each page
in a range being modified by the virtual
memory manager.

page_flush_deferred A routine used to perform any operations
that can be deferred when page_flush is
called. For example on the SA-1110
processor, an Icache flush is deferred until all
pages being operated on have been modified.

un.sh
This structure contains the Hitachi SH-specific information:

exceptptr Points at system exception table, filled by the library.

smp
The smp area is CPU-independent and contains the following elements:

This element Description

send_ipi Sends an interprocess interrupt (IPI) to the CPU.

start_address Get the starting address for the IPI.

pending Identify the pending interrupts for the SMP processor.

cpu Identify the SMP CPU.

pminfo
The pminfo area is a communication area between the power manager and
startup/power callout.

The pminfo area contains the following elements which are customizable in the power
manager structure and are power-manager dependent:

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 125

Callout information © 2009, QNX Software Systems GmbH & Co. KG.

This element Description

wakeup_pending Notifies the power callout that a wakeup condition has occurred. The power manager
requires write access so it can modify this entry.

wakeup_condition Indicates to the power manager what has caused the wakeup i.e. whether it’s a
power-on reset, or an interrupt from peripherals or other devices. The value is set by
the power callout.

managed_storage This entry is an area where the power manager can store any data it chooses. This
storage is not persistent storage; it needs to be manually stored and restored by the
startup and power callout.
The managed_storage element is initialized by the init_pminfo() function call in
startup and can be modified at startup. The value passed into init_pminfo() determines
the size of the managed_storage array.

Callout information
All the callout routines share a set of similar characteristics:

• coded in assembler

• position-independent

• no static read/write storage

Callouts are basically binding standalone pieces of code for the kernel to invoke
without having to statically link them to the kernel.

The requirement for coding the callouts in assembler stems from the second
requirement (i.e. that they must be written to be position-independent). This is
because the callouts are provided as part of the startup code, which will get
overwritten when the kernel starts up. In order to circumvent this, the startup program
will copy the callouts to a safe place — since they won’t be in the location that they
were loaded in, they must be coded to be position-independent.

We need to qualify the last requirement (i.e. that callouts not use any static read/write
storage). There’s a mechanism available for a given callout to allocate a small amount
of storage space within the system page, but the callouts cannot have any static
read/write storage space defined within themselves.

Debug interface
The debug interface consists of the following callouts:

• display_char()

• poll_key()

• break_detect().

126 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Callout information

These three callouts are used by the kernel when it wishes to interact with a serial port,
console, or other device (e.g. when it needs to print out some internal debugging
information or when there’s a fault). Only the display_char() is required; the others
are optional.

Clock/timer interface
Here are the clock and timer interface callouts:

• timer_load()

• timer_reload()

• timer_value().

The kernel uses these callouts to deal with the hardware timer chip.

The timer_load() callout is responsible for stuffing the divisor value passed by the
kernel into the timer/counter chip. Since the kernel doesn’t know the characteristics of
the timer chip, it’s up to the timer_load() callout to take the passed value and validate
it. The kernel will then use the new value in any internal calculations it performs. You
can access the new value in the qtime_entry element of the system page as well as
through the ClockPeriod() function call.

The timer_reload() callout is called after the timer chip generates an interrupt. It’s
used in two cases:

• Reloading the divisor value (because some timer hardware doesn’t have an
automatic reload on the timer chip — this type of hardware should be avoided if
possible).

• Telling the kernel whether the timer chip caused the interrupt or not (e.g. if you had
multiple interrupt sources tied to the same line used by the timer — not the ideal
hardware design, but. . .).

The timer_value() callout is used to return the value of the timer chip’s internal count
as a delta from the last interrupt. This is used on processors that don’t have a
high-precision counter built into the CPU (e.g. 80386, 80486).

Interrupt controller interface
Here are the callouts for the interrupt controller interface:

• mask()

• unmask()

• config()

In addition, two “code stubs” are provided:

• id

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 127

Callout information © 2009, QNX Software Systems GmbH & Co. KG.

• eoi

The mask() and unmask() perform masking and unmasking of a particular interrupt
vector.

The config() callout is used to ascertain the configuration of an interrupt level.

For more information about these callouts, refer to the intrinfo structure in the system
page above.

Cache controller interface
Depending on the cache controller circuitry in your system, you may need to provide a
callout for the kernel to interface to the cache controller.

On the x86 architecture, the cache controller is integrated tightly with the CPU,
meaning that the kernel doesn’t have to talk to the cache controller. On other
architectures, like the MIPS and PowerPC, the cache controllers need to be told to
invalidate portions of the cache when certain functions are performed in the kernel.

The callout for cache control is control(). This callout gets passed:

• a set of flags (defining the operation to perform)

• the address (either in virtual or physical mode, depending on flags in the cacheattr
array in the system page)

• the number of cache lines to affect

The callout is responsible for returning the number of cache lines that it affected —
this allows the caller (the kernel) to call the control() callout repeatedly at a higher
level. A return of 0 indicates that the entire cache was affected (e.g. all cache entries
were invalidated).

System reset callout
The miscellaneous callout, reboot(), gets called whenever the kernel needs to reboot
the machine.

The reboot() callout is responsible for resetting the system. This callout lets developers
customize the events that occur when proc needs to reboot — such as turning off a
watchdog, banging the right registers etc. without customizing proc each time.

A “shutdown” of the binary will call sysmgr_reboot(), which will eventually trigger
the reboot() callout.

Power management callout
The power() callout gets called whenever power management needs to be activated.

The power() callout is used for power management.

128 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The startup library

The startup library
The startup library contains a rich set of routines consisting of high-level functions
that are called by your main() through to utility functions for interrogating the
hardware, initializing the system page, loading the next process in the image, and
switching to protected mode. Full source is provided for all these functions, allowing
you to make local copies with minor modifications in your target startup directory.

The following are the available library functions (in alphabetical order):

add_cache()
int add_cache(int next,

unsigned flags,
unsigned line_size,
unsigned num_lines,
const struct callout_rtn *rtn);

Add an entry to the cacheattr section of the system page structure. Parameters map
one-to-one with the structure’s fields. The return value is the array index number of
the added entry. Note that if there’s already an entry that matches the one you’re trying
to add, that entry’s index is returned — nothing new is added to the section.

add_callout()
void add_callout(unsigned offset,

const struct callout_rtn *callout);

Add a callout to the callout_info section of the system page. The offset parameter
holds the offset from the start of the section (as returned by the offsetof() macro) that
the new routine’s address should be placed in.

add_callout_array()
void add_callout_array (const struct callout_slot *slots,

unsigned size)

Add the callout array specified by slots (for size bytes) into the callout array in the
system page.

add_interrupt()
struct intrinfo_entry

*add_interrupt(const struct startup_intrinfo
*startup_intr);

Add a new entry to the intrinfo section. Returns a pointer to the newly added entry.

add_interrupt_array()
void add_interrupt_array (const struct startup_intrinfo *intrs,

unsigned size)

Add the interrupt array callouts specified by intrs (for size bytes) into the interrupt
callout array in the system page.

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 129

The startup library © 2009, QNX Software Systems GmbH & Co. KG.

add_ram()
void add_ram(paddr_t start,

paddr_t size);

Tell the system that there’s RAM available starting at physical address start for size
bytes.

add_string()
unsigned add_string (const char *name)

Add the string specified by name into the string literal pool in the system page and
return the index.

add_typed_string()
unsigned add_typed_string (int type_index,

const char *name)

Add the typed string specified by name (of type type_index) into the typed string
literal pool in the system page and return the index.

alloc_qtime()
struct qtime_entry *alloc_qtime(void);

Allocate space in the system page for the qtime section and fill in the epoch,
boot_time, and nsec_tod_adjust fields. Returns a pointer to the newly allocated
structure so that user code can fill in the other fields.

alloc_ram()
paddr_t alloc_ram (paddr_t addr,

paddr_t size,
paddr_t align)

Allocate memory from the free memory pool initialized by the call to init_raminfo().
The RAM is not cleared.

as_add()
unsigned as_add(paddr_t start,

paddr_t end,
unsigned attr,
const char *name,
unsigned owner);

Add an entry to the asinfo section of the system page. Parameters map one-to-one
with field names. Returns the offset from the start of the section for the new entry.

For more information and an example, see “Typed memory” in the Interprocess
Communication (IPC) chapter of the System Architecture guide.

as_add_containing()
unsigned as_add_containing(paddr_t start,

paddr_t end,
unsigned attr,
const char *name,
const char *container);

130 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The startup library

Add new entries to the asinfo section, with the owner field set to whatever entries are
named by the string pointed to by container. This function can add multiple entries
because the start and end values are constrained to stay within the start and end of the
containing entry (e.g. they get clipped such that they don’t go outside the parent). If
more than one entry is added, the AS_ATTR_CONTINUED bit will be turned on in all
but the last. Returns the offset from the start of the section for the first entry added.

For more information and an example, see “Typed memory” in the Interprocess
Communication (IPC) chapter of the System Architecture guide.

as_default()
unsigned as_default(void);

Add the default memory and io entries to the asinfo section of the system page.

as_find()
unsigned as_find(unsigned start, ...);

The start parameter indicates where to start the search for the given item. For an initial
call, it should be set to AS_NULL_OFF. If the item found isn’t the one wanted, then
the return value from the first as_find_item() is used as the start parameter of the
second call. The search will pick up where it left off. This can be repeated as many
times as required (the return value from the second call going into the start parameter
of the third, etc). The item being searched is identified by a sequence of char *
parameters following start. The sequence is terminated by a NULL. The last string
before the NULL is the bottom-level itemname being searched for, the string in front
of that is the name of the item that owns the bottom-level item, etc.

For example, this call finds the first occurrence of an item called “foobar”:

item_off = as_find_item(AS_NULL_OFF, "foobar", NULL);

The following call finds the first occurrence of an item called “foobar” that’s owned by
“sam”:

item_off = as_find_item(AS_NULL_OFF, "sam", "foobar", NULL);

If the requested item can’t be found, AS_NULL_OFF is returned.

as_find_containing()
unsigned as_find_containing(unsigned off,

paddr_t start,
paddr_t end,
const char *container);

Find an asinfo entry with the name pointed to by container that at least partially covers
the range given by start and end. Follows the same rules as as_find() to know where
the search starts. Returns the offset of the matching entry or AS_NULL_OFF if none is
found. (The as_add_containing() function uses this to find what the owner fields
should be for the entries it’s adding.)

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 131

The startup library © 2009, QNX Software Systems GmbH & Co. KG.

as_info2off()
unsigned as_info2off(const struct asinfo_entry *);

Given a pointer to an asinfo entry, return the offset from the start of the section.

as_off2info()
struct asinfo_entry *as_off2info(unsigned offset);

Given an offset from the start of the asinfo section, return a pointer to the entry.

as_set_checker()
void as_set_checker(unsigned off,

const struct callout_rtn *rtn);

Set the checker callout field of the indicated asinfo entry. If the
AS_ATTR_CONTINUED bit is on in the entry, advance to the next entry in the section
and set its priority as well (see as_add_containing() for why AS_ATTR_CONTINUED
would be on). Repeat until an entry without AS_ATTR_CONTINUED is found.

as_set_priority()
void as_set_priority(unsigned as_off,

unsigned priority);

Set the priority field of the indicated entry. If the AS_ATTR_CONTINUED bit is on in
the entry, advance to the next entry in the section and set its priority as well (see
as_add_containing() for why AS_ATTR_CONTINUED would be on). Repeat until an
entry without AS_ATTR_CONTINUED is found.

avoid_ram()
void avoid_ram(paddr32_t start,

size_t size);

Make startup avoid using the specified RAM for any of its internal allocations.
Memory remains available for procnto to use. This function is useful for specifying
RAM that the IPL/ROM monitor needs to keep intact while startup runs. Because it
takes only a paddr32_t, addresses can be specified in the first 4 GB. It doesn’t need a
full paddr_t because startup will never use memory above 4 GB for its own storage
requirements.

calc_time_t()
unsigned long calc_time_t(const struct tm *tm);

Given a struct tm (with values appropriate for the UTC timezone), calculate the
value to be placed in the boot_time field of the qtime section.

calloc_ram()
paddr32_t calloc_ram (size_t size,

unsigned align)

Allocate memory from the free memory pool initialized by the call to init_raminfo().
The RAM is cleared.

132 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The startup library

callout_io_map_indirect()
uintptr_t callout_io_map_indirect(unsigned size,

paddr_t phys);

Same as mmap_device_io() in the C library — provide access to an I/O port on the
x86 (for other systems, callout_io_map() is the same as
callout_memory_map_indirect()) at a given physical address for a given size. The
return value is for use in the CPU’s equivalent of in/out instructions (regular moves on
all but the x86). The value is for use in any kernel callouts (i.e. they live beyond the
end of the startup program and are maintained by the OS while running).

callout_memory_map_indirect()
void *callout_memory_map_indirect(unsigned size,

paddr_t phys,
unsigned prot_flags);

Same as mmap_device_memory() in the C library — provide access to a
memory-mapped device. The value is for use in any kernel callouts (i.e. they live
beyond the end of the startup program and are maintained by the OS while running).

callout_register_data()
void callout_register_data(void *rp,

void *data);

This function lets you associate a pointer to arbitrary data with a callout. This data
pointer is passed to the patcher routine (see “Patching the callout code,” below.

The rp argument is a pointer to the pointer where the callout address is stored in the
system page you’re building. For example, say you have a pointer to a system page
section that you’re working on called foo. In the section there’s a field bar that points
to a callout when the system page is finished. Here’s the code:

// This sets the callout in the syspage:

foo->bar = (void *)&callout_routine_name;

// This registers data to pass to the patcher when we’re
// building the final version of the system page:

callout_register_data(&foo->bar, &some_interesting_data_for_patcher);

When the patcher is called to fix up the callout that’s pointed at by foo->bar,
&some_interesting_data_for_patcher is passed to it.

chip_access()
void chip_access(paddr_t base,

unsigned reg_shift,
unsigned mem_mapped,
unsigned size);

Get access to a hardware chip at physical address base with a register shift value of
reg_shift (0 if registers are one byte apart; 1 if registers are two bytes apart, etc. See
devc-ser8250 for more information).

If mem_mapped is zero, the function uses startup_io_map() to get access; otherwise,
it uses startup_memory_map(). The size parameter gives the range of locations to be

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 133

The startup library © 2009, QNX Software Systems GmbH & Co. KG.

given access to (the value is scaled by the reg_shift parameter for the actual amount
that’s mapped). After this call is made, the chip_read*() and chip_write*() functions
can access the specified device. You can have only one chip_access() in effect at any
one time.

chip_done()
void chip_done(void);

Terminate access to the hardware chip specified by chip_access().

chip_read8()
unsigned chip_read8(unsigned off);

Read one byte from the device specified by chip_access(). The off parameter is first
scaled by the reg_shift value specified in chip_access() before being used.

chip_read16()
unsigned chip_read16(unsigned off);

Same as chip_read8(), but for 16 bits.

chip_read32()
unsigned chip_read32(unsigned off);

Same as chip_read16(), but for 32 bits.

chip_write8()
void chip_write8(unsigned off,

unsigned val);

Write one byte from the device specified by chip_access(). The off parameter is first
scaled by the reg_shift value specified in chip_access() before being used.

chip_write16()
void chip_write16(unsigned off,

unsigned val);

Same as chip_write8(), but for 16 bits.

chip_write32()
void chip_write32(unsigned off,

unsigned val);

Same as chip_write16(), but for 32 bits.

copy_memory()
void copy_memory (paddr_t dst,

paddr_t src,
paddr_t len)

Copy len bytes of memory from physical memory at src to dst.

134 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The startup library

del_typed_string()
int del_typed_string(int type_index);

Find the string in the typed_strings section of the system page indicated by the type
type_index and remove it. Returns the offset where the removed string was, or -1 if no
such string was present.

falcon_init_l2_cache()
void falcon_init_l2_cache(paddr_t base);

Enable the L2 cache on a board with a Falcon system controller chip. The base
physical address of the Falcon controller registers are given by base.

falcon_init_raminfo()
void falcon_init_raminfo(paddr_t falcon_base);

On a system with the Falcon system controller chip located at falcon_base, determine
how much/where RAM is installed and call add_ram() with the appropriate
parameters.

falcon_system_clock()
unsigned falcon_system_clock(paddr_t falcon_base);

On a system with a Falcon chipset located at physical address falcon_base, return the
speed of the main clock input to the CPU (in Hertz). This can then be used in turn to
set the cpu_freq, timer_freq, and cycles_freq variables.

find_startup_info()
const void *find_startup_info (const void *start,

unsigned type)

Attempt to locate the kind of information specified by type in the data area used by the
IPL code to communicate such information. Pass start as NULL to find the first
occurrence of the given type of information. Pass start as the return value from a
previous call in order to get the next information of that type. Returns 0 if no
information of that type is found starting from start.

find_typed_string()
int find_typed_string(int type_index);

Return the offset from the beginning of the type_strings section of the string with the
type_index type. Return -1 if no such string is present.

handle_common_option()
void handle_common_option (int opt)

Take the option identified by opt (a single ASCII character) and process it. This
function assumes that the global variable optarg points to the argument string for the
option.

Valid values for opt and their actions are:

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 135

The startup library © 2009, QNX Software Systems GmbH & Co. KG.

A Reboot switch. If set, an OS crash will cause the system to reboot. If not set, an
OS crash will cause the system to hang.

D Output channel specification (e.g. kprintf(), stdout, etc.).

f [cpu_freq][,[cycles_freq][,timer_freq]]

Specify CPU frequencies. All frequencies can be followed by H for hertz, K for
kilohertz, or M for megahertz (these suffixes aren’t case-sensitive). If no suffix is
given, the library assumes megahertz if the number is less than 1000; otherwise,
it assumes hertz.

If they’re specified, cpu_freq, cycles_freq, and timer_freq are used to set the
corresponding variables in the startup code:

cpu_freq — the CPU clock frequency. Also sets the speed field in the
cpuinfo section of the system page.
cycles_freq — the frequency at which the value returned by ClockCycles()
increments. Also sets the cycles_per_sec field in the qtime section of the
system page.
timer_freq — the frequency at which the timer chip input runs. Also sets
the timer_rate and timer_scale values of the qtime section of the system
page.

K kdebug remote debug protocol channel.

M Placeholder for processing additional memory blocks. The parsing of additional
memory blocks is deferred until init_system_private().

N Add the hostname specified to the typed name string space under the identifier
_CS_HOSTNAME.

R Used for reserving memory at the bottom of the address space.

r Used for reserving memory at any address space you specify.

S Placeholder for processing debug code’s -S option.

P Specify maximum number of CPUs in an SMP system.

j Add Jtag-related options. Reserves four bytes of memory at the specified
location and copies the physical address of the system page to this location so
the hardware debugger can retrieve it.

v Increment the verbosity global flag, debug_flag.

hwi_add_device()
void hwi_add_device(const char *bus,

const char *class,
const char *name,
unsigned pnp);

Add an hwi_device item to the hwinfo section. The bus and class parameters are used
to locate where in the device tree the new device is placed.

136 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The startup library

hwi_add_inputclk()
void hwi_add_inputclk(unsigned clk,

unsigned div);

Add an hwi_inputclk tag to the hw item currently being constructed.

hwi_add_irq()
void hwi_add_irq(unsigned vector);

Add an irq tag structure to the hwinfo section. The logical vector number for the
interrupt will be set to vector.

hwi_add_location()
void hwi_add_location(paddr_t base,

paddr_t len,
unsigned reg_shift,
unsigned addr_space);

Add a location tag structure to the hwinfo section. The fields of the structure will be
set to the given parameters.

hwi_add_nicaddr()
void hwi_add_nicaddr(const uint8 *addr,

unsigned len);

Add an hwi_nicaddr tag to the hw item currently being constructed.

hwi_add_rtc()
void hwi_add_rtc(const char *name,

paddr_t base,
unsigned reg_shift,
unsigned len,
int mmap,
int cent_reg);

Add an hwi_device item describing the realtime clock to the hwinfo section. The name
of the device is name. The hwi_location tag items are given by base, reg_shift, len,
and mmap. The mmap parameter indicates if the device is memory-mapped or
I/O-space-mapped and is used to set the addrspace field.

If the cent_reg parameter is not -1, it’s used to add an hwi_regname tag with the offset
field set to its value. This indicates the offset from the start of the device where the
century byte is stored.

hwi_alloc_item()
void *hwi_alloc_item(const char *tagname,

unsigned size,
unsigned align,
const char *itemname,
unsigned owner);

Add an item structure to the hwinfo section.

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 137

The startup library © 2009, QNX Software Systems GmbH & Co. KG.

hwi_alloc_tag()
void *hwi_alloc_tag(const char *tagname,

unsigned size,
unsigned align);

Add a tag structure to the hwinfo section.

hwi_find_as()
unsigned hwi_find_as(paddr_t base,
int mmap);

Given a physical address of base and mmap (indicating 1 for memory-mapped and 0
for I/O-space-mapped), return the offset from the start of the asinfo section indicating
the appropriate addrspace field value for an hwi_location tag.

hwi_find_item()
unsigned hwi_find_item(unsigned start, ...);

Although the hwi_find_item() function resides in the C library (proto in
<hw/sysinfo.h>), the function is still usable from startup programs.

Search for a given item in the hwinfo section of the system page. If start is
HWI_NULL_OFF, the search begins at the start of the hwinfo section. If not, it starts
from the item after the offset of the one passed in (this allows people to find multiple
tags of the same type; it works just like the find_startup_info() function). The var args
portion is a list of character pointers, giving item names; the list is terminated with a
NULL. The order of the item names gives ownership information. For example:

item = hwi_find_item(HWI_NULL_OFF, "foobar", NULL);

searches for an item name called “foobar.” The following:

item = hwi_find_item(HWI_NULL_OFF, "mumblyshwartz",
"foobar", NULL);

also searches for “foobar,” but this time it has to be owned by an item called
“mumblyshwartz.”

If the item can’t be found, HWI_NULL_OFF is returned; otherwise, the byte offset
within the hwinfo section is returned.

hwi_find_tag()
unsigned hwi_find_tag(unsigned start,

int curr_item,
const char *tagname);

Although the hwi_find_tag() function resides in the C library (proto in
<hw/sysinfo.h>), the function is still usable from startup programs.

Search for a given tagname in the hwinfo section of startup. The start parameter works
just like in hwi_find_item(). If curr_item is nonzero, the tagname must occur within
the current item. If zero, the tagname can occur anywhere from the starting point of
the search to the end of the section. If the tag can’t be found, then HWI_NULL_OFF is
returned; otherwise, the byte offset within the hwinfo section is returned.

138 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The startup library

hwi_off2tag()
void *hwi_off2tag(unsigned off);

Although the hwi_off2tag() function resides in the C library (proto in
<hw/sysinfo.h>), the function is still usable from startup programs.

Given a byte offset from the start of the hwinfo section, return a pointer to the hwinfo
tag structure.

hwi_tag2off()
unsigned hwi_tag2off(void *tag);

Although the hwi_tag2off() function resides in the C library (proto in
<hw/sysinfo.h>), the function is still usable from startup programs.

Given a pointer to the start of a hwinfo tag instruction, convert it to a byte offset from
the start of the hwinfo system page section.

init_asinfo()
void init_asinfo(unsigned mem);

Initialize the asinfo section of the system page. The mem parameter is the offset of the
memory entry in the section and can be used as the owner parameter value for
as_add()s that are adding memory.

init_cacheattr()
void init_cacheattr (void)

Initialize the cacheattr member. For all platforms, this is a do-nothing stub.

init_cpuinfo()
void init_cpuinfo (void)

Initialize the members of the cpuinfo structure with information about the installed
CPU(s) and related capabilities. Most systems will be able to use this function directly
from the library.

init_hwinfo()
void init_hwinfo (void)

Initialize the appropriate variant of the hwinfo structure in the system page.

init_intrinfo()
void init_intrinfo (void)

Initialize the intrinfo structure.

x86 You would need to change this only if your hardware doesn’t have the
standard PC-compatible dual 8259 configuration.

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 139

The startup library © 2009, QNX Software Systems GmbH & Co. KG.

MIPS The default library version sets up the internal MIPS interrupt controller.

PowerPC No default version exists; you must supply one.

ARM No default version exists; you must supply one.

SH The default library version sets up the SH-4 on-chip peripheral interrupt.
You need to provide the external interrupt code.

If you’re providing your own function, make sure it initializes:

• the interrupt controller hardware as appropriate (e.g. on the x86 it should program
the two 8259 interrupt controllers)

• the intrinfo structure with the details of the interrupt controller hardware.

This initialization of the structure is done via a call to the function
add_interrupt_array().

init_mmu()
void init_mmu (void)

Sets up the processor for virtual addressing mode by setting up page-mapping
hardware and enabling the pager.

On the x86 family, it sets up the page tables as well as special mappings to “known”
physical address ranges (e.g. sets up a virtual address for the physical address ranges 0
through 0xFFFFF inclusive).

The 400 and 800 series processors within the PowerPC family are stubs; the others,
i.e. the 600 series and BookE processors, are not. On MIPS and SH, this function is
currently a stub. On the PowerPC family, this function may be a stub.

On the ARM family, this function simply sets up the page tables.

init_pminfo()
*init_pminfo (unsigned managed_size)

Initialize the pminfo section of the system page and set the number of elements in the
managed storage array.

init_qtime()
void init_qtime (void)

Initialize the qtime structure in the system page. Most systems will be able to use this
function directly from the library.

This function doesn’t exist for ARM. Specific functions exist for ARM processors
with on-chip timers; currently, this includes only init_qtime_sa1100().

140 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The startup library

init_qtime_sa1100()
void init_qtime_sa1100 (void)

Initialize the qtime structure and kernel callouts in the system page to use the on-chip
timer for the SA1100 and SA1110 processors.

init_raminfo()
void init_raminfo (void)

Determine the location and size of available system RAM and initialize the asinfo
structure in the system page.

If you know the exact amount and location of RAM in your system, you can replace
this library function with one that simply hard-codes the values via one or more
add_ram() calls.

x86 If the RAM configuration is known (e.g. set by the IPL code, or the
multi-boot IPL code gets set by the gnu utility), then the library version
of init_raminfo() will call the library routine find_startup_info() to
fetch the information from a known location in memory. If the RAM
configuration isn’t known, then a RAM scan (via x86_scanmem()) is
performed looking for valid memory between locations 0 and 0xFFFFFF,
inclusive. (Note that the VGA aperture that usually starts at location
0xB0000 is specifically ignored.)

MIPS
PowerPC
ARM
SH There’s no library default. You must supply your own init_raminfo()

function.

init_smp()
void init_smp (void)

Initialize the SMP functionality of the system, assuming the hardware (e.g. x86, PPC,
MIPS) supports SMP.

init_syspage_memory() (deprecated)
void init_syspage_memory (void *base,

unsigned size)

Initialize the system page structure’s individual member pointers to point to the data
areas for the system page substructures (e.g. typed_strings). The base parameter is a
pointer to where the system page is currently stored (it will be moved to the kernel’s
address space later); the size indicates how big this area is. On all platforms, this
routine shouldn’t require modification.

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 141

The startup library © 2009, QNX Software Systems GmbH & Co. KG.

init_system_private()
void init_system_private (void)

Find all the boot images that need to be started and fill a structure with that
information; parse any -M options used to specify memory regions that should be
added; tell Neutrino where the image filesystem is located; and finally allocate room
for the actual storage of the system page. On all platforms, this shouldn’t require
modification.

Note that this must be the last init_*() function called.

jtag_reserve_memory()
void jtag_reserve_memory (unsigned long resmem_addr,

unsigned long resmem_size,
uint8_t resmem_flag)

Reserve a user-specified block of memory at the location specified in resmem_addr. If
the resmem_flag is set to 0, clear the memory.

kprintf()
void kprintf (const char *fmt, ...)

Display output using the put_char() function you provide. It supports a very limited
set of printf() style formats.

mips41xx_set_clock_freqs()
void mips41xx_set_clock_freqs(unsigned sysclk);

On a MIPS R41xx series chip, set the cpu_freq, timer_freq, and cycles_freq variables
appropriately, given a system clock input frequency of sysclk.

openbios_init_raminfo()
void openbios_init_raminfo(void);

On a system that contains an OpenBIOS ROM monitor, add the system RAM
information.

pcnet_reset()
void pcnet_reset(paddr_t base,

int mmap);

Ensure that a PCnet-style Ethernet controller chip at the given physical address (either
I/O or memory-mapped as specified by mmap) is disabled. Some ROM monitors leave
the Ethernet receiver enabled after downloading the OS image. This causes memory to
be corrupted after the system starts and before Neutrino’s Ethernet driver is run, due to
the reception of broadcast packets. This function makes sure that no further packets
are received by the chip until the Neutrino driver starts up and properly initializes it.

142 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The startup library

ppc400_pit_init_qtime()
void ppc400_pit_init_qtime(void);

On a PPC 400 series chip, initialize the qtime section and timer kernel callouts of the
system page to use the on-board Programmable Interval Timer.

ppc405_set_clock_freqs()
void ppc405_set_clock_freqs
(unsigned sys_clk, unsigned timer_clk);

Initialize the timer_freq and cycles_freq variables based on a given timer_clk. The
cpu_freq variable is initialized using a multiplication of a given system clock
(system_clk). The multiplication value is found using the CPCO_PSR DCR.

ppc600_set_clock_freqs()
void ppc600_set_clock_freqs(unsigned sysclk);

On a PPC 600 series chip, set the cpu_freq, timer_freq, and cycles_freq variables
appropriately, given a system clock input frequency of sysclk.

ppc700_init_l2_cache()
void ppc700_init_l2_cache(unsigned flags);

On a PPC 700 series system, initialize the L2 cache. The flags indicate which bits in
the L2 configuration register are set. In particular, they decide the L2 size, clock
speed, and so on. For details, see the Motorola PPC 700 series user’s documentation
for the particular hardware you’re using.

For example, on a Sandpoint board, flags might be:

PPC700_SPR_L2CR_1M | PPC700_SPR_L2CR_CLK2 | PPC700_SPR_L2CR_OH05

This would set the following for L2CR:

• 1 MB L2 cache

• clock speed of half of the core speed

• “output-hold” value of 0.5 nsec.

ppc800_pit_init_qtime()
void ppc800_pit_init_qtime(void);

On a PPC 800 series chip, initialize the qtime section and timer kernel callouts of the
system page to use the on-board Programmable Interval Timer.

ppc800_set_clock_freqs()
void ppc800_set_clock_freqs(unsigned extclk_freq,

unsigned extal_freq,
int is_extclk);

On a PPC 800 series chip, set the cpu_freq, timer_freq, and cycles_freq variables
appropriately, given input frequencies of extclk_freq at the EXTCLK pin and extal_freq
at the XTAL/EXTAL pins.

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 143

The startup library © 2009, QNX Software Systems GmbH & Co. KG.

If is_extclk is nonzero, then the extclk_freq is used for the main timing reference
(MODCLK1 signal is one at reset). If zero, extal_freq is used at the main timing
reference (MODCLK1 signal is zero at reset).

Note that the setting of the frequency variables assumes that the
ppc800_pit_init_qtime() routine is being used. If some other initialization of the
qtime section and timer callouts takes place, the values in the frequency variables may
have to be modified.

ppc_dec_init_qtime()
void ppc_dec_init_qtime(void);

On a PPC, initialize the qtime section and timer kernel callouts of the system page to
use the decrementer register.

The ppc_dec_init_qtime() routine may not be used on a PPC 400 series chip, which
omits the decrementer register.

print_syspage()
void print_syspage (void)

Print the contents of all the structures in the system page. The global variable
debug_level is used to determine what gets printed. The debug_level must be at least 2
to print anything; a debug_level of 3 will print the information within the individual
substructures.

Note that you can set the debug level at the command line by specifying multiple -v
options to the startup program.

You can also use the startup program’s -S command-line option to select which entries
are printed from the system page: -Sname selects name to be printed, whereas
-S˜name disables name from being printed. The name can be selected from the
following list:

Name Processors Syspage entry

cacheattr all Cache attributes

callout all Callouts

cpuinfo all CPU info

gdt x86 Global Descriptor Table

hwinfo all Hardware info

idt x86 Interrupt Descriptor Table

intrinfo all Interrupt info

continued. . .

144 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The startup library

Name Processors Syspage entry

kerinfo PPC Kernel info

pgdir x86 Page directory

qtime all System time info

smp all SMP info

strings all Strings

syspage all Entire system page

system_private all System private info

typed_strings all Typed strings

rtc_time()
unsigned long rtc_time (void)

This is a user-replaceable function responsible for returning the number of seconds
since January 1 1970 00:00:00 GMT.

x86 This function defaults to calling rtc_time_mc146818(), which knows
how to get the time from an IBM-PC standard clock chip.

MIPS
PowerPC
ARM The default library version simply returns zero.

SH The default function calls rtc_time_sh4(), which knows how to get the
time from the SH-4 on-chip rtc.

Currently, these are the chip-specific versions:

rtc_time_ds1386() Dallas Semiconductor DS-1386 compatible

rtc_time_m48t5x() SGS-Thomson M48T59 RTC/NVRAM chip

rtc_time_mc146818()

Motorola 146818 compatible

rtc_time_rtc72423()

FOX RTC-72423 compatible

rtc_time_rtc8xx() PPC 800 onboard RTC hardware

There’s also a “none” version to use if your board doesn’t have RTC hardware:

unsigned long rtc_time_none(void);

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 145

The startup library © 2009, QNX Software Systems GmbH & Co. KG.

For the PPC 800 onboard RTC hardware, the function is simply as follows:

unsigned long rtc_time_rtc8xx(void);

If you’re supplying the rtc_time() routine, you should call one of the chip-specific
routines or write your own. The chip-specific routines all share the same parameter
list:

(paddr_t base, unsigned reg_shift, int mmap, int cent_reg);

The base parameter indicates the physical base address or I/O port of the device. The
reg_shift indicates the register offset as a power of two.

A typical value would be 0 (meaning 20, i.e. 1), indicating that the registers of the
device are one byte apart in the address space. As another example, a value of 2
(meaning 22, i.e. 4) indicates that the registers in the device are four bytes apart.

If the mmap variable is 0, then the device is in I/O space. If mmap is 1, then the device
is in memory space.

Finally, cent_reg indicates which register in the device contains the century byte (-1
indicates no such register). If there’s no century byte register, then the behavior is
chip-specific. If the chip is year 2000-compliant, then we will get the correct time. If
the chip isn’t compliant, then if the year is less than 70, we assume it’s in the range
2000 to 2069; else we assume it’s in the range 1970 to 1999.

startup_io_map()
uintptr_t startup_io_map(unsigned size,

paddr_t phys);

Same as mmap_device_io() in the C library — provide access to an I/O port on the
x86 (for other systems, startup_io_map() is the same as startup_memory_map()) at a
given physical address for a given size. The return value is for use in the in*/out*
functions in the C library. The value is for use during the time the startup program is
running (as opposed to callout_io_map(), which is for use after startup is completed).

startup_io_unmap()
void startup_io_unmap(uintptr_t port);

Same as unmap_device_io() in the C library — remove access to an I/O port on the
x86 (on other systems, unmap_device_io() is the same as startup_memory_unmap())
at the given port location.

startup_memory_map()
void *startup_memory_map(unsigned size,

paddr_t phys,
unsigned prot_flags);

Same as mmap_device_io_memory() in the C library — provide access to a
memory-mapped device. The value is for use during the time the startup program is
running (as opposed to callout_memory_map(), which is for use after startup is
completed).

146 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. The startup library

startup_memory_unmap()
void startup_memory_unmap(void *vaddr);

Same as unmap_device_memory() in the C library — remove access to a
memory-mapped device at the given location.

tulip_reset()
void tulip_reset(paddr_t phys,

int mem_mapped);

Ensure that a Tulip Ethernet chip (Digital 21x4x) at the given physical address (either
I/O or memory-mapped as specified by mem_mapped) is disabled. Some ROM
monitors leave the Ethernet receiver enabled after downloading the OS image. This
causes memory to be corrupted after the system starts and before Neutrino’s Ethernet
driver is run, due to the reception of broadcast packets. This function makes sure that
no further packets are received by the chip until the Neutrino driver starts up and
properly initializes it.

uncompress()
int uncompress(char *dst,

int *dstlen,
char *src,
int srclen,
char *win);

This function resides in the startup library and is responsible for expanding a
compressed OS image out to full size (this is invoked before main() gets called). If
you know you’re never going to be given a compressed image, you can replace this
function with a stub version in your own code and thus make a smaller startup
program.

x86_cpuid_string()
int x86_cpuid_string (char *buf,

int max)

Place a string representation of the CPU in the string buf to a maximum of max
characters. The general format of the string is:

manufacturer part Ffamily Mmodel Sstepping

This information is determined using the cpuid instruction. If it’s not supported, then
a subset (typically only the part) will be placed in the buffer (e.g. 386).

x86_cputype()
unsigned x86_cputype (void)

An x86 platform-only function that determines the type of CPU and returns the
number (e.g. 386).

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 147

The startup library © 2009, QNX Software Systems GmbH & Co. KG.

x86_enable_a20()
int x86_enable_a20 (unsigned long cpu,

int only_keyboard)

Enable address line A20, which is often disabled on many PCs on reset. It first checks
if address line A20 is enabled and if so returns 0. Otherwise, it sets bit 0x02 in port
0x92, which is used by many systems as a fast A20 enable. It again checks to see if
A20 is enabled and if so returns 0. Otherwise, it uses the keyboard microcontroller to
enable A20 as defined by the old PC/AT standard. It again checks to see if A20 is
enabled and if so returns 0. Otherwise, it returns -1.

If cpu is a 486 or greater, it issues a wbinvd opcode to invalidate the cache when
doing a read/write test of memory to see if A20 is enabled.

In the rare case where setting bit 0x02 in port 0x92 may affect other hardware, you
can skip this by setting only_keyboard to 1. In this case, it will attempt to use only the
keyboard microcontroller.

x86_fputype()
unsigned x86_fputype (void)

An x86-only function that returns the FPU type number (e.g. 387).

x86_init_pcbios()
void x86_init_pcbios(void);

Perform initialization unique to an IBM PC BIOS system.

x86_pcbios_shadow_rom()
int x86_pcbios_shadow_rom(paddr_t rom,

size_t size);

Given the physical address of a ROM BIOS extension, this function makes a copy of
the ROM in a RAM location and sets the x86 page tables in the
_syspage_ptr->un.x86.real_addr range to refer to the RAM copy rather than
the ROM version. When something runs in V86 mode, it’ll use the RAM locations
when accessing the memory.

The amount of ROM shadowed is the maximum of the size parameter and the size
indicated by the third byte of the BIOS extension.

The function returns:

0 if there’s no ROM BIOS extension signature at the address given

1 if you’re starting the system in physical mode and there’s no MMU to make a
RAM copy be referenced

2 if everything works.

148 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Writing your own kernel callout

x86_scanmem()
unsigned x86_scanmem (paddr_t beg,

paddr_t end)

An x86-only function that scans memory between beg and end looking for RAM, and
returns the total amount of RAM found. It scans memory performing a R/W test of 3
values at the start of each 4 KB page. Each page is marked with a unique value. It then
rescans the memory looking for contiguous areas of memory and adds them to the
asinfo entry in the system page.

A special check is made for a block of memory between addresses 0xB0000 and
0xBFFFF, inclusive. If memory is found there, the block is skipped (since it’s
probably the dual-ported memory of a VGA card).

The call x86_scanmem (0, 0xFFFFFF) would locate all memory in the first 16
megabytes of memory (except VGA memory). You may make multiple calls to
x86_scanmem() to different areas of memory in order to step over known areas of
dual-ported memory with hardware.

Writing your own kernel callout
In order for the Neutrino microkernel to work on all boards, all hardware-dependent
operations have been factored out of the code. Known as kernel callouts, these
routines must be provided by the startup program.

The startup can actually have a number of different versions of the same callout
available — during hardware discovery it can determine which one is appropriate for
the board it’s running on and make that particular instance of the callout available to
the kernel. Alternatively, if you’re on a deeply embedded system and the startup
knows exactly what hardware is present, only one of each callout might be present; the
startup program simply tells the kernel about them with no discovery process.

The callout code is copied from the startup program into the system page and after
this, the startup memory (text and data) is freed.

At the point where the reboot callout is called:

• the MMU is enabled (the callout would have to disable it if necessary)

• you are running on the kernel stack

• you are executing code copied into the system page so no functions in the startup
program are available.

The patch code is run during execution of the startup program itself, so regular calls
work as normal.

Once copied, your code must be completely self-contained and position independent.
The purpose of the patch routines is to allow you to patch up the code with constants,
access to RW data storage etc. so that your code is self-contained and contains all the
virtual-physical mappings required.

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 149

Writing your own kernel callout © 2009, QNX Software Systems GmbH & Co. KG.

Find out who’s gone before
The startup library provides a number of different callout routines that we’ve already
written. You should check the source tree (originally installed in
bsp_working_dir/src/hardware/startup/lib/) to see if a routine for your
device/board is already available before embarking on the odyssey of writing your
own. This directory includes generic code, as well as processor-specific directories.

In the CPU-dependent level of the tree for all the source files, look for files that match
the pattern:

callout_*.[sS]

Those are all the callouts provided by the library. Whether a file ends in .s or .S
depends on whether it’s sent through the C preprocessor before being handed off to an
assembler. For our purposes here, we’ll simply refer to them as .s files.

The names break down further like this:

callout_category_device.s

where category is one of:

cache cache control routines

debug kernel debug input and output routines

interrupt interrupt handling routines

timer timer chip routine

reboot rebooting the system

The device identifies the unique hardware that the callouts are for. Typically, all the
routines in a particular source file would be used (or not) as a group by the kernel. For
example, the callout_debug_8250.s file contains the display_char_8250(),
poll_key_8250(), and break_detect_8250() routines for dealing with an 8250-style
UART chip.

Why are they in assembly language?
Since the memory used by the startup executable is reclaimed by the OS after startup
has finished, the callouts that are selected for use by the kernel can’t be used in place.
Instead, they must be copied to a safe location (the library takes care of this for you).
Therefore, the callout code must be completely position-independent, which is why
callouts have to be written in assembly language. We need to know where the callout
begins and where it ends; there isn’t a portable way to tell where a C function ends.

The other issue is that there isn’t a portable way to control the preamble/postamble
creation or code generation. So if an ABI change occurs or a build configuration issue
occurs, we could have a very latent bug.

150 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Writing your own kernel callout

For all but two of the routines, the kernel invokes the callouts with the normal
function-calling conventions. Later we’ll deal with the two exceptions (interrupt_id()
and interrupt_eoi()).

Starting off
Find a callout source file of the appropriate category that’s close to what you want and
copy it to a new filename. If the new routines will be useful on more than one board,
you might want to keep the source file in your own private copy of the startup library.
If not, you can just copy to the directory where you’ve put your board-specific files.

Now edit the new source file. At the top you’ll see something that looks like this:

#include "callout.ah"

Or:

.include "callout.ah"

The difference depends on the assembler syntax being used.

This include file defines the CALLOUT_START and CALLOUT_END macros. The
CALLOUT_START macro takes three parameters and marks the start of one callout.
The first parameter is the name of the callout routine (we’ll come back to the two
remaining parameters later).

The CALLOUT_END macro indicates the end of the callout routine source. It takes
one parameter, which has to be the same as the first parameter in the preceding
CALLOUT_START. If this particular routine is selected to be used by the kernel, the
startup library will copy the code between the CALLOUT_START and CALLOUT_END
to a safe place for the kernel to use. The exact syntax of the two macros depends on
exactly which assembler is being used on the source. Two common versions are:

CALLOUT_START(timer_load_8254, 0, 0)
CALLOUT_END(timer_load_8254)

Or:

CALLOUT_START timer_load_8254, 0, 0
CALLOUT_END timer_load_8254

Just keep whatever syntax is being used by the original file you started from. The
original file will also have C prototypes for the routines as comments, so you’ll know
what parameters are being passed in. Now you should replace the code from the
original file with what will work for the new device you’re dealing with.

“Patching” the callout code
You may need to write a callout that deals with a device that may appear in different
locations on different boards. You can do this by “patching” the callout code as it is
copied to its final position. The third parameter of the CALLOUT_START macro is
either a zero or the address of a patcher() routine. This routine has the following
prototype:

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 151

Writing your own kernel callout © 2009, QNX Software Systems GmbH & Co. KG.

void patcher(paddr_t paddr,
paddr_t vaddr,
unsigned rtn_offset,
unsigned rw_offset,
void *data,
struct callout_rtn *src);

This routine is invoked immediately after the callout has been copied to its final
resting place. The parameters are as follows:

paddr Physical address of the start of the system page.

vaddr Virtual address of the system page that allows read/write access (usable
only by the kernel).

rtn_offset Offset from the beginning of the system page to the start of the callout’s
code.

rw_offset See the section on “Getting some R/W storage” below.

data A pointer to arbitrary data registered by callout_register_data() (see
above).

src A pointer to the callout_rtn structure that’s being copied into place.

The data and src arguments were added in the QNX Neutrino Core OS 6.3.2. Earlier
patcher functions can ignore them.

Here’s an example of a patcher routine for an x86 processor:

patch_debug_8250:
movl 0x4(%esp),%eax // get paddr of routine
addl 0xc(%esp),%eax // ...

movl 0x14(%esp),%edx // get base info

movl DDI_BASE(%edx),%ecx // patch code with real serial port
movl %ecx,0x1(%eax)
movl DDI_SHIFT(%edx),%ecx // patch code with register shift
movl $REG_LS,%edx
shll %cl,%edx
movl %edx,0x6(%eax)
ret

CALLOUT_START(display_char_8250, 0, patch_debug_8250)
movl $0x12345678,%edx // get serial port base (patched)
movl $0x12345678,%ecx // get serial port shift (patched)

....
CALLOUT_END(display_char_8250)

After the display_char_8250() routine has been copied, the patch_debug_8250()
routine is invoked, where it modifies the constants in the first two instructions to the
appropriate I/O port location and register spacing for the particular board. The patcher
routines don’t have to be written in assembler, but they typically are to keep them in

152 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Writing your own kernel callout

the same source file as the code they’re patching. By arranging the first instructions in
a group of related callouts all the same (e.g. debug_char_*(), poll_key_*(),
break_detect_*()), the same patcher routine can be used for all of them.

Getting some R/W storage
Your callouts may need to have access to some static read/write storage. Normally this
wouldn’t be possible because of the position-independent requirements of a callout.
But you can do it by using the patcher routines and the second parameter to
CALLOUT_START. The second parameter to CALLOUT_START is the address of a
four-byte variable that contains the amount of read/write storage the callout needs. For
example:

rw_interrupt:
.long 4

patch_interrupt:
add a1,a1,a2
j ra
sh a3,0+LOW16(a1)

/*
* Mask the specified interrupt
*/

CALLOUT_START(interrupt_mask_mips, rw_interrupt, patch_interrupt)
/*
* Input Parameters :
* a0 - syspage_ptr
* a1 - Interrupt Number
* Returns:
* v0 - error status
*/

/*
* Mark the interrupt disabled
*/

la t3,0x1234(a0) # get enabled levels addr (patched)
li t1, MIPS_SREG_IMASK0
....
CALLOUT_END(interrupt_mask_mips)

The rw_interrupt address as the second parameter tells the startup library that the
routine needs four bytes of read/write storage (since the contents at that location is a
4). The startup library allocates space at the end of the system page and passes the
offset to it as the rw_offset parameter of the patcher routine. The patcher routine then
modifies the initial instruction of the callout to the appropriate offset. While the
callout is executing, the t3 register will contain a pointer to the read/write storage.
The question you’re undoubtedly asking at this point is: Why is the CALLOUT_START
parameter the address of a location containing the amount of storage? Why not just
pass the amount of storage directly?

That’s a fair question. It’s all part of a clever plan. A group of related callouts may
want to have access to shared storage so that they can pass information among
themselves. The library passes the same rw_offset value to the patcher routine for all
routines that share the same address as the second parameter to CALLOUT_START. In
other words:

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 153

PPC chips support © 2009, QNX Software Systems GmbH & Co. KG.

CALLOUT_START(interrupt_mask_mips, rw_interrupt, patch_interrupt)
....
CALLOUT_END(interrupt_mask_mips)

CALLOUT_START(interrupt_unmask_mips, rw_interrupt, patch_interrupt)
....
CALLOUT_END(interrupt_unmask_mips)

CALLOUT_START(interrupt_eoi_mips, rw_interrupt, patch_interrupt)
....
CALLOUT_END(interrupt_eoi_mips)

CALLOUT_START(interrupt_id_mips, rw_interrupt, patch_interrupt)
....
CALLOUT_END(interrupt_id_mips)

will all get the same rw_offset parameter value passed to patch_interrupt() and thus
will share the same read/write storage.

The exception that proves the rule
To clean up a final point, the interrupt_id() and interrupt_eoi() routines aren’t called
as normal routines. Instead, for performance reasons, the kernel intermixes these
routines directly with kernel code — the normal function-calling conventions aren’t
followed. The callout_interrupt_*.s files in the startup library will have a
description of what registers are used to pass values into and out of these callouts for
your particular CPU. Note also that you can’t return from the middle of the routine as
you normally would. Instead, you’re required to “fall off the end” of the code.

PPC chips support
The PPC startup library has been modified in order to:

• minimize the number of locations that check the PVR SPR.

• minimize duplication of code.

• make it easier to leave out unneeded chip-dependent code.

• make it easier to add support for new CPUs.

• remove the notion of a PVR split into “family” and “member” fields.

• automatically take care of as much CPU-dependent code as possible in the library.

The new routines and data variables all begin with ppcv_ for PPC variant, and are
separated out into one function or data variable per source file. This separation allows
maximum code reuse and minimum code duplication.

There are two new data structures:

• ppcv_chip

• ppcv_config

154 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. PPC chips support

The first is:

struct ppcv_chip {
unsigned short chip;
uint8_t paddr_bits;
uint8_t cache_lsize;
unsigned short icache_lines;
unsigned short dcache_lines;
unsigned cpu_flags;
unsigned pretend_cpu;
const char *name;
void (*setup)(void);

};

Every supported CPU has a statically initialized variable of this type (in its own source
file, e.g. <ppvc_chip_603e7.c>).

If the chip field matches the upper 16 bits of the PVR register, this ppcv_chip
structure is selected and the pccv global variable in the library is pointed at it. Only the
upper 16 bits are checked so you can use the constants like PPC_750 defined in
<ppc/cpu.h> when initializing the field.

The paddr_bits field is the number of physical address lines on the chip, usually 32.

The cache_lsize field is the number of bits in a cache line size of the chip, usually 5,
but sometimes 4.

The icache_lines and dcache_lines are the number of lines in the instruction and data
cache, respectively.

The cpu_flags field holds the PPC_CPU_* flag constants from <ppc/syspage.h>

that are appropriate for this CPU. Note that the older startups sometimes left out flags
like PPC_CPU_HW_HT and depended on the kernel to check the PVR and turn them
on if appropriate. This is no longer the case. The kernel will continue to turn on those
bits if it detects an old style startup, but will NOT with a new style one.

The pretend_cpu field goes into the ppc_kerinfo_entry.pretend_cpu field of the system
page and as before, it’s used to tell the kernel that even though you don’t know the
PVR, you can act like it’s the pretend one.

The name field is the string name of the CPU that gets put in the cpuinfo section.

The setup function is called when a particular ppcv_chip structure has been selected by
the library as the one to use. It continues the library customization process by filling
the second new structure.

The second data structure is:

struct ppcv_config {
unsigned family;
void (*cpuconfig1)(int cpu);
void (*cpuconfig2)(int cpu);
void (*cpuinfo)(struct cpuinfo_entry *cpu);
void (*qtime)(void);
void *(*map)(unsigned size, paddr_t phys,

unsigned prot_flags);
void (*unmap)(void *);
int (*mmu_info)(enum mmu_info info, unsigned tlb);

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 155

PPC chips support © 2009, QNX Software Systems GmbH & Co. KG.

//NYI: tlb_read/write
};

There’s a single variable defined of this type in the library, called ppcv_config. The
setup function identified by the selected ppcv_chip is responsible for filling in the
fields with the appropriate routines for the chip. The variable is statically initialized
with a set of do-nothing routines, so if a particular chip doesn’t need something done
in one spot (typically the cpuconfig[1/2] routines), the setup routine doesn’t have to fill
anything in).

The general design rules for the routines are that they should perform whatever
chip-specific actions that they can perform that are not also board-specific. For
example, the old startup main() functions would sometimes turn off data translation,
since some IPLs turned it on. With the new startups this is handled automatically by
the library. On the other hand, both the old and new startups call the
ppc700_init_l2_cache() manually in main(), since the exact bits to put in the L2CR
register are board-specific. The routines in the libraries should be modified to work
with the IPL and initialize the CPU properly, rather than modifying the board-specific
code to hack around it (e.g. the aforementioned disabling of data translation).

The setup routine might also initialize a couple of other freestanding variables that
other support routines use to avoid them having to check the PVR value again (e.g. see
the ppc600_set_clock_freqs() and ppcv_setup_7450() functions for an example).

The new startup (and kernel, when used with a new startup) no longer depends on the
PVR to identify the chip family. Instead the “family” field is filled in with a
PPC_FAMILY_* value from <ppc/syspage.h>. This is transferred to the
ppc_kerinfo_entry.family field on the system page, which the kernel uses to
verify that the right version of procnto is being used.

If the kernel sees a value of PPC_FAMILY_UNKNOWN (zero) in the system page, it
assumes that an old style startup is being used and will attempt to determine the family
(and cpuinfo->flags) fields on its own. DO NOT USE that feature with new
startups.

Fill in the ppcv_config.family and ppcv_chip.cpu_flags field properly. The cpuconfig1
routine is used to configure the CPU for use in startup, and is called early before
main() is called. For example, it makes sure that instruction and data translation is
turned off, the exception table is pointed at low memory, etc. It’s called once for every
CPU in an SMP system, with the cpu parm indicating the CPU number being
initialized.

The cpuconfig2 routine is called just before startup transfers control to the first
bootstrap executable in the image file system. It configures the CPU for running in the
bootstrap environment, e.g. turning on CPU-specific features such as HID0 and HID1
bits. Again it’s called once per CPU in an SMP system with the cpu parm indicating
which one.

The cpuinfo routine is called by init_one_cpuinfo() to fill in the cpuinfo_entry
structure for each CPU. The qtime routine is called by init_qtime() to set up the qtime
syspage section.

156 Chapter 5 • Customizing Image Startup Programs April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. PPC chips support

The map and unmap routines used to create/delete memory mappings for startup and
callout use, are called by:

• startup_map_io

• startup_map_memory

• startup_unmap_io

• startup_unmap_memory

• callout_map_io

• callout_map_memory

There’s one more data variable to mention. This is ppcv_list, which is a statically
initialized array of pointers to ppcv_chip structures. The default version of the
variable in the library has a list of all the ppcv_chip variables defined by the library so,
by default, the library is capable of handling any type of PPC chip.

By defining a ppcv_list variable in the board-specific directory and adding only the
ppcv_chip_* variable(s) that can be used with that board, all the chip-specific code for
the processors that can’t possibly be there will be left out.

For example, the new shasta-ssc startup with the default ppcv_list is about 1 KB
bigger than the old version. By restricting the ppcv_list to only ppcv_chip_750, the
new startup drops to 1 KB smaller than the original.

Adding a new CPU to the startup library
For a CPU called xyz, create a <ppcv_chip_xyz.c> and in it put an appropriately
initialized struct ppcv_chip ppcv_chip_xyz variable. Add the ppcv_chip_xyz variable
to the default ppcv_list (in <ppcv_list.c>).

If you were able to use an already existing ppcv_setup_*() function for the
ppcv_chip_xyz initialization, you’re done. Otherwise, create a
<ppcv_setup_xyz.c> file with the properly coded ppcv_setup_xyz() function in it
(don’t forget to add the prototype to <cpu_startup.h>).

If you were able to use already existing ppcv_* routines in the ppcv_setup_xyz()
function, you’re done. Otherwise, create the routines in the appropriate
<ppcv_*_xyz.c> files (don’t forget to add the prototype(s) to <cpu_startup.h>).
When possible, code the routines in an object-oriented manner, calling already
existing routines to fill more generic information, e.g. ppcv_cpuconfig2_700() uses
ppcv_cpuconfig2_600() to do most of the work and then it just fills in the 700
series-specific info.

With the new design, the following routines are now deprecated (and they spit out a
message to that effect if you call them):

ppc600_init_features(), ppc600_init_caches(), ppc600_flush_caches()

Handled automatically by the library now.

April 20, 2009 Chapter 5 • Customizing Image Startup Programs 157

PPC chips support © 2009, QNX Software Systems GmbH & Co. KG.

ppc7450_init_l2_cache()

Use ppc700_init_l2_cache() instead.

158 Chapter 5 • Customizing Image Startup Programs April 20, 2009

Chapter 6

Customizing the Flash Filesystem

In this chapter. . .
Introduction 161
Driver structure 161
Building your flash filesystem driver 163
Example: The devf-ram driver 177

April 20, 2009 Chapter 6 • Customizing the Flash Filesystem 159

© 2009, QNX Software Systems GmbH & Co. KG. Introduction

Introduction
Neutrino ships with a small number of prebuilt flash filesystem drivers for particular
embedded systems. For the currently available drivers, look in the
${QNX_TARGET}/${PROCESSOR}/sbin directory. The flash filesystem drivers are
named devf-system, where system is derived from the name of the embedded system.
You’ll find a general description of the flash filesystem in the System Architecture
book and descriptions of all the flash filesystem drivers in the Utilities Reference.

If a driver isn’t provided for your particular target embedded system, you should first
try our “generic” driver (devf-generic). This driver often — but not always —
works with standard flash hardware. The driver assumes a supported memory
technology driver (MTD) and linear memory addressing.

If none of our drivers works for your hardware, you’ll need to build your own driver.
We provide all the source code needed for you to customize a flash filesystem driver
for your target. After installation, look in the
bsp_working_dir/src/hardware/flash/boards directory — you’ll find a
subdirectory for each board we support.

Besides the boards directory, you should also refer to the following sources to find
out what boards/drivers we currently support:

• QNX docs (BSP docs as well as devf-* entries in Utilities Reference)

• the Community area of our website, www.qnx.com

Note that we currently support customizing a driver only for embedded systems with
onboard flash memory (also called a resident flash array or RFA). If you need support
for removable media like PCMCIA or compact or miniature memory cards, then
please contact us.

Driver structure
Every flash filesystem driver consists of the following components:

• dispatch, resmgr, and iofunc layers

• flash filesystem

• socket services

• flash services

• probe routine

When customizing the flash filesystem driver for your system, you’ll be modifying the
main() routine for the flash filesystem and providing an implementation of the socket
services component. The other components are supplied as libraries to link into the
driver.

April 20, 2009 Chapter 6 • Customizing the Flash Filesystem 161

Driver structure © 2009, QNX Software Systems GmbH & Co. KG.

/fs0p0 /dev/fs0p0

Flash filesystem

Socket services

Flash

services

Hardware

dispatch*,
resmgr*, iofunc*

Probe

routine

Applications

Structure of the flash filesystem driver.

resmgr and iofunc layers
Like all Neutrino device managers, the flash filesystem uses the standard
resmgr/iofunc interface and accepts the standard set of resource manager messages.
The flash filesystem turns these messages into read, write, and erase operations on the
underlying flash devices.

For example, an open message would result in code being executed that would read
the necessary filesystem data structures on the flash device and locate the requested
file. A subsequent write message will modify the contents of the file on flash. Special
functions, such as erasing the flash device, are implemented using devctl messages.

Flash filesystem component
The flash filesystem itself is the “personality” component of the flash filesystem driver.
The filesystem contains all the code to process filesystem requests and to manage the
filesystem on the flash devices. The socket and flash services components are used by
the flash filesystem to access the flash devices.

The code for the flash filesystem component is platform-independent and is provided
in the libfs-flash3.a library.

Socket services component
The socket services component is responsible for any system-specific initialization
required by the flash devices at startup and for providing addressability to the flash
devices (this applies mainly to windowed flash interfaces).

162 Chapter 6 • Customizing the Flash Filesystem April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Building your flash filesystem driver

Before reading/writing the flash device, other components will use socket services to
make sure the required address range can be accessed. On systems where the flash
device is linearly mapped into the processor address space, addressability is trivial. On
systems where the flash is either bank-switched or hidden behind some other interface
(such as PCMCIA), addressability is more complicated.

The socket services component is the one that will require the most customization for
your system.

Flash services component
The flash services component contains the device-specific code required to write and
erase particular flash devices. This component is also called the memory technology
driver (MTD).

The directory ${QNX_TARGET}/${PROCESSOR}/lib contains the MTD library
libmtd-flash.a to handle the flash devices we support.

bsp_working_dir/src/hardware/flash/mtd-flash contains source for the
libmtd-flash.a library.

Probe routine component
The probe routine uses a special algorithm to estimate the size of the flash array. Since
the source code for the probe routine is available, you should be able to readily
identify any failures in the sizing algorithm.

Building your flash filesystem driver
Before you start customizing your own flash filesystem driver, you should examine the
source of all the sample drivers supplied. Most likely, one of the existing drivers can
be easily customized to support your system. If not, the devf-ram source provides a
good template to start with.

The source tree
The source files are organized as follows:

April 20, 2009 Chapter 6 • Customizing the Flash Filesystem 163

Building your flash filesystem driver © 2009, QNX Software Systems GmbH & Co. KG.

startupipl flash

bsp_working_dir/src/hardware

boards

800fads
explr2
ppaq
ram
sc400
vr41xx
...

mips
ppc

x86

mtd-flash

amd
fujitsu
intel

sharp

rom
sram

...

arm

sh

Flash directory structure.

The following pathnames apply to the flash filesystems:

Pathname Description

${QNX_TARGET}/usr/include/sys Header file f3s_mtd.h.

${QNX_TARGET}/usr/include/fs Header files f3s_api.h, f3s_socket.h, and
f3s_flash.h.

${QNX_TARGET}/${PROCESSOR}/lib Libraries for flash filesystem and flash services.

bsp_working_dir/src/hardware/flash/boards Source code for socket services.

bsp_working_dir/src/hardware/flash/mtd-flash Source code for flash services as well as for
probe routine and helper functions.

Before you modify any source, you should:

1 Create a new directory for your driver in the
bsp_working_dir/src/hardware/flash/boards directory.

2 Copy the files from the sample directory you want into your new directory.

For example, to create a driver called myboard based on the 800FADS board
example, you would:

164 Chapter 6 • Customizing the Flash Filesystem April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Building your flash filesystem driver

cd bsp_working_dir/hardware/flash/boards
mkdir myboard
cp -cRv 800fads myboard
cd myboard
make clean

The copy command (cp) specifies a recursive copy (the -R option). This will copy all
files from the specified source directory including the subdirectory indicating which
CPU this driver should be built for. In our example above, the 800fads directory has
a ppc subdirectory — this will cause the new driver (myboard in our example) to be
built for the PowerPC.

The Makefile
When you go to build your new flash filesystem driver, you don’t need to change the
Makefile. Our recursive makefile structure ensures you’re linking to the appropriate
libraries.

Making the driver
You should use the following command to make the driver:

make F3S_VER=3 MTD_VER=2

For more information, see the technical note Migrating to the New Flash Filesystem.

The main() function
The main() function for the driver, which you’ll find in the main.c file in the sample
directories, is the first thing that needs to be modified for your system. Let’s look at
the main.c file for the 800FADS board example:

/*
** File: main.c for 800FADS board
*/
#include <sys/f3s_mtd.h>
#include "f3s_800fads.h"

int main(int argc, char **argv)
{

int error;
static f3s_service_t service[]=
{

{
sizeof(f3s_service_t),
f3s_800fads_open,
f3s_800fads_page,
f3s_800fads_status,
f3s_800fads_close

},
{

/* mandatory last entry */
0, 0, 0, 0, 0

}
};

April 20, 2009 Chapter 6 • Customizing the Flash Filesystem 165

Building your flash filesystem driver © 2009, QNX Software Systems GmbH & Co. KG.

static f3s_flash_v2_t flash[] =
{

{
sizeof(f3s_flash_v2_t),
f3s_a29f040_ident, /* Common Ident */
f3s_a29f040_reset, /* Common Reset */

/* v1 Read/Write/Erase/Suspend/Resume/Sync (Unused) */
NULL, NULL, NULL, NULL, NULL, NULL,

NULL, /* v2 Read (Use default) */

f3s_a29f040_v2write, /* v2 Write */
f3s_a29f040_v2erase, /* v2 Erase */
f3s_a29f040_v2suspend, /* v2 Suspend */
f3s_a29f040_v2resume, /* v2 Resume */
f3s_a29f040_v2sync, /* v2 Sync */

/* v2 Islock/Lock/Unlock/Unlockall (not supported) */
NULL, NULL, NULL, NULL

},

{
/* mandatory last entry */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

}
};

/* init f3s */
f3s_init(argc, argv, flash);

/* start f3s */
error = f3s_start(service, flash);

return error;
}

The service array contains one or more f3s_service_t structures, depending on
how many different sockets your driver has to support. The f3s_service_t
structure, defined in <fs/f3s_socket.h>, contains function pointers to the socket
services routines.

The flash array contains one or more f3s_flash_t structures, depending on how
many different types of flash device your driver has to support. The f3s_flash_t
structure, defined in <fs/f3s_flash.h>, contains function pointers to the flash
services routines.

The f3s_init() and f3s_start() functions are defined in the <fs/f3s_api.h> header
file.

Don’t use the <fs/f3s_socket.h>, <fs/f3s_flash.h>, and <fs/f3s_api.h>

header files directly. Instead, you should include <sys/f3s_mtd.h> for backward
and forward compatibility.

166 Chapter 6 • Customizing the Flash Filesystem April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Building your flash filesystem driver

f3s_init()
f3s_init (int argc,

char **argv,
f3s_flash_t *flash_vect)

This function passes the command-line arguments to the flash filesystem component,
which then initializes itself.

f3s_start()
f3s_start (f3s_service_t *service,

f3s_flash_t *flash)

This function passes the service and flash arrays to the filesystem component so it can
make calls to the socket and flash services, and then starts the driver. This function
returns only when the driver is about to exit.

When writing your main.c, you’ll need to enter:

• the socket services functions for each socket in the service array

• the flash services functions for each flash device in the flash array.

If you have a system with only one socket consisting of the same flash devices, then
there will be only a single entry in each array.

Socket services interface
The socket services interface, defined in the <fs/f3s_socket.h> header file,
consists of the following functions:

• f3s_open()

• f3s_page()

• f3s_status()

• f3s_close()

• f3s_socket_option()

• f3s_socket_syspage()

f3s_open()
int32_t f3s_open (f3s_socket_t *socket,

uint32_t flags)

This function is called to initialize a socket or a particular window in a socket. The
function should process any socket options, initialize and map in the flash devices, and
initialize the socket structure.

f3s_page()
uint8_t *f3s_page (f3s_socket_t *socket,

uint32_t flags,
uint32_t offset,
int32_t *size)

April 20, 2009 Chapter 6 • Customizing the Flash Filesystem 167

Building your flash filesystem driver © 2009, QNX Software Systems GmbH & Co. KG.

This function is called to access a window_size sized window at address offset from
the start of the device; it must be provided for both bank-switched and linearly mapped
flash devices. If the size parameter is non-NULL, you should set it to the size of the
window. The function must return a pointer suitable for accessing the device at
address offset. On error, it should return NULL and set errno to ERANGE.

f3s_status()
int32_t f3s_status (f3s_socket_t *socket,

uint32_t flags)

This function is called to get the socket status. It’s used currently only for interfaces
that support dynamic insertion and removal. For onboard flash, you should simply
return EOK.

f3s_close()
void f3s_close (f3s_socket_t *socket,

uint32_t flags)

This function is called to close the socket. If you need to, you can disable the flash
device and remove any programming voltage, etc.

The following flags are defined for the flags parameter in the socket functions:

F3S_POWER_VCC Apply read power.

F3S_POWER_VPP Apply program power.

F3S_OPER_SOCKET Operation applies to socket given in socket_index.

F3S_OPER_WINDOW

Operation applies to window given in window_index.

The socket parameter is used for passing arguments and returning results from the
socket services and for storing information about each socket. To handle complex
interfaces such as PCMCIA, the structure has been defined so that there can be more
than one socket; each socket can have more than one window. A simple linear flash
array would have a single socket and no windows.

The socket structure is defined as:

typedef struct f3s_socket_s
{

/*
* these fields are initialized by the flash file system
* and later validated and set by the socket services
*/

_Uint16t struct_size; /* size of this structure */
_Uint16t status; /* status of this structure */
_Uint8t *option; /* option string from flashio */
_Uint16t socket_index; /* index of socket */
_Uint16t window_index; /* index of window */

/*
* these fields are initialized by the socket services and later

168 Chapter 6 • Customizing the Flash Filesystem April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Building your flash filesystem driver

* referenced by the flash file system
*/

_Uint8t *name; /* name of driver */
_Paddr64t address; /* physical address 0 for allocated */
_Uint32t window_size; /* size of window power of two mandatory */
_Uint32t array_offset; /* offset of array 0 for based */
_Uint32t array_size; /* size of array 0 for window_size */
_Uint32t unit_size; /* size of unit 0 for probed */
_Uint32t flags; /* flags for capabilities */
_Uint16t bus_width; /* width of bus */
_Uint16t window_num; /* number of windows 0 for not windowed */

/*
* these fields are initialized by the socket services and later
* referenced by the socket services
*/

_Uint8t* memory; /* access pointer for window memory */
void *socket_handle; /* socket handle pointer for external

library */
void *window_handle; /* window handle pointer for external

library */

/*
* this field is modified by the socket services as different window
* pages are selected
*/

_Uint32t window_offset; /* offset of window */
}
f3s_socket_t;

Here’s a description of the fields:

option Option string from command line; parse using the
f3s_socket_option() function.

socket_index Current socket.

window_index Current window.

name String containing name of driver.

address Base address of flash array.

window_size Size of window in bytes.

array_size Size of array in bytes; 0 indicates unknown.

unit_size Size of unit in bytes; 0 indicates probed.

flags The flags field is currently unused.

bus_width Width of the flash devices in bytes.

window_num Number of windows in socket; 0 indicates non-windowed.

memory Free for use by socket services; usually stores current window
address.

April 20, 2009 Chapter 6 • Customizing the Flash Filesystem 169

Building your flash filesystem driver © 2009, QNX Software Systems GmbH & Co. KG.

socket_handle Free for use by socket services; usually stores pointer to any extra
data for socket.

window_handle Free for use by socket services; usually stores pointer to any extra
data for window.

window_offset Offset of window from base of device in bytes.

Options parsing
The socket services should parse any applicable options before initializing the flash
devices in the f3s_open() function. Two support functions are provided for this:

f3s_socket_option()
int f3s_socket_option (f3s_socket_t *socket)

Parse the driver command-line options that apply to the socket services.

Currently the following options are defined:

-s baseaddress,windowsize, arrayoffset, arraysize, unitsize, buswidth, interleave

where:

baseaddress Base address of the socket/window.

windowsize Size of the socket/window.

arrayoffset Offset of window from base of devices in bytes.

arraysize Size of array in bytes, 0 indicates unknown.

buswidth Memory bus attached to the flash chips.

interleave Number of physical chips interleaved to form a larger logical chip
(e.g. two 16-bit chips interleaved to form a 32-bit logical chip).

f3s_socket_syspage()
int f3s_socket_syspage (f3s_socket_t *socket)

Parse the syspage options that apply to the socket services.

The syspage options allow the socket services to get any information about the flash
devices in the system that is collected by the startup program and stored in the syspage.
See the chapter on Customizing Image Startup Programs for more information.

Flash services interface
The flash services interface, defined in the <fs/f3s_flash.h> header file, consists
of the following functions:

• f3s_ident()

• f3s_reset()

170 Chapter 6 • Customizing the Flash Filesystem April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Building your flash filesystem driver

• f3s_v2read()

• f3s_v2write()

• f3s_v2erase()

• f3s_v2suspend()

• f3s_v2resume()

• f3s_v2sync()

• f3s_v2islock()

• f3s_v2lock()

• f3s_v2unlock()

• f3s_v2unlockall()

The values for the flags parameter are defined in <fs/s3s_flash.h>. The most
important one is F3S_VERIFY_WRITE. If this is set, the routine must perform a
read-back verification after the write as a double check that the write succeeded.
Occasionally, however, the hardware reports success even when the write didn’t work
as expected.

f3s_ident()
int32_t f3s_ident (f3s_dbase_t *dbase,

f3s_access_t *access,
uint32_t text_offset,
uint32_t flags)

Identifies the flash device at address text_offset and fills in the dbase structure with
information about the device type and geometry.

f3s_reset()
void f3s_reset (f3s_dbase_t *dbase,

f3s_access_t *access,
uint32_t text_offset)

Resets the flash device at address text_offset into the default read-mode after calling
the fs3_ident() function or after a device error.

f3s_v2read()
int32_t f3s_v2read (f3s_dbase_t *dbase,

f3s_access_t *access,
_Uint32t flags,
_Uint32t text_offset,
_Int32t buffer_size,
_Uint8t *buffer);

This optional function is called to read buffer_size bytes from address text_offset into
buffer. Normally the flash devices will be read directly via memcpy().

On success, it should return the number of bytes read. If an error occurs, it should
return -1 with errno set to one of the following:

April 20, 2009 Chapter 6 • Customizing the Flash Filesystem 171

Building your flash filesystem driver © 2009, QNX Software Systems GmbH & Co. KG.

EIO Recoverable I/O error (e.g. failed due to low power, but corruption
is localized and block will be usable after erasing).

EFAULT Unrecoverable I/O error (e.g. block no longer usable).

EINVAL Invalid command error.

ERANGE Flash memory access out of range (via service->page function).

ENODEV Flash no longer accessible (e.g. flash removed).

ESHUTDOWN Critical error; shut down the flash driver.

f3s_v2write()
int32_t f3s_v2write (f3s_dbase_t *dbase,

f3s_access_t *access,
_Uint32t flags,
_Uint32t text_offset,
_Int32t buffer_size,
_Uint8t *buffer);

This function writes buffer_size bytes from buffer to address text_offset.

On success, it should return the number of bytes written. If an error occurs, it should
return -1 with errno set to one of the following:

EIO Recoverable I/O error (e.g. failed due to low power or write failed,
but corruption is localized and block will be usable after erasing).

EFAULT Unrecoverable I/O error (e.g. block no longer usable).

EROFS Block is write protected.

EINVAL Invalid command error.

ERANGE Flash memory access out of range (via service->page function).

ENODEV Flash no longer accessible (e.g. flash removed).

ESHUTDOWN Critical error; shut down the flash driver.

f3s_v2erase()
int f3s_v2erase (f3s_dbase_t *dbase,

f3s_access_t *access,
_Uint32t flags,
_Uint32t text_offset);

This function begins erasing the flash block containing the text_offset. It can
optionally determine if an error has already occurred, or it can just return EOK and let
f3s_v2sync() detect any error.

On success, it should return EOK. If an error occurs, it should return one of the
following:

172 Chapter 6 • Customizing the Flash Filesystem April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Building your flash filesystem driver

EIO Recoverable I/O error (e.g. failed due to low power or erase
failed, but corruption is localized and block will be usable after
an erase)

EFAULT Unrecoverable I/O error (e.g. block no longer usable)

EROFS Block is write protected

EINVAL Invalid command error

EBUSY Flash busy, try again (e.g. erasing same block twice)

ERANGE Flash memory access out of range (via service->page function)

ENODEV Flash no longer accessible (e.g. flash removed)

ESHUTDOWN Critical error; shut down the flash driver.

f3s_v2suspend()
int f3s_v2suspend (f3s_dbase_t *dbase,

f3s_access_t *access,
_Uint32t flags,
_Uint32t text_offset);

This function suspends an erase operation, when supported, for a read or for a write.

On success, it should return EOK. If an error occurs, it should return one of the
following:

EIO Recoverable I/O error (e.g. failed due to low power or erase failed,
but corruption is localized and block will be usable after erasing).

EFAULT Unrecoverable I/O error (e.g. block no longer usable).

EINVAL Invalid command error.

ECANCELED Suspend canceled because erase has already completed.

ERANGE Flash memory access out of range (via service->page function).

ENODEV Flash no longer accessible (e.g. flash removed).

ESHUTDOWN Critical error; shut down the flash driver.

f3s_v2resume()
int f3s_v2resume (f3s_dbase_t *dbase,

f3s_access_t *access,
_Uint32t flags,
_Uint32t text_offset);

This function resumes an erase operation after a suspend command has been issued.

On success, it should return EOK. If an error occurs, it should return one of the
following:

April 20, 2009 Chapter 6 • Customizing the Flash Filesystem 173

Building your flash filesystem driver © 2009, QNX Software Systems GmbH & Co. KG.

EIO Recoverable I/O error (e.g. failed due to low power or erase failed,
but corruption is localized and block will be usable after erasing).

EFAULT Unrecoverable I/O error (e.g. block no longer usable).

EINVAL Invalid command error.

ERANGE Flash memory access out of range (via service->page function).

ENODEV Flash no longer accessible (e.g. flash removed).

ESHUTDOWN Critical error; shut down the flash driver.

f3s_v2sync()
int f3s_v2sync (f3s_dbase_t *dbase,

f3s_access_t *access,
_Uint32t flags,
_Uint32t text_offset);

This function determines whether an erase operation has completed and returns any
detected error.

On success, it should return EOK. If an error occurs, it should return one of the
following:

EAGAIN Still erasing.

EIO Recoverable I/O error (e.g. failed due to low power or erase failed,
but corruption is localized and block will be usable after an erase).

EFAULT Unrecoverable I/O error (e.g. block no longer usable).

EROFS Block is write protected.

EINVAL Invalid command error.

ERANGE Flash memory access out of range (via service->page function).

ENODEV Flash no longer accessible (e.g. flash removed).

ESHUTDOWN Critical error; shut down the flash driver.

f3s_v2islock()
int f3s_v2islock (f3s_dbase_t *dbase,

f3s_access_t *access,
_Uint32t flags,
_Uint32t text_offset);

This function determines whether the block containing the address text_offset can be
written to (we term it as success) or not.

On success, it should return EOK. If the block cannot be written to, it should return
EROFS. Otherwise, an error has occurred and it should return one of the following:

174 Chapter 6 • Customizing the Flash Filesystem April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Building your flash filesystem driver

EIO Recoverable I/O error (e.g. failed due to low power or lock failed,
but corruption is localized and block will be usable after an erase).

EFAULT Unrecoverable I/O error (e.g. block no longer usable).

EINVAL Invalid command error.

ERANGE Flash memory access out of range (via service->page function).

ENODEV Flash no longer accessible (e.g. flash removed).

ESHUTDOWN Critical error; shut down the flash driver.

f3s_v2lock()
int f3s_v2lock (f3s_dbase_t *dbase,

f3s_access_t *access,
_Uint32t flags,
_Uint32t text_offset);

This function write-protects the block containing the address text_offset (if supported).
If the block is already locked, it does nothing.

On success, it should return EOK. If an error occurs, it should return one of the
following:

EIO Recoverable I/O error (e.g. failed due to low power or lock failed,
but corruption is localized and block will be usable after an erase).

EFAULT Unrecoverable I/O error (e.g. block no longer usable).

EINVAL Invalid command error.

ERANGE Flash memory access out of range (via service->page function).

ENODEV Flash no longer accessible (e.g. flash removed).

ESHUTDOWN Critical error; shut down the flash driver.

f3s_v2unlock()
int f3s_v2unlock (f3s_dbase_t *dbase,

f3s_access_t *access,
_Uint32t flags,
_Uint32t text_offset);

This function clears write-protection of the block containing the address text_offset (if
supported). If the block is already unlocked, it does nothing. Note that some devices
do not support unlocking of arbitrary blocks. Instead all blocks must be unlocked at
the same time. In this case, use f3s_v2unlockall() instead.

On success, it should return EOK. If an error occurs, it should return one of the
following:

EIO Recoverable I/O error (e.g. failed due to low power or unlock
failed, but corruption is localized and block will be usable after an
erase).

April 20, 2009 Chapter 6 • Customizing the Flash Filesystem 175

Building your flash filesystem driver © 2009, QNX Software Systems GmbH & Co. KG.

EFAULT Unrecoverable I/O error (e.g. block no longer usable).

EINVAL Invalid command error.

ERANGE Flash memory access out of range (via service->page function).

ENODEV Flash no longer accessible (e.g. flash removed).

ESHUTDOWN Critical error; shut down the flash driver.

f3s_v2unlockall()
int f3s_v2unlockall (f3s_dbase_t *dbase,

f3s_access_t *access,
_Uint32t flags,
_Uint32t text_offset);

This function clears all write-protected blocks on the device containing the address
text_offset. Some boards use multiple chips to form one single logical device. In this
situation, each chip will have f3s_v2unlockall() invoked on it separately.

On success, it should return EOK. If an error occurs, it should return one of the
following:

EIO Recoverable I/O error (e.g. failed due to low power or unlock
failed, but corruption is localized and block will be usable after an
erase).

EFAULT Unrecoverable I/O error (e.g. block no longer usable).

EINVAL Invalid command error.

ERANGE Flash memory access out of range (via service->page function).

ENODEV Flash no longer accessible (e.g. flash removed).

ESHUTDOWN Critical error; shut down the flash driver.

We currently don’t support user-customized flash services, nor do we supply detailed
descriptions of the flash services implementation.

Choosing the right routines
We provide several device-specific variants of the core set of flash services:

• f3s_ident()

• f3s_reset()

• f3s_v2write()

• f3s_v2erase()

176 Chapter 6 • Customizing the Flash Filesystem April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Example: The devf-ram driver

• f3s_v2suspend()

• f3s_v2resume()

• f3s_v2sync()

• f3s_v2islock()

• f3s_v2lock()

• f3s_v2unlock()

• f3s_v2unlockall().

For example, if you have a 16-bit Intel device and you want to use f3s_v2erase(),
you’d use the f3s_iCFI_v2erase() routine.

For more information, see the technical note Choosing the correct MTD Routine for
the Flash Filesystem.

The file <sys/f3s_mtd.h> can be found in:

bsp_working_dir/src/hardware/flash/mtd-flash/public/sys/f3s_mtd.h.

Example: The devf-ram driver
This driver uses main memory rather than flash for storing the flash filesystem.
Therefore, the filesystem is not persistent — all data is lost when the system reboots or
/dev/shmem/fs0 is removed. This driver is used mainly for test purposes.

main()
In the main() function, we declare a single services array entry for the socket services
functions and a null entry for the flash services functions.

/*
** File: f3s_ram_main.c
**
** Description:
**
** This file contains the main function for the f3s
** flash filesystem
**
*/
#include "f3s_ram.h"

int main(int argc, char **argv)
{

int error;
static f3s_service_t service[] =
{

{
sizeof(f3s_service_t),
f3s_ram_open,
f3s_ram_page,

April 20, 2009 Chapter 6 • Customizing the Flash Filesystem 177

Example: The devf-ram driver © 2009, QNX Software Systems GmbH & Co. KG.

f3s_ram_status,
f3s_ram_close

},

{
/* mandatory last entry */
0, 0, 0, 0, 0

}
};

static f3s_flash_v2_t flash[] =
{

{
sizeof(f3s_flash_v2_t),
f3s_sram_ident, /* Common Ident */
f3s_sram_reset, /* Common Reset */
NULL, /* v1 Read (Deprecated) */
NULL, /* v1 Write (Deprecated) */
NULL, /* v1 Erase (Deprecated) */
NULL, /* v1 Suspend (Deprecated) */
NULL, /* v1 Resume (Deprecated) */
NULL, /* v1 Sync (Deprecated) */
NULL, /* v2 Read (Use default) */
f3s_sram_v2write, /* v2 Write */
f3s_sram_v2erase, /* v2 Erase */
NULL, /* v2 Suspend (Unused) */
NULL, /* v2 Resume (Unused) */
f3s_sram_v2sync, /* v2 Sync */
f3s_sram_v2islock, /* v2 Islock */
f3s_sram_v2lock, /* v2 Lock */
f3s_sram_v2unlock, /* v2 Unlock */
f3s_sram_v2unlockall /* v2 Unlockall */

},

{
/* mandatory last entry */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

}
};

/* init f3s */
f3s_init(argc, argv, (f3s_flash_t *)flash);

/* start f3s */
error = f3s_start(service, (f3s_flash_t *)flash);

return (error);
}

f3s_ram_open()
In the socket services open() function, we assign a name for the driver and then
process any options. If no options are specified, a default size is assigned and the
memory for the (virtual) flash is allocated.

/*
** File: f3s_ram_open.c
**
** Description:
**

178 Chapter 6 • Customizing the Flash Filesystem April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Example: The devf-ram driver

** This file contains the open function for the ram library
**
*/
#include "f3s_ram.h"

int32_t f3s_ram_open(f3s_socket_t *socket,
uint32_t flags)

{
static void * memory;
char name[8];
int fd;
int flag;

/* check if not initialized */
if (!memory)
{

/* get io privileges */
ThreadCtl(_NTO_TCTL_IO, NULL);

/* setup socket name */
socket->name = "RAM (flash simulation)";

/* check if there are socket options */
if (f3s_socket_option(socket))

socket->window_size = 1024 * 1024;

/* check if array size was not chosen */
if (!socket->array_size)

socket->array_size = socket->window_size;

/* check if array size was not specified */
if (!socket->array_size) return (ENXIO);

/* set shared memory name */
sprintf(name, "/fs%X", socket->socket_index);

/* open shared memory */
fd = shm_open(name, O_CREAT | O_RDWR, 0777);

if (fd < 0) return (errno);

/* set size of shared memory */
flag = ftruncate(fd, socket->array_size);

if (flag)
{

close(fd);
return (errno);

}

/* map physical address into memory */
memory = mmap(NULL, socket->array_size,

PROT_READ | PROT_WRITE,
MAP_SHARED, fd, socket->address);

if (!memory)
{

close(fd);
return (errno);

}

/* copy socket handle */
socket->socket_handle = (void *)fd;

April 20, 2009 Chapter 6 • Customizing the Flash Filesystem 179

Example: The devf-ram driver © 2009, QNX Software Systems GmbH & Co. KG.

}

/* set socket memory pointer to previously initialized
value */

socket->memory = memory;
return (EOK);

}

f3s_ram_page()
In the socket services page() function, we first check that the given offset doesn’t
exceed the bounds of the allocated memory, and then assign the window size if
required. The function returns the offset address modulo the window size.

/*
** File: f3s_ram_page.c
**
** Description:
**
** This file contains the page function for the ram library
**
*/
#include "f3s_ram.h"

uint8_t *f3s_ram_page(f3s_socket_t *socket,
uint32_t flags,
uint32_t offset,
int32_t *size)

{
/* check if offset does not fit in array */
if (offset >= socket->window_size)
{

errno = ERANGE;
return (NULL);

}

/* select proper page */
socket->window_offset = offset & ˜(socket->window_size - 1);

/* set size properly */
*size = min((offset & ˜(socket->window_size - 1)) +

socket->window_size - offset, *size);

/* return memory pointer */
return (socket->memory + offset);

}

The socket services status() and close() don’t do anything interesting in this driver.

180 Chapter 6 • Customizing the Flash Filesystem April 20, 2009

Appendix A

System Design Considerations

In this appendix. . .
Introduction 183
NMI 188
Design do’s and don’ts 188

April 20, 2009 Appendix: A • System Design Considerations 181

© 2009, QNX Software Systems GmbH & Co. KG. Introduction

Introduction
Since Neutrino is a protected-mode 32-bit operating system, many limiting design
considerations won’t apply (particularly on the x86 platform, which is steeped in DOS
and 8088 legacy concerns). By noting the various “do’s” and “don’ts” given in this
appendix, you’ll be able to design and build an embedded system tailored for Neutrino.

You may also be able to realize certain savings, in terms of design time, hardware
costs, and software customization effort.

Before you design your system
Before you begin designing your system, here are some typical questions you might
consider:

• What speed of processor do you need?

• How much memory is required?

• What peripherals are required?

• How will you debug the platform?

• How will you perform field upgrades?

Naturally, your particular system will dictate whether all of these (or others) are
relevant. But for the purposes of this discussion, we’ll assume all these considerations
apply.

Processor speed

Although Neutrino is a realtime operating system, this fact alone doesn’t necessarily
mean that any given application will run quickly. Graphical user interface applications
can consume a reasonable amount of CPU and are particularly sensitive to the
end-user’s perception of speed.

If at all possible, try to prototype the system on either a standard PC (in the case of
x86-based designs) or a supported evaluation board (in the case of x86, PPC, ARM,
SH, and MIPS designs). This will very quickly give you a “feel” for the speed of a
particular processor.

Memory requirements

During initial prototyping, you should plan on more memory on the target than during
the final stages. This is because you’ll often be running debugging versions of
software, which may be larger. Also, you’ll want to include diagnostics and utility
programs, which again will consume more memory than expected. Once your
prototype system is up and running, you can then start thinking about how much
memory you “really” need.

April 20, 2009 Appendix: A • System Design Considerations 183

Introduction © 2009, QNX Software Systems GmbH & Co. KG.

Peripherals

Given a choice, you should use peripherals that are listed as supported by Neutrino.
This includes such items as disk controllers, network cards, PC-Card controllers, flash
memory chips, and graphics controllers. For lists of supported hardware, see the
Community area of our website, http:www.qnx.com; for information about
third-party products, see the Download area.

Graphics controllers are one of the particularly delicate areas in the design of an
embedded system, often because a chip may be very new when it’s selected and we
may not yet have a driver for it. Also, if you’re using a graphics controller in
conjunction with an LCD panel, beware that this is perhaps the most complicated
setup because of the many registers that must be programmed to make it work.

Note that QNX Software Systems can do custom development work for you; for more
information, contact your sales representative. Other consulting houses offer similar
services to the QNX community.

Debugging

In many cases, especially in cost-sensitive designs, you won’t want to provide any
additional functionality beyond that absolutely required for the project at hand. But
since the project is usually a brand new design, you’ll need to ensure that the hardware
actually works per se and then actually works with the software.

We recommend that you install some form of easy-to-get-at hardware debugging port,
so that the software can output diagnostics as it’s booting. Generally, something as
simple as a latched output that can drive a single LED is sufficient, but an 8- or 16-bit
port that drives a number of 7-segment LEDs would be even better. Best of all is a
simple serial port, because more meaningful diagnostics can be written by the
software and easily captured.

This debug port can be left off for final assembly or a slightly modified “final” version
of the board can be created. The cost savings in terms of software development time
generally pay for the hardware modifications many times over.

Field upgrades

You can handle the issue of field upgrades in various ways, depending on the nature of
your particular target system:

• a JTAG port

• socketed Flash/EPROM devices

• a communications port.

You may need such a vehicle for your update software even during your initial
software development effort. At this early phase, you’ll effectively be performing
“field upgrades” as your software is being developed.

184 Appendix: A • System Design Considerations April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Introduction

Other design considerations
There are other design considerations that relate to both the hardware and software
development process. In this section, we’ll discuss some of the more common ones.

EPROM/Flash filesystem considerations

Solid-state mass storage can be located anywhere in the address space — it should be
linearly mapped. In legacy designs (particularly x86), the mass storage device was
often forced into a window of some size (typically from 8 KB to 64 KB), with
additional hardware being required to map that window into the processor’s address
space. Additionally, this window was traditionally located in the first 1 MB of
memory.

With a modern, 32-bit processor, the physical address space of the processor is usually
sufficient to address the entire mass storage device. In fact, this makes the software
easier by not having to worry about how to address the window-mapping hardware.

The two driving factors to be considered in the hardware design of solid-state media
are cost and compatibility. If the medium is to be soldered onto the board, then there’s
little chance that it may need to be compatible with other operating systems.
Therefore, simply map the entire medium into the address space of the processor and
don’t add additional hardware to perform windowing or bank switching.

Adhering to standards (e.g. PCMCIA, FFS2, etc.) for solid-state memory is also
unnecessary — our Flash filesystem drivers know how to address and use just a raw
Flash device.

When the time comes to decide on the logical layout of the flash memory chips, the
tradeoff will be between the size of the erase block and the speed of access. By taking
four flash devices and organizing them into a 32-bit wide bus, you gain speed.
However, you also increase the erase block size by a factor of four (e.g. 256 KB erase
blocks).

Note that we don’t recommend trying to XIP out of flash memory that’s being used for
a flash filesystem. This is because the flash filesystem may need to erase a particular
block of memory. While this erase operation is in progress, depending on the
particular type of flash memory device you have, the entire device may be unusable. If
this is also the device containing the code that the processor is actively executing
from, you’ll run into problems. Therefore, we recommend that you use at least two
independent sets of flash devices: one set for the filesystem and one set for the code.

IPL location

Under Neutrino, the only location requirement is that the ROM boot device that
performs the IPL be addressable at the processor’s reset vector. No special hardware
is required to be able to “move” the location of the boot ROM.

April 20, 2009 Appendix: A • System Design Considerations 185

Introduction © 2009, QNX Software Systems GmbH & Co. KG.

Graphics cards

All the drivers under Neutrino can be programmed to deal with graphics hardware at
any address — there’s no requirement to map the VGA video aperture below 1 MB.

A20 gate

On the x86 platform, another vestige of the legacy 1 MB address limitation is usually
found in something called an A20 gate. This is a piece of hardware that would force
the A20 address line to zero, regardless of the actual setting of the A20 address line on
the processor.

The justification for this was for legacy software that would depend on the ability to
wrap past location 0xFFFFF back to 0x00000. Neutrino doesn’t have such a
requirement. As a result, the OS doesn’t need any A20 gate hardware to be installed.
Note that some embedded x86 processors have the A20 gate hardware built right into
the processor chip itself — the IPL will disable the A20 gate as soon as possible after
startup.

If your system requires a standard BIOS, there’s a small chance that the BIOS will
make use of the A20 gate. To find out for certain, consult your BIOS supplier.

External ISA bus slots

Neutrino doesn’t require the external ISA bus to be mapped into the usual x86
0x00000-to-0xFFFFF address range. This simplifies the hardware design, eliminating
issues such as shadow RAM and the requirement to move a portion of the RAM
(usually 0xA0000 through 0xFFFFF) to some other location.

But if your hardware needs to run with a standard BIOS and to support BIOS
extensions, then this optimization can’t be implemented, because the BIOS expects
extensions at 0xA0000 through 0xEFFFF (typically).

PCI bus slots

In Neutrino, all PCI drivers interface to a PCI resource manager (e.g. pci-bios,
pci-p5064, pci-raven), which handles the hardware on behalf of the drivers.

For details, see the pci-* entries in the Utilities Reference.

External clocks

Neutrino can be driven with an external clock. In some systems there’s a “standard”
clock source supplied as part of the system or of the highly integrated CPU chip itself.
For convenience, the OS can operate with an external clock source that’s not generated
by this component. However, keep two things in mind:

• The timing resolution for software timers will be no better than the timing
resolution of the external clock.

• The hardware clock will be driving a software interrupt handler.

186 Appendix: A • System Design Considerations April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Introduction

Therefore, keep the rates down to a reasonable number. Almost all modern processors
can handle clock interrupts at 1 kHz or lower — processors with higher CPU clock
rates (e.g. Pentium-class, 300 MHz RISC processors, etc.) can handle faster clock
interrupts.

Note that there’s no requirement to keep the clock frequency to some “round number.”
If it’s convenient to derive the clock interrupt from a baud rate generator or other
crystal, the OS will be able to accurately scale the incoming clock rate for use in its
internal timers and time-of-day clocks.

Interrupts & controllers

On an x86 design, the default startup supports two Programmable Interrupt Controllers
(PICs). These must be 8259-compatible, with the standard configuration of a
secondary 8259 connected to the IRQ2 line of the primary interrupt controller.

Beware of hanging devices off IRQ7 and IRQ15 on an 8259 chip — these are
generally known as the “glitch interrupts” and can be unreliable.

If your x86 hardware design differs, there’s no constraint about the PICs, but you must
write the code to handle them.

On non-x86 designs, be aware that there may be only one interrupt line going to the
processor and that a number of hardware devices may be sharing that one line. This is
generally accomplished in one of two ways:

• wire-OR

• PIC chip

In either case, the relevant design issue is to determine the ordering and priority of
interrupts from hardware sources. You’ll want to arrange the hardware and software to
give highest priority (and first order) to the interrupt source that has the most stringent
latency requirements. (For more details, see the chapter on Writing an Interrupt
Handler in the Programmer’s Guide, along with the InterruptAttach() and
InterruptAttachEvent() function calls in the Library Reference.)

Serial and parallel ports

Serial and parallel ports are certainly desirable — and highly recommended — but not
required. The 16550 component with 16-byte FIFOs is suitable for Neutrino. Our
drivers can work with these devices on a byte-aligned or doubleword-aligned manner.

If you’re going to support multiple serial ports on your device, you can have the
multiple devices share the same interrupt. It’s up to the software to decide which
device generated the interrupt and then to handle that interrupt. The standard Neutrino
serial port handlers are able to do this.

Although the serial driver can be told to use a “nonstandard” clock rate when
calculating its divisor values, this can cause the baud rate to deviate from the standard.

April 20, 2009 Appendix: A • System Design Considerations 187

NMI © 2009, QNX Software Systems GmbH & Co. KG.

Try to run DTR, DSR, RTS, CTS if possible, because hardware flow control will help
on slower CPUs.

Parallel port considerations

Generally, the parallel port does not require an interrupt line — this isn’t used by our
standard parallel port drivers.

NMI
Avoid the Non-Maskable Interrupt (NMI) in x86 designs. PPC, MIPS, ARM, and
SH-4 don’t even support it.

An NMI is an interrupt which can’t be disabled by clearing the CPU’s interrupt enable
flag, unlike most normal interrupts. Non-Maskable interrupts are typically used to
signal events that require immediate action, such as a parity error, a hardware failure,
or imminent loss of power.

The problem with NMIs is that they can occur even when interrupts have been
disabled. This is important because sometimes it’s assumed that interrupts can be
masked to avoid being interrupted. NMIs undermine this assumption and this can lead
to unexpected behaviour if an NMI fires during a period in which that software expects
to be operating without interruption.

For this reason, NMIs are normally only used when the subsequent condition of the
machine is not a relevant consideration; for instance, when the machine is about to
shut down, or when an unrecoverable hardware error has occurred.

Anytime an NMI is used, any software may experience unexpected behavior and
there’s no good way to predict what the behavior may be.

Design do’s and don’ts
Before you commit to a design, take a look at the following tips — you may save
yourself some grief. Although some of these points assume you’re relying on our
Custom Engineering services, the principles behind all of them are sound.

Do:
• Do design in more speed/memory than you think you need.

• Do try a proof of concept using off-the-shelf hardware, if possible.

• Do have a serial port/debug output device on the board; have it reasonably close to
the CPU in hardware terms (i.e. don’t put it on the other side of a PCI bridge).

• Do allow the ROM/flash devices holding the IPL code to be socketed.

• If you’re using a MIPS processor, make sure any devices needed by the IPL/startup
sequence are in the physical address range of 0x00000000 to 0x20000000 — that
makes it accessible from the kseg1 virtual address block.

188 Appendix: A • System Design Considerations April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Design do’s and don’ts

• Do consider staggering a device’s ports by any power of 2, but don’t mix up the
address lines so that the I/O registers appear in a strange order.

• Do try to use a timer chip that allows free-running operation, rather than one that
requires poking after every interrupt.

• Do put the timer on its own interrupt line so that the kernel doesn’t have to check
that the interrupt actually came from the timer.

• Do follow the CPU’s interface for reporting a bus error — don’t report it as a
hardware interrupt.

• If you have optional pieces, make sure you have some positive method of
determining what pieces are present (something other than poking at it and seeing
if it responds).

• Do run your design by us, ideally before you build it.

• Do make a point of stating requirements you think are obvious.

• Do remember to point out any pitfalls you know about.

• Do send us as much documentation as you have available on chipsets, panels, etc.

Don’t:
• Don’t use write-only registers.

• Don’t nest interrupt controller chips too deeply — one big wide interrupt controller
is better.

• Don’t use hardware that requires short delays between register accesses (e.g. Zilog
SCC).

• Don’t put information from many different places into the same I/O register
location if the OS/drivers also have to do RMW cycles to it.

• Don’t decide that no-BIOS is the way to go just because it sounds cool.

• Don’t use a $2.00 chip instead of a $3.00 chip and expect the performance of a
$10.00 chip.

• Don’t build your first run of boards without leaving a way to debug the system.

• Don’t build your first run of boards with only 1 MB of RAM on board.

• Don’t send us anything without correct schematics that match what you send.

• Don’t program the flash and then solder it on, leaving us with no option to
reprogram it.

• Don’t build just one prototype that must be shipped back and forth several times.

April 20, 2009 Appendix: A • System Design Considerations 189

Appendix B

Sample Buildfiles

In this appendix. . .
Introduction 193
Generic examples 193
Processor-specific notes 200

April 20, 2009 Appendix: B • Sample Buildfiles 191

© 2009, QNX Software Systems GmbH & Co. KG. Introduction

Introduction
In this appendix, we’ll look at some typical buildfiles you can use with mkifs or
import into the IDE’s System Builder to get your system up and running. This
appendix is divided into two main parts:

• a “generic” part that contains some incomplete cut-and-paste fragments illustrating
common techniques, as well as complete samples for the x86 platform.

• processor-specific notes.

We finish with a section for each of the supported processor platforms, showing you
differences from the x86 samples and noting things to look out for.

Note that you should read both the section for your particular processor as well as the
section on generic samples, because things like shared objects (which are required by
just about everything) are documented in the generic section.

Generic examples
In this section, we’ll look at some common buildfile examples that are applicable
(perhaps with slight modifications, which we’ll note) to all platforms. We’ll start with
some fragments that illustrate various techniques, and then we’ll wrap up with a few
complete buildfiles. In the “Processor-specific notes” section, we’ll look at what needs
to be different for the various processor families.

Shared libraries
The first thing you’ll need to do is to ensure that the shared objects required by the
various drivers you’ll be running are present. All drivers require at least the standard C
library shared object (libc.so). Since the shared object search order looks in
/proc/boot, you don’t have to do anything special, except include the shared library
into the image. This is done by simply specifying the name of the shared library on a
line by itself, meaning “include this file.”

The runtime linker is expected to be found in a file called ldqnx.so.2, but the
runtime linker is currently contained within the libc.so file, so we would make a
process manager symbolic link to it.

The following buildfile snippet applies:

include the C shared library
libc.so
create a symlink called ldqnx.so.2 to it
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so

How do you determine which shared objects you need in the image? You can use the
objdump utility to display information about the executables you’re including in the
image; look for the objects marked as NEEDED For example, suppose you’re including
ping in your image:

April 20, 2009 Appendix: B • Sample Buildfiles 193

Generic examples © 2009, QNX Software Systems GmbH & Co. KG.

$ objdump -x ‘which ping‘ | grep NEEDED
objdump: /usr/bin/ping: no symbols

NEEDED libsocket.so.2
NEEDED libc.so.3

The ping executable needs libsocket.so.2 and libc.so.3. You need to use
objdump recursively to see what these shared objects need:

$ objdump -x /lib/libsocket.so.2 | grep NEEDED
NEEDED libc.so.3

$ objdump -x /lib/libc.so.3 | grep NEEDED

The libsocket.so.2 shared object needs only libc.so.3, which, in turn, needs
nothing. So, if you’re including ping in your image, you also need to include these
two shared objects.

Running executables more than once
If you want to be able to run executables more than once, you’ll need to specify the
[data=copy] attribute for those executables. If you want it to apply to all
executables, just put it on a line by itself before the executables. This causes the data
segment to be copied before it’s used, preventing it from being overwritten by the first
invocation of the program.

Multiple consoles
For systems that have multiple consoles or multiple serial ports, you may wish to have
the shell running on each of them. Here’s an example showing you how that’s done:

[+script] .script = {
start any other drivers you need here
devc-con -e -n4 &
reopen /dev/con1
[+session] esh &
reopen /dev/con2
[+session] esh &
...

As you can see, the trick is to:

1 Start the console driver with the -n option to ask for more than one console (in
this case, we asked for four virtual consoles).

2 Redirect standard input, output, and error to each of the consoles in turn.

3 Start the shell on each console.

It’s important to run the shell in the background (via the ampersand character “&”) —
if you don’t, then the interpretation of the script will suspend until the shell exits!

Starting other programs on consoles

Generally speaking, this method can be used to start various other programs on the
consoles (that is to say, you don’t have to start the shell; it could be any program).

194 Appendix: B • Sample Buildfiles April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Generic examples

To do this for serial ports, start the appropriate serial driver (e.g. devc-ser8250), and
redirect standard input, output, and error for each port (e.g. /dev/ser1, /dev/ser2).
Then run the appropriate executable (in the background!) after the redirection.

The [+session] directive makes the program the session leader (as per POSIX) —
this may not be necessary for arbitrary executables.

Redirection

You can do the reopen on any device as many times as you want. You would do this,
for example, to start a program on /dev/con1, then start the shell on /dev/con2,
and then start another program on /dev/con1 again:

[+script] .script = {
...
reopen /dev/con1
prog1 &
reopen /dev/con2
[+session] esh &
reopen /dev/con1
prog2 &
...

/tmp

To create the /tmp directory on a RAM-disk, you can use the following in your
buildfile:

[type=link] /tmp = /dev/shmem

This will establish /tmp as a symbolic link in the process manager’s pathname table to
the /dev/shmem directory. Since the /dev/shmem directory is really the place where
shared memory objects are stored, this effectively lets you create files on a RAM-disk
— files created are, in reality, shared memory objects living in RAM.

Note that the line containing the link attribute (the [type=link] line) should be
placed outside of the script file or boot file — after all, you’re telling mkifs that it
should create a file that just happens to be a link rather than a “real” file.

Complete example — minimal configuration
This configuration file does the bare minimum necessary to give you a shell prompt on
the first serial port:

[virtual=ppcbe,srec] .bootstrap = {
startup-rpx-lite -Dsmc1.115200.64000000.16
PATH=/proc/boot procnto-800

}
[+script] .script = {

devc-serppc800 -e -F -c64000000 -b115200 smc1 &
reopen

[+session] PATH=/proc/boot esh &
}

[type=link] /dev/console=/dev/ser1

April 20, 2009 Appendix: B • Sample Buildfiles 195

Generic examples © 2009, QNX Software Systems GmbH & Co. KG.

[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so

libc.so

[data=copy]
devc-serppc800
esh
specify executables that you want to be able
to run from the shell: echo, ls, pidin, etc...
echo
ls
pidin
cat
cp

Complete example — flash filesystem
Let’s now examine a complete buildfile that starts up the flash filesystem:

[virtual=x86,bios +compress] .bootstrap = {
startup-bios
PATH=/proc/boot:/bin procnto

}

[+script] .script = {
devc-con -e -n5 &
reopen /dev/con1
devf-i365sl -r -b3 -m2 -u2 -t4 &
waitfor /fs0p0
[+session] TERM=qansi PATH=/proc/boot:/bin esh &

}

[type=link] /tmp=/dev/shmem
[type=link] /bin=/fs0p0/bin
[type=link] /etc=/fs0p0/etc

libc.so
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so
libsocket.so

[data=copy]

devf-i365sl
devc-con
esh

The buildfile’s .bootstrap specifies the usual startup-bios and procnto (the
startup program and the kernel). Notice how we set the PATH environment variable to
point not only to /proc/boot, but also to /bin — the /bin directory is a link
(created with the [type=link]) to the flash filesystem’s /fs0p0/bin path.

In the .script file, we started up the console driver with five consoles, reopened
standard input, output, and error for /dev/con1, and started the flash filesystem
driver devf-i365sl. Let’s look at the command-line options we gave it:

-r Enable fault recovery for dirty extents, dangling extents, and partial reclaims.

-b3 Enable background reclaim at priority 3.

196 Appendix: B • Sample Buildfiles April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Generic examples

-u2 Specify the highest update level (2) to update files and directories.

-t4 Specify the highest number of threads. Extra threads will increase
performance when background reclaim is enabled (with the -b option) and
when multiple chips and/or spare blocks are available.

The devf-i365sl will automatically mount the flash partition as /fs0p0. Notice the
process manager symbolic links we created at the bottom of the buildfile:

[type=link] /bin=/fs0p0/bin
[type=link] /etc=/fs0p0/etc

These give us /bin and /etc from the flash filesystem.

Complete example — disk filesystem
In this example, we’ll look at a filesystem for rotating media. Notice the shared
libraries that need to be present:

[virtual=x86,bios +compress] .bootstrap = {
startup-bios
PATH=/proc/boot:/bin LD_LIBRARY_PATH=/proc/boot:/lib:/dll procnto

}

[+script] .script = {
pci-bios &
devc-con &
reopen /dev/con1

Disk drivers
devb-eide blk cache=2m,automount=hd0t79:/,automount=cd0:/cd &

Wait for a bin for the rest of the commands
waitfor /x86 10

Some common servers
pipe &
mqueue &
devc-pty &

Start the main shell
[+session] esh &

}

make /tmp point to the shared memory area
[type=link] /tmp=/dev/shmem

Redirect console messages
[type=link] /dev/console=/dev/ser1

Programs require the runtime linker (ldqnx.so) to be at
a fixed location
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so

Add for HD support
[type=link] /usr/lib/libcam.so.2=/proc/boot/libcam.so

add symbolic links for bin, dll, and lib
(files in /x86 with devb-eide)

April 20, 2009 Appendix: B • Sample Buildfiles 197

Generic examples © 2009, QNX Software Systems GmbH & Co. KG.

[type=link] /bin=/x86/bin
[type=link] /dll=/x86/lib/dll
[type=link] /lib=/x86/lib

We use the C shared lib (which also contains the runtime linker)
libc.so

Just in case someone needs floating point and our CPU doesn’t
have a floating point unit
fpemu.so.2

Include the hard disk shared objects so we can access the disk
libcam.so
io-blk.so

For the QNX 4 filesystem
cam-disk.so
fs-qnx4.so

For the UDF filesystem and the PCI
cam-cdrom.so
fs-udf.so
pci-bios

Copy code and data for all executables after this line
[data=copy]

Include a console driver, shell, etc.
esh
devb-eide
devc-con

For this release of Neutrino, you can’t use the floating-point emulator (fpemu.so) in
statically linked executables.

In this buildfile, we see the startup command line for the devb-eide command:

devb-eide blk cache=2m,automount=hd0t79:/automount=cd0:/cd &

This line indicates that the devb-eide driver should start and then pass the string
beginning with the cache= through to the end (except for the ampersand) to the block
I/O file (io-blk.so). This will examine the passed command line and then start up
with a 2-megabyte cache (the cache=2m part), automatically mount the partition
identified by hd0t79 (the first QNX filesystem partition) as the pathname /hd, and
automatically mount the CD-ROM as /cd.

Once this driver is started, we then need to wait for it to get access to the disk and
perform the mount operations. This line does that:

waitfor /ppcbe/bin

This waits for the pathname /ppcbe/bin to show up in the pathname space. (We’re
assuming a formatted hard disk that contains a valid QNX filesystem with
${QNX_TARGET} copied to the root.)

Now that we have a complete filesystem with all the shipped executables installed, we
run a few common executables, like the Pipe server.

198 Appendix: B • Sample Buildfiles April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Generic examples

Finally, the list of shared objects contains the .so files required for the drivers and the
filesystem.

Complete example — TCP/IP with network filesystem
Here’s an example of a buildfile that starts up an Ethernet driver, the TCP/IP stack, and
the network filesystem:

[virtual=armle,elf +compress] .bootstrap = {
startup-abc123 -vvv
PATH=/proc/boot procnto

}
[+script] .script = {

devc-ser8250 -e -b9600 0x1d0003f8,0x23 &
reopen

Start the PCI server
pci-abc123 &
waitfor /dev/pci

Network drivers and filesystems
io-pkt-v4 -dtulip-abc123 &
waitfor /dev/socket
ifconfig en0 10.0.0.1
fs-nfs3 10.0.0.2:/armle/ / 10.0.0.2:/etc /etc &

Wait for a "bin" for the rest of the commands
waitfor /usr/bin

Some common servers
pipe &
mqueue &
devc-pty &

[+session] sh &
}

make /tmp point to the shared memory area
[type=link] /tmp=/dev/shmem

Redirect console messages
[type=link] /dev/console=/dev/ser1

Programs require the runtime linker (ldqnx.so) to be at
a fixed location
[type=link] /usr/lib/ldqnx.so.2=/proc/boot/libc.so
We use the C shared lib (which also contains the runtime linker)
libc.so

If some one needs floating point...
fpemu.so.2

Include the network files so we can access files across the net
devn-tulip-abc123.so

Include the socket library
libsocket.so
[data=copy]

Include the network executables.
devc-ser8250
io-pkt-v4
fs-nfs3

April 20, 2009 Appendix: B • Sample Buildfiles 199

Processor-specific notes © 2009, QNX Software Systems GmbH & Co. KG.

For this release of Neutrino, you can’t use the floating-point emulator (fpemu.so.2)
in statically linked executables.

This buildfile is very similar to the previous one shown for the disk. The major
difference is that instead of starting devb-eide to get a disk filesystem driver
running, we started io-pkt-v4 to get the network drivers running. The -d specifies
the driver that should be loaded, in this case the driver for a DEC 21x4x
(Tulip)-compatible Ethernet controller.

Once the network manager is running, we need to synchronize the script file
interpretation to the availability of the drivers. That’s what the waitfor
/dev/socket is for — it waits for the network manager to initialize itself. The
ifconfig en0 10.0.0.1 command then specifies the IP address of the interface.

The next thing started is the NFS filesystem module, fs-nfs3, with options telling it
that it should mount the filesystem present on 10.0.0.2 in two different places:
${QNX_TARGET} should be mounted in /, and /etc should be mounted as /etc.

Since it may take some time to go over the network and establish the mounting, we see
another waitfor, this time ensuring that the filesystem on the remote has been
correctly mounted (here we assume that the remote has a directory called
${QNX_TARGET}/armle/bin— since we’ve mounted the remote’s
${QNX_TARGET} as /, the waitfor is really waiting for armle/bin under the
remote’s ${QNX_TARGET} to show up).

Processor-specific notes
In this section, we’ll look at what’s different from the generic files listed above for
each processor family. Since almost everything that’s processor- and platform-specific
in Neutrino is contained in the kernel and startup programs, there’s very little change
required to go from an x86 with standard BIOS to, for example, a PowerPC 800
evaluation board.

Specifying the processor
The first obvious difference is that you must specify the processor that the buildfile is
for. This is actually a simple change — in the [virtual=...] line, substitute the
x86 specification with armle, mipsbe, ppcbe, or shle.

Examples

For this CPU: Use this attribute:

ARM (little-endian) [virtual=armle,binary]

MIPS (big-endian) [virtual=mipsbe,elf]

continued. . .

200 Appendix: B • Sample Buildfiles April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Processor-specific notes

For this CPU: Use this attribute:

PPC (big-endian) [virtual=ppcbe,openbios]

SH-4 (little-endian) [virtual=shle,srec]

Specifying the startup program
Another difference is that the startup program is tailored not only for the processor
family, but also for the actual board the processor runs on. If you’re not running an
x86 with a standard BIOS, you should replace the startup-bios command with one
of the many startup-* programs we supply.

To find out what startup programs we currently provide, please refer to the following
sources:

• the boards directory under bsp_working_dir/src/hardware/startup

• QNX docs (BSP docs as well as startup-* entries in the Utilities Reference)

• the Community area of our website, www.qnx.com

Specifying the serial device
The examples listed previously provide support for the 8250 family of serial chips.
Some non-x86 platforms support the 8250 family as well, but others have their own
serial port chips.

For details on our current serial drivers, see:

• devc-* entries in the Utilities Reference

• the Community area of our website, www.qnx.com

April 20, 2009 Appendix: B • Sample Buildfiles 201

Glossary

April 20, 2009 Glossary 203

© 2009, QNX Software Systems GmbH & Co. KG.

A20 gate

On x86-based systems, a hardware component that forces the A20 address line on the
bus to zero, regardless of the actual setting of the A20 address line on the processor.
This component is in place to support legacy systems, but the QNX Neutrino OS
doesn’t require any such hardware. Note that some processors, such as the 386EX,
have the A20 gate hardware built right into the processor itself — our IPL will disable
the A20 gate as soon as possible after startup.

adaptive

Scheduling algorithm whereby a thread’s priority is decayed by 1. See also FIFO,
round robin, and sporadic.

adaptive partitioning

A method of dividing, in a flexible manner, CPU time, memory, file resources, or
kernel resources with some policy of minimum guaranteed usage.

asymmetric multiprocessing (AMP)

A multiprocessing system where a separate OS, or a separate instantiation of the same
OS, runs on each CPU.

atomic

Of or relating to atoms. :-)

In operating systems, this refers to the requirement that an operation, or sequence of
operations, be considered indivisible. For example, a thread may need to move a file
position to a given location and read data. These operations must be performed in an
atomic manner; otherwise, another thread could preempt the original thread and move
the file position to a different location, thus causing the original thread to read data
from the second thread’s position.

attributes structure

Structure containing information used on a per-resource basis (as opposed to the
OCB, which is used on a per-open basis).

This structure is also known as a handle. The structure definition is fixed
(iofunc_attr_t), but may be extended. See also mount structure.

bank-switched

A term indicating that a certain memory component (usually the device holding an
image) isn’t entirely addressable by the processor. In this case, a hardware component
manifests a small portion (or “window”) of the device onto the processor’s address
bus. Special commands have to be issued to the hardware to move the window to
different locations in the device. See also linearly mapped.

April 20, 2009 Glossary 205

© 2009, QNX Software Systems GmbH & Co. KG.

base layer calls

Convenient set of library calls for writing resource managers. These calls all start with
resmgr_*(). Note that while some base layer calls are unavoidable (e.g.
resmgr_pathname_attach()), we recommend that you use the POSIX layer calls
where possible.

BIOS/ROM Monitor extension signature

A certain sequence of bytes indicating to the BIOS or ROM Monitor that the device is
to be considered an “extension” to the BIOS or ROM Monitor — control is to be
transferred to the device by the BIOS or ROM Monitor, with the expectation that the
device will perform additional initializations.

On the x86 architecture, the two bytes 0x55 and 0xAA must be present (in that order)
as the first two bytes in the device, with control being transferred to offset 0x0003.

block-integral

The requirement that data be transferred such that individual structure components are
transferred in their entirety — no partial structure component transfers are allowed.

In a resource manager, directory data must be returned to a client as block-integral
data. This means that only complete struct dirent structures can be returned —
it’s inappropriate to return partial structures, assuming that the next _IO_READ
request will “pick up” where the previous one left off.

bootable

An image can be either bootable or nonbootable. A bootable image is one that
contains the startup code that the IPL can transfer control to.

bootfile

The part of an OS image that runs the startup code and the Neutrino microkernel.

bound multiprocessing (BMP)

A multiprocessing system where a single instantiation of an OS manages all CPUs
simultaneously, but you can lock individual applications or threads to a specific CPU.

budget

In sporadic scheduling, the amount of time a thread is permitted to execute at its
normal priority before being dropped to its low priority.

buildfile

A text file containing instructions for mkifs specifying the contents and other details
of an image, or for mkefs specifying the contents and other details of an embedded
filesystem image.

206 Glossary April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

canonical mode

Also called edited mode or “cooked” mode. In this mode the character device library
performs line-editing operations on each received character. Only when a line is
“completely entered” — typically when a carriage return (CR) is received — will the
line of data be made available to application processes. Contrast raw mode.

channel

A kernel object used with message passing.

In QNX Neutrino, message passing is directed towards a connection (made to a
channel); threads can receive messages from channels. A thread that wishes to receive
messages creates a channel (using ChannelCreate()), and then receives messages from
that channel (using MsgReceive()). Another thread that wishes to send a message to
the first thread must make a connection to that channel by “attaching” to the channel
(using ConnectAttach()) and then sending data (using MsgSend()).

chid

An abbreviation for channel ID.

CIFS

Common Internet File System (aka SMB) — a protocol that allows a client
workstation to perform transparent file access over a network to a Windows 95/98/NT
server. Client file access calls are converted to CIFS protocol requests and are sent to
the server over the network. The server receives the request, performs the actual
filesystem operation, and sends a response back to the client.

CIS

Card Information Structure — a data block that maintains information about flash
configuration. The CIS description includes the types of memory devices in the
regions, the physical geometry of these devices, and the partitions located on the flash.

coid

An abbreviation for connection ID.

combine message

A resource manager message that consists of two or more messages. The messages are
constructed as combine messages by the client’s C library (e.g. stat(), readblock()),
and then handled as individual messages by the resource manager.

The purpose of combine messages is to conserve network bandwidth and/or to provide
support for atomic operations. See also connect message and I/O message.

April 20, 2009 Glossary 207

© 2009, QNX Software Systems GmbH & Co. KG.

connect message

In a resource manager, a message issued by the client to perform an operation based
on a pathname (e.g. an io_open message). Depending on the type of connect
message sent, a context block (see OCB) may be associated with the request and will
be passed to subsequent I/O messages. See also combine message and I/O message.

connection

A kernel object used with message passing.

Connections are created by client threads to “connect” to the channels made available
by servers. Once connections are established, clients can MsgSendv() messages over
them. If a number of threads in a process all attach to the same channel, then the one
connection is shared among all the threads. Channels and connections are identified
within a process by a small integer.

The key thing to note is that connections and file descriptors (FD) are one and the
same object. See also channel and FD.

context

Information retained between invocations of functionality.

When using a resource manager, the client sets up an association or context within the
resource manager by issuing an open() call and getting back a file descriptor. The
resource manager is responsible for storing the information required by the context
(see OCB). When the client issues further file-descriptor based messages, the resource
manager uses the OCB to determine the context for interpretation of the client’s
messages.

cooked mode

See canonical mode.

core dump

A file describing the state of a process that terminated abnormally.

critical section

A code passage that must be executed “serially” (i.e. by only one thread at a time).
The simplest from of critical section enforcement is via a mutex.

deadlock

A condition in which one or more threads are unable to continue due to resource
contention. A common form of deadlock can occur when one thread sends a message
to another, while the other thread sends a message to the first. Both threads are now
waiting for each other to reply to the message. Deadlock can be avoided by good
design practices or massive kludges — we recommend the good design approach.

208 Glossary April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

device driver

A process that allows the OS and application programs to make use of the underlying
hardware in a generic way (e.g. a disk drive, a network interface). Unlike OSs that
require device drivers to be tightly bound into the OS itself, device drivers for QNX
Neutrino are standard processes that can be started and stopped dynamically. As a
result, adding device drivers doesn’t affect any other part of the OS — drivers can be
developed and debugged like any other application. Also, device drivers are in their
own protected address space, so a bug in a device driver won’t cause the entire OS to
shut down.

discrete (or traditional) multiprocessor system

A system that has separate physical processors hooked up in multiprocessing mode
over a board-level bus.

DNS

Domain Name Service — an Internet protocol used to convert ASCII domain names
into IP addresses. In QNX native networking, dns is one of Qnet’s builtin resolvers.

dynamic bootfile

An OS image built on the fly. Contrast static bootfile.

dynamic linking

The process whereby you link your modules in such a way that the Process Manager
will link them to the library modules before your program runs. The word “dynamic”
here means that the association between your program and the library modules that it
uses is done at load time, not at linktime. Contrast static linking. See also runtime
loading.

edge-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller) can be
programmed to respond to interrupts. In edge-sensitive mode, the interrupt is
“noticed” upon a transition to/from the rising/falling edge of a pulse. Contrast
level-sensitive.

edited mode

See canonical mode.

EOI

End Of Interrupt — a command that the OS sends to the PIC after processing all
Interrupt Service Routines (ISR) for that particular interrupt source so that the PIC can
reset the processor’s In Service Register. See also PIC and ISR.

April 20, 2009 Glossary 209

© 2009, QNX Software Systems GmbH & Co. KG.

EPROM

Erasable Programmable Read-Only Memory — a memory technology that allows the
device to be programmed (typically with higher-than-operating voltages, e.g. 12V),
with the characteristic that any bit (or bits) may be individually programmed from a 1
state to a 0 state. To change a bit from a 0 state into a 1 state can only be accomplished
by erasing the entire device, setting all of the bits to a 1 state. Erasing is accomplished
by shining an ultraviolet light through the erase window of the device for a fixed
period of time (typically 10-20 minutes). The device is further characterized by having
a limited number of erase cycles (typically 10e5 - 10e6). Contrast flash and RAM.

event

A notification scheme used to inform a thread that a particular condition has occurred.
Events can be signals or pulses in the general case; they can also be unblocking events
or interrupt events in the case of kernel timeouts and interrupt service routines. An
event is delivered by a thread, a timer, the kernel, or an interrupt service routine when
appropriate to the requestor of the event.

FD

File Descriptor — a client must open a file descriptor to a resource manager via the
open() function call. The file descriptor then serves as a handle for the client to use in
subsequent messages. Note that a file descriptor is the exact same object as a
connection ID (coid, returned by ConnectAttach()).

FIFO

First In First Out — a scheduling algorithm whereby a thread is able to consume CPU
at its priority level without bounds. See also adaptive, round robin, and sporadic.

flash memory

A memory technology similar in characteristics to EPROM memory, with the
exception that erasing is performed electrically instead of via ultraviolet light, and,
depending upon the organization of the flash memory device, erasing may be
accomplished in blocks (typically 64k bytes at a time) instead of the entire device.
Contrast EPROM and RAM.

FQNN

Fully Qualified NodeName — a unique name that identifies a QNX Neutrino node on
a network. The FQNN consists of the nodename plus the node domain tacked together.

garbage collection

Aka space reclamation, the process whereby a filesystem manager recovers the space
occupied by deleted files and directories.

210 Glossary April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

HA

High Availability — in telecommunications and other industries, HA describes a
system’s ability to remain up and running without interruption for extended periods of
time.

handle

A pointer that the resource manager base library binds to the pathname registered via
resmgr_attach(). This handle is typically used to associate some kind of per-device
information. Note that if you use the iofunc_*() POSIX layer calls, you must use a
particular type of handle — in this case called an attributes structure.

hard thread affinity

A user-specified binding of a thread to a set of processors, done by means of a
runmask. Contrast soft thread affinity.

image

In the context of embedded QNX Neutrino systems, an “image” can mean either a
structure that contains files (i.e. an OS image) or a structure that can be used in a
read-only, read/write, or read/write/reclaim FFS-2-compatible filesystem (i.e. a flash
filesystem image).

inherit mask

A bitmask that specifies which processors a thread’s children can run on. Contrast
runmask.

interrupt

An event (usually caused by hardware) that interrupts whatever the processor was
doing and asks it do something else. The hardware will generate an interrupt whenever
it has reached some state where software intervention is required.

interrupt handler

See ISR.

interrupt latency

The amount of elapsed time between the generation of a hardware interrupt and the
first instruction executed by the relevant interrupt service routine. Also designated as
“Til”. Contrast scheduling latency.

interrupt service routine

See ISR.

April 20, 2009 Glossary 211

© 2009, QNX Software Systems GmbH & Co. KG.

interrupt service thread

A thread that is responsible for performing thread-level servicing of an interrupt.

Since an ISR can call only a very limited number of functions, and since the amount
of time spent in an ISR should be kept to a minimum, generally the bulk of the
interrupt servicing work should be done by a thread. The thread attaches the interrupt
(via InterruptAttach() or InterruptAttachEvent()) and then blocks (via
InterruptWait()), waiting for the ISR to tell it to do something (by returning an event of
type SIGEV_INTR). To aid in minimizing scheduling latency, the interrupt service
thread should raise its priority appropriately.

I/O message

A message that relies on an existing binding between the client and the resource
manager. For example, an _IO_READ message depends on the client’s having
previously established an association (or context) with the resource manager by
issuing an open() and getting back a file descriptor. See also connect message,
context, combine message, and message.

I/O privileges

A particular right, that, if enabled for a given thread, allows the thread to perform I/O
instructions (such as the x86 assembler in and out instructions). By default, I/O
privileges are disabled, because a program with it enabled can wreak havoc on a
system. To enable I/O privileges, the thread must be running as root, and call
ThreadCtl().

IPC

Interprocess Communication — the ability for two processes (or threads) to
communicate. QNX Neutrino offers several forms of IPC, most notably native
messaging (synchronous, client/server relationship), POSIX message queues and pipes
(asynchronous), as well as signals.

IPL

Initial Program Loader — the software component that either takes control at the
processor’s reset vector (e.g. location 0xFFFFFFF0 on the x86), or is a BIOS extension.
This component is responsible for setting up the machine into a usable state, such that
the startup program can then perform further initializations. The IPL is written in
assembler and C. See also BIOS extension signature and startup code.

IRQ

Interrupt Request — a hardware request line asserted by a peripheral to indicate that it
requires servicing by software. The IRQ is handled by the PIC, which then interrupts
the processor, usually causing the processor to execute an Interrupt Service Routine
(ISR).

212 Glossary April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

ISR

Interrupt Service Routine — a routine responsible for servicing hardware (e.g. reading
and/or writing some device ports), for updating some data structures shared between
the ISR and the thread(s) running in the application, and for signalling the thread that
some kind of event has occurred.

kernel

See microkernel.

level-sensitive

One of two ways in which a PIC (Programmable Interrupt Controller) can be
programmed to respond to interrupts. If the PIC is operating in level-sensitive mode,
the IRQ is considered active whenever the corresponding hardware line is active.
Contrast edge-sensitive.

linearly mapped

A term indicating that a certain memory component is entirely addressable by the
processor. Contrast bank-switched.

message

A parcel of bytes passed from one process to another. The OS attaches no special
meaning to the content of a message — the data in a message has meaning for the
sender of the message and for its receiver, but for no one else.

Message passing not only allows processes to pass data to each other, but also
provides a means of synchronizing the execution of several processes. As they send,
receive, and reply to messages, processes undergo various “changes of state” that
affect when, and for how long, they may run.

microkernel

A part of the operating system that provides the minimal services used by a team of
optional cooperating processes, which in turn provide the higher-level OS
functionality. The microkernel itself lacks filesystems and many other services
normally expected of an OS; those services are provided by optional processes.

mount structure

An optional, well-defined data structure (of type iofunc_mount_t) within an
iofunc_*() structure, which contains information used on a per-mountpoint basis
(generally used only for filesystem resource managers). See also attributes structure
and OCB.

mountpoint

The location in the pathname space where a resource manager has “registered” itself.
For example, the serial port resource manager registers mountpoints for each serial

April 20, 2009 Glossary 213

© 2009, QNX Software Systems GmbH & Co. KG.

device (/dev/ser1, /dev/ser2, etc.), and a CD-ROM filesystem may register a
single mountpoint of /cdrom.

multicore system

A chip that has one physical processor with multiple CPUs interconnected over a
chip-level bus.

mutex

Mutual exclusion lock, a simple synchronization service used to ensure exclusive
access to data shared between threads. It is typically acquired (pthread_mutex_lock())
and released (pthread_mutex_unlock()) around the code that accesses the shared data
(usually a critical section). See also critical section.

name resolution

In a QNX Neutrino network, the process by which the Qnet network manager converts
an FQNN to a list of destination addresses that the transport layer knows how to get to.

name resolver

Program code that attempts to convert an FQNN to a destination address.

nd

An abbreviation for node descriptor, a numerical identifier for a node relative to the
current node. Each node’s node descriptor for itself is 0 (ND_LOCAL_NODE).

NDP

Node Discovery Protocol — proprietary QNX Software Systems protocol for
broadcasting name resolution requests on a QNX Neutrino LAN.

network directory

A directory in the pathname space that’s implemented by the Qnet network manager.

Neutrino

Name of an OS developed by QNX Software Systems.

NFS

Network FileSystem — a TCP/IP application that lets you graft remote filesystems (or
portions of them) onto your local namespace. Directories on the remote systems
appear as part of your local filesystem and all the utilities you use for listing and
managing files (e.g. ls, cp, mv) operate on the remote files exactly as they do on your
local files.

214 Glossary April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

NMI

Nonmaskable Interrupt — an interrupt that can’t be masked by the processor. We
don’t recommend using an NMI!

Node Discovery Protocol

See NDP.

node domain

A character string that the Qnet network manager tacks onto the nodename to form an
FQNN.

nodename

A unique name consisting of a character string that identifies a node on a network.

nonbootable

A nonbootable OS image is usually provided for larger embedded systems or for small
embedded systems where a separate, configuration-dependent setup may be required.
Think of it as a second “filesystem” that has some additional files on it. Since it’s
nonbootable, it typically won’t contain the OS, startup file, etc. Contrast bootable.

OCB

Open Control Block (or Open Context Block) — a block of data established by a
resource manager during its handling of the client’s open() function. This context
block is bound by the resource manager to this particular request, and is then
automatically passed to all subsequent I/O functions generated by the client on the file
descriptor returned by the client’s open().

package filesystem

A virtual filesystem manager that presents a customized view of a set of files and
directories to a client. The “real” files are present on some medium; the package
filesystem presents a virtual view of selected files to the client.

partition

A division of CPU time, memory, file resources, or kernel resources with some policy
of minimum guaranteed usage.

pathname prefix

See mountpoint.

pathname space mapping

The process whereby the Process Manager maintains an association between resource
managers and entries in the pathname space.

April 20, 2009 Glossary 215

© 2009, QNX Software Systems GmbH & Co. KG.

persistent

When applied to storage media, the ability for the medium to retain information across
a power-cycle. For example, a hard disk is a persistent storage medium, whereas a
ramdisk is not, because the data is lost when power is lost.

Photon microGUI

The proprietary graphical user interface built by QNX Software Systems.

PIC

Programmable Interrupt Controller — hardware component that handles IRQs. See
also edge-sensitive, level-sensitive, and ISR.

PID

Process ID. Also often pid (e.g. as an argument in a function call).

POSIX

An IEEE/ISO standard. The term is an acronym (of sorts) for Portable Operating
System Interface — the “X” alludes to “UNIX”, on which the interface is based.

POSIX layer calls

Convenient set of library calls for writing resource managers. The POSIX layer calls
can handle even more of the common-case messages and functions than the base layer
calls. These calls are identified by the iofunc_*() prefix. In order to use these (and we
strongly recommend that you do), you must also use the well-defined POSIX-layer
attributes (iofunc_attr_t), OCB (iofunc_ocb_t), and (optionally) mount
(iofunc_mount_t) structures.

preemption

The act of suspending the execution of one thread and starting (or resuming) another.
The suspended thread is said to have been “preempted” by the new thread. Whenever
a lower-priority thread is actively consuming the CPU, and a higher-priority thread
becomes READY, the lower-priority thread is immediately preempted by the
higher-priority thread.

prefix tree

The internal representation used by the Process Manager to store the pathname table.

priority inheritance

The characteristic of a thread that causes its priority to be raised or lowered to that of
the thread that sent it a message. Also used with mutexes. Priority inheritance is a
method used to prevent priority inversion.

216 Glossary April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

priority inversion

A condition that can occur when a low-priority thread consumes CPU at a higher
priority than it should. This can be caused by not supporting priority inheritance, such
that when the lower-priority thread sends a message to a higher-priority thread, the
higher-priority thread consumes CPU on behalf of the lower-priority thread. This is
solved by having the higher-priority thread inherit the priority of the thread on whose
behalf it’s working.

process

A nonschedulable entity, which defines the address space and a few data areas. A
process must have at least one thread running in it — this thread is then called the first
thread.

process group

A collection of processes that permits the signalling of related processes. Each process
in the system is a member of a process group identified by a process group ID. A
newly created process joins the process group of its creator.

process group ID

The unique identifier representing a process group during its lifetime. A process group
ID is a positive integer. The system may reuse a process group ID after the process
group dies.

process group leader

A process whose ID is the same as its process group ID.

process ID (PID)

The unique identifier representing a process. A PID is a positive integer. The system
may reuse a process ID after the process dies, provided no existing process group has
the same ID. Only the Process Manager can have a process ID of 1.

pty

Pseudo-TTY — a character-based device that has two “ends”: a master end and a
slave end. Data written to the master end shows up on the slave end, and vice versa.
These devices are typically used to interface between a program that expects a
character device and another program that wishes to use that device (e.g. the shell and
the telnet daemon process, used for logging in to a system over the Internet).

pulses

In addition to the synchronous Send/Receive/Reply services, QNX Neutrino also
supports fixed-size, nonblocking messages known as pulses. These carry a small
payload (four bytes of data plus a single byte code). A pulse is also one form of event
that can be returned from an ISR or a timer. See MsgDeliverEvent() for more
information.

April 20, 2009 Glossary 217

© 2009, QNX Software Systems GmbH & Co. KG.

Qnet

The native network manager in QNX Neutrino.

QoS

Quality of Service — a policy (e.g. loadbalance) used to connect nodes in a
network in order to ensure highly dependable transmission. QoS is an issue that often
arises in high-availability (HA) networks as well as realtime control systems.

RAM

Random Access Memory — a memory technology characterized by the ability to read
and write any location in the device without limitation. Contrast flash and EPROM.

raw mode

In raw input mode, the character device library performs no editing on received
characters. This reduces the processing done on each character to a minimum and
provides the highest performance interface for reading data. Also, raw mode is used
with devices that typically generate binary data — you don’t want any translations of
the raw binary stream between the device and the application. Contrast canonical
mode.

replenishment

In sporadic scheduling, the period of time during which a thread is allowed to
consume its execution budget.

reset vector

The address at which the processor begins executing instructions after the processor’s
reset line has been activated. On the x86, for example, this is the address 0xFFFFFFF0.

resource manager

A user-level server program that accepts messages from other programs and,
optionally, communicates with hardware. QNX Neutrino resource managers are
responsible for presenting an interface to various types of devices, whether actual (e.g.
serial ports, parallel ports, network cards, disk drives) or virtual (e.g. /dev/null, a
network filesystem, and pseudo-ttys).

In other operating systems, this functionality is traditionally associated with device
drivers. But unlike device drivers, QNX Neutrino resource managers don’t require
any special arrangements with the kernel. In fact, a resource manager looks just like
any other user-level program. See also device driver.

RMA

Rate Monotonic Analysis — a set of methods used to specify, analyze, and predict the
timing behavior of realtime systems.

218 Glossary April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

round robin

Scheduling algorithm whereby a thread is given a certain period of time to run. Should
the thread consume CPU for the entire period of its timeslice, the thread will be placed
at the end of the ready queue for its priority, and the next available thread will be made
READY. If a thread is the only thread READY at its priority level, it will be able to
consume CPU again immediately. See also adaptive, FIFO, and sporadic.

runmask

A bitmask that indicates which processors a thread can run on. Contrast inherit mask.

runtime loading

The process whereby a program decides while it’s actually running that it wishes to
load a particular function from a library. Contrast static linking.

scheduling latency

The amount of time that elapses between the point when one thread makes another
thread READY and when the other thread actually gets some CPU time. Note that this
latency is almost always at the control of the system designer.

Also designated as “Tsl”. Contrast interrupt latency.

scoid

An abbreviation for server connection ID.

session

A collection of process groups established for job control purposes. Each process
group is a member of a session. A process belongs to the session that its process group
belongs to. A newly created process joins the session of its creator. A process can alter
its session membership via setsid(). A session can contain multiple process groups.

session leader

A process whose death causes all processes within its process group to receive a
SIGHUP signal.

soft thread affinity

The scheme whereby the microkernel tries to dispatch a thread to the processor where
it last ran, in an attempt to reduce thread migration from one processor to another,
which can affect cache performance. Contrast hard thread affinity.

software interrupts

Similar to a hardware interrupt (see interrupt), except that the source of the interrupt
is software.

April 20, 2009 Glossary 219

© 2009, QNX Software Systems GmbH & Co. KG.

sporadic

Scheduling algorithm whereby a thread’s priority can oscillate dynamically between a
“foreground” or normal priority and a “background” or low priority. A thread is given
an execution budget of time to be consumed within a certain replenishment period.
See also adaptive, FIFO, and round robin.

startup code

The software component that gains control after the IPL code has performed the
minimum necessary amount of initialization. After gathering information about the
system, the startup code transfers control to the OS.

static bootfile

An image created at one time and then transmitted whenever a node boots. Contrast
dynamic bootfile.

static linking

The process whereby you combine your modules with the modules from the library to
form a single executable that’s entirely self-contained. The word “static” implies that
it’s not going to change — all the required modules are already combined into one.

symmetric multiprocessing (SMP)

A multiprocessor system where a single instantiation of an OS manages all CPUs
simultaneously, and applications can float to any of them.

system page area

An area in the kernel that is filled by the startup code and contains information about
the system (number of bytes of memory, location of serial ports, etc.) This is also
called the SYSPAGE area.

thread

The schedulable entity under QNX Neutrino. A thread is a flow of execution; it exists
within the context of a process.

tid

An abbreviation for thread ID.

timer

A kernel object used in conjunction with time-based functions. A timer is created via
timer_create() and armed via timer_settime(). A timer can then deliver an event,
either periodically or on a one-shot basis.

220 Glossary April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG.

timeslice

A period of time assigned to a round-robin or adaptive scheduled thread. This period
of time is small (on the order of tens of milliseconds); the actual value shouldn’t be
relied upon by any program (it’s considered bad design).

April 20, 2009 Glossary 221

Index

!

.˜˜˜ filename extension 47
/dev/shmem 10
/tmp, creating on a RAM-disk 195
_CS_LIBPATH

in bootstrap files 36
_CS_PATH

in bootstrap files 36
<startup.h> 106

A

A20 148, 186
adaptive partitioning 36
add_cache() 129
add_callout_array() 129
add_callout() 129
add_interrupt_array() 117, 129, 140
add_interrupt() 129
add_ram() 130, 141
add_string() 117, 130
add_typed_string() 116, 130
alloc_qtime() 130
alloc_ram() 130
ARM 119, 124, 140, 141, 145, 200
as_add_containing() 130
as_add() 130
AS_ATTR_CACHABLE 102
AS_ATTR_CONTINUED 102
AS_ATTR_KIDS 102
AS_ATTR_READABLE 102
AS_ATTR_WRITABLE 102
as_default() 131

as_find_containing() 131
as_find() 131
as_info2off() 132
AS_NULL_OFF 102
as_off2info() 132
AS_PRIORITY_DEFAULT 102
as_set_checker() 132
as_set_priority() 132
avoid_ram() 132

B

bank-switched See also image
defined 65

BIOS 4, 5, 109, 148
extension 69, 148
if you don’t have one 201

block_size buildfile attribute 44
Board Support Packages See BSPs
boot header 75
bootfile 35
BOOTP 69, 73
bootstrap file (.bootstrap) 35, 36
bound multiprocessing (BMP) 38
break_detect() 127
bsp_working_dir 19
BSPs

content 17, 19
obtaining 17
source code 21

command line 18, 22
importing into the IDE 17

buildfile

April 20, 2009 Index 223

Index © 2009, QNX Software Systems GmbH & Co. KG.

attributes 35
block_size 44
combining 41
compress 36, 76
data 194
filter 44, 45
gid 41
keeplinked 60
max_size 44
min_size 44
module 36
newpath 39
perms 41
physical 36
script 37
search 39
spare_blocks 44, 45
type 195
uid 41
virtual 35, 36, 76, 200

complete examples of 193
including lots of files in 42
inline files 35, 40
modifiers
CPU 38

simple example of 34
specifying a processor in 200
syntax 35

Bus item (system page) 108

C

cache 109–111, 128
CACHE_FLAG_CTRL_PHYS 112
CACHE_FLAG_DATA 112
CACHE_FLAG_INSTR 112
CACHE_FLAG_NONCOHERENT 112
CACHE_FLAG_NONISA 112
CACHE_FLAG_SHARED 112
CACHE_FLAG_SNOOPED 112
CACHE_FLAG_SUBSET 112
CACHE_FLAG_UNIFIED 112
CACHE_FLAG_VIRTUAL 112
CACHE_FLAG_WRITEBACK 112
cacheattr 111

calc_time_t() 132
calloc_ram() 132
CALLOUT_END 151
callout_io_map_indirect() 133
callout_memory_map_indirect() 133
callout_register_data() 133
CALLOUT_START 151
callout area 116
callouts 5, 6, 126

writing your own 149
character I/O devices 12
chip_access() 133
chip_done() 134
chip_read16() 134
chip_read32() 134
chip_read8() 134
chip_write16() 134
chip_write32() 134
chip_write8() 134
CIFS 56
CIFS (Common Internet File System) 56
clock, external 186
ClockAdjust() 114, 115
ClockCycles() 114
ClockPeriod() 114, 115
ClockTime() 115
cold-start IPL 4, 69
compress buildfile attribute 36, 76
compressing/decompressing 45
compression

.˜˜˜ filename extension 47
methods, choosing 76
rules 47

config callout 122
config() 127
confname() 116
control() 128
conventions

typographical xv
copy_memory() 134
CPU_FLAG_FPU 110
CPU_FLAG_MMU 110
CPU buildfile modifier 38
cpuinfo 113
CPUs, number of on the system 101
custom engineering 184

224 Index April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Index

D

data buildfile attribute 194
debugging 56

hardware considerations 184
symbol information, providing 58
versions of software 183

deflate 45
del_typed_string() 135
design do’s and don’ts 188
devf-generic 11, 26, 161
devf-ram 10

template for new drivers 163, 177
Device item (system page) 108
disks, information about detected 79
display_char() 127
DOS filesystem 54
dumpifs 43

E

Embedded Transaction Filesystem (ETFS)
images 33

enable_cache() 88
environment variables

setting in the script file 37
EOI (End of Interrupt) 119, 120
Ethernet 200
extension signature 69

F

f3s_close() 168
f3s_flash_t 166
f3s_ident() 171
f3s_init() 167
f3s_open() 167, 170
F3S_OPER_SOCKET 168
F3S_OPER_WINDOW 168
f3s_page() 167
F3S_POWER_VCC 168
F3S_POWER_VPP 168
f3s_reset() 171

f3s_service_t 166
f3s_socket_option() 169, 170
f3s_socket_syspage() 170
f3s_start() 167
f3s_status() 168
f3s_sync() 174
f3s_v2erase() 172
f3s_v2islock() 174
f3s_v2lock() 175
f3s_v2read() 171
f3s_v2resume() 173
f3s_v2suspend() 173
f3s_v2unlock() 175
f3s_v2unlockall() 176
f3s_v2write() 172
falcon_init_l2_cache() 135
falcon_init_raminfo() 135
falcon_system_clock() 135
field upgrades 184
files

.bootstrap 35, 36
compressing 45
inline 35, 40
main.c 85

filesystems
choosing 9
CIFS (Common Internet File

System)[fs-cifs] 56
ISO-9660 CD-ROM (fs-udf.so) 54
Linux (fs-ext2.so) 54
Macintosh HFS and HFS Plus

(fs-mac.so) 54
MS-DOS (fs-dos.so) 54
NFS (Network File System)[fs-nfs2,

fs-nfs3] 56
Power-Safe (fs-qnx6.so) 54
QNX 4 (fs-qnx4.so) 54
Universal Disk Format (UDF)[fs-udf.so]

54
Windows NT (fs-nt.so) 54

filter buildfile attribute 44, 45
find_startup_info() 135, 141
find_typed_string() 135
flags member 120
flash 185

April 20, 2009 Index 225

Index © 2009, QNX Software Systems GmbH & Co. KG.

accessing compressed files without
decompressing 45

erasing 26
filesystem

customizing 161
images 33, 43
partitions 25, 26

logical layout of memory chips 185
transferring images to 50
two independent sets of devices 185

flashctl 26, 50
floating-point emulator (fpemu.so), can’t use in

statically linked executables 198
fs-cifs 56
fs-dos.so 54
fs-ext2.so 54
fs-mac.so 54
fs-nfs2, fs-nfs3 56
fs-nt.so 54
fs-qnx4.so 54
fs-qnx6.so 54
fs-udf.so 54
ftruncate() 47

G

gid buildfile attribute 41
glitch interrupts, beware of 187
Global Descriptor Table (GDT) 123
Group item (system page) 107

H

handle_common_option() 135
hardware

bugs, working around
stwcx. instruction on PPC 110

debuggers 56
information about 103
supported by Neutrino 8, 11, 12
system design considerations 183

HFS and HFS Plus 54
hwi_add_device() 136

hwi_add_inputclk() 137
hwi_add_irq() 137
hwi_add_location() 137
hwi_add_nicaddr() 137
hwi_add_rtc() 137
hwi_alloc_item() 105, 106, 137
hwi_alloc_tag 138
hwi_alloc_tag() 105, 106
hwi_find_as() 138
hwi_find_item() 105, 106, 138
hwi_find_tag() 138
HWI_NULL_OFF 104–106
hwi_off2tag() 106, 139
HWI_TAG_INFO() 106, 107
hwi_tag2off() 106, 139

I

IDT (Interrupt Descriptor Table) 119
image_download_8250() 66, 85, 88
image_scan_ext() 88
image_scan() 66, 85, 88
image_setup_ext() 89
image_setup() 67, 85, 88
image_start_ext() 89
image_start() 68, 85, 89
images

bank-switched 65, 71
sources of 65

bootable 33
building 23, 33, 42
combining multiple files 49
compressing 36
defined 33
determining which shared libraries to

include 193
example of using an OS image as a

filesystem 34
format 5, 49
linearly mapped 65
listing contents of 43
loading 69
more than one in system 33
nonbootable 33
physical address 77

226 Index April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Index

signature 75
transferring onto your board 23
transferring to flash 50

inflator 45, 46
init_asinfo() 139
init_cacheattr() 111, 139
init_cpuinfo() 109, 111, 139
init_hwinfo() 103, 139
init_intrinfo() 117, 139
init_mmu() 140
init_pminfo() 140
init_qtime_sa1100() 140, 141
init_qtime() 114, 140
init_raminfo() 130, 132, 141
init_smp() 101, 123, 141
init_syspage_memory() 141
init_system_private() 101, 136, 142
Initial Program Loader See IPL
inline files 35, 40
int15_copy() 89
Intel hex records 49
InterruptAttach() 117, 122, 187
InterruptAttachEvent() 122, 187
InterruptMask() 121
interrupts

clock 114, 186, 189
controller, callouts for 127
EOI (End of Interrupt) 119, 120
IDT (Interrupt Descriptor Table) 119
Interrupt Descriptor Table (IDT) 123
IPI (Interprocess Interrupt) 125
IVOR (Interrupt Vector Offset Register)

119
multicore systems 117
NMI (Non-Maskable Interrupt) 120, 188
parallel ports 188
Programmable Interrupt Controller (PIC)

187
programming in startup 5, 117
serial ports 187

InterruptUnmask() 121
INTR_CONFIG_FLAG_DISALLOWED 122
INTR_CONFIG_FLAG_IPI 122
INTR_CONFIG_FLAG_PREATTACH 122
INTR_FLAG_CASCADE_IMPLICIT_EOI 120
INTR_FLAG_CPU_FAULT 120

INTR_FLAG_NMI 120
INTR_GENFLAG_ID_LOOP 122
INTR_GENFLAG_LOAD_CPUNUM 121
INTR_GENFLAG_LOAD_INTRINFO 121
INTR_GENFLAG_LOAD_INTRMASK 121
INTR_GENFLAG_LOAD_SYSPAGE 121
INTR_GENFLAG_NOGLITCH 121
intrinfo area 117
io 108
IPI (Interprocess Interrupt) 125
IPL 3, 24

code, structure of 84
cold-start 4, 69
customizing 74
debugging 57

debug symbol information 58
responsibilities of 65
types of 4
warm-start 4, 68

IRQ7 and IRQ15, beware of 187
ISA bus slots, external 186
ISO-9660 CD-ROM filesystem 54
IVOR (Interrupt Vector Offset Register) 119

J

JTAG
field upgrades 184
hardware debuggers 56

jtag_reserve_memory() 142

K

keeplinked buildfile attribute 60
kernel callouts See callouts
kprintf() 136, 142

L

LD_LIBRARY_PATH
in bootstrap files 36

April 20, 2009 Index 227

Index © 2009, QNX Software Systems GmbH & Co. KG.

ldqnx.so.2 193
linearly mapped 70, See also image

defined 65
recommended 72
sources of 65

linker, runtime 193
Linux filesystem 54
ln 10
location tag 108
lseek() 46
lstat() 46

M

machine type 77
Macintosh HFS and HFS Plus 54
main() 98, 106, 161, 165
mask() 127
max_size buildfile attribute 44
memory 108
memory

linearly addressable 4, 5
planning for target system 183

min_size buildfile attribute 44
MIPS 119, 124, 140, 141, 145, 200
MIPS_CPU_FLAG_128BIT 110
MIPS_CPU_FLAG_64BIT 110
MIPS_CPU_FLAG_L2_PAGE_CACHE_OPS

110
MIPS_CPU_FLAG_MAX_PGSIZE_MASK 110
MIPS_CPU_FLAG_NO_COUNT 110
MIPS_CPU_FLAG_NO_WIRED 110
MIPS_CPU_FLAG_PFNTOPSHIFT_MASK 110
MIPS_CPU_FLAG_SUPERVISOR 110
MIPS_CPU_FLAGS_MAX_PGSIZE_SHIFT 110
mips41xx_set_clock_freqs() 142
mkefs 33, 43

buildfile 44
mketfs 33
mkifs 33, 34, 42, 193

version of 75
MKIFS_PATH 38
mkimage 49
mkrec 49
mmap_device_memory() 115

module buildfile attribute 36
Motorola S records 49
mountpoints

filesystem 51
raw

transferring images to flash 50
MS-DOS filesystem 54
multicore systems

interrupts on 117
number of processors 101

N

network
boot 72
drivers 53, 55
filesystems 53, 56, 199
media 11

newpath buildfile attribute 39
NFS (Network File System) 56
NFS (Network Filesystem) 11, 200
NMI (Non-Maskable Interrupt) 120, 188
NT filesystem 54

O

O_TRUNC 47
objdump 193
openbios_init_raminfo() 142
OS images See images

P

Page Directory Tables 123
parallel port

doesn’t need an interrupt line 188
PATH

in bootstrap files 36
pathname delimiter in QNX documentation xvi
pcnet_reset() 142
pdebug 57

228 Index April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Index

peripherals, choosing 184
perms buildfile attribute 41
Photon, in embedded systems xv
physical buildfile attribute 36
PIC 187
poll_key() 127
POSIX 43, 46, 47, 56, 195
pound sign, in buildfiles 35
power management 125, 128
power() 128
Power-Safe filesystem 54
PPC 119, 123, 140, 141, 145, 154, 200
PPC_CPU_ALTIVEC 110
PPC_CPU_DCBZ_NONCOHERENT 110
PPC_CPU_EAR 110
PPC_CPU_FPREGS 110
PPC_CPU_HW_HT 110
PPC_CPU_HW_POW 110
PPC_CPU_STWCX_BUG 110
PPC_CPU_SW_HT 110
PPC_CPU_SW_TLBSYNC 110
PPC_CPU_TLB_SHADOW 110
PPC_CPU_XAEN 110
ppc_dec_init_qtime() 144
PPC_INTR_FLAG_400ALT 121
PPC_INTR_FLAG_CI 121
PPC_INTR_FLAG_SHORTVEC 121
PPC/BE 119
ppc400_pit_init_qtime() 143
ppc405_set_clock_freqs() 143
ppc600_set_clock_freqs() 143
ppc700_init_l2_cache() 143
ppc800_pit_init_qtime() 143
ppc800_set_clock_freqs() 143
print_byte() 89
print_char() 89, 142
print_long() 89
print_sl() 89
print_string() 89
print_syspage() 144
print_var() 90
print_word() 90
printf() 142
PROCESSOR 39
processors

families, supported 8

number of on the system 101
speed 183

procnto

memory pool, adding to 79
optional modules, binding 36
starting 3, 5, 35
version, verifying 156

protected_mode() 90

Q

Qnet (QNX native networking) 11
QNX 4 filesystem 54
QNX Neutrino

running for the first time 27
qtime 114

R

RAM, using as a “disk” 10
read() 46
reboot() 128
reclamation 45
reopen 195
reset vector 3, 8
ROM

devices 72
monitor 4

rtc_time() 145
runmask, specifying 38
runtime linker 193

S

script buildfile attribute 37
script file 7

on the target 38
search buildfile attribute 39
sendnto 24
serial port 73

loader 73

April 20, 2009 Index 229

Index © 2009, QNX Software Systems GmbH & Co. KG.

recommended on target system 187
support for multiple 187

SH 125, 140, 141, 145, 200
shared libraries 193

which to include in an image 193
shared memory 10
shell

running in background 194
SMP 123, 141
SMP (Symmetric Multiprocessing)

interrupts on 117
socket services 162, 167
software debuggers 56, 57
spare_blocks buildfile attribute 44, 45
startup 5

creating your own 99
debugging 57

debug symbol information 60
library 129
structure of 98
transferring control to 73

STARTUP_HDR_FLAGS1_BIGENDIAN 76
STARTUP_HDR_FLAGS1_COMPRESS_LZO

76
STARTUP_HDR_FLAGS1_COMPRESS_NONE

76
STARTUP_HDR_FLAGS1_COMPRESS_UCL

76
STARTUP_HDR_FLAGS1_COMPRESS_ZLIB

76
STARTUP_HDR_FLAGS1_VIRTUAL 76
STARTUP_HDR_SIGNATURE 66
startup_header 67

structure of 75
use by IPL and startup 80

STARTUP_INFO_* 78
startup_info_box 80
startup_info_disk 79
startup_info_mem,

startup_info_mem_extended 79
startup_info_skip 79
startup_info_time 80
startup_info* structures 78
startup_io_map() 146
startup_io_unmap() 146
startup_memory_map() 146

startup_memory_unmap() 147
stat() 47, 56
stwcx. instruction, hardware bug concerning

110
SUPPORT_CMP_* 76
SYSENTER/SYSEXIT 110
SYSPAGE_ARM 101, 123
syspage_entry 99, 111, 114
SYSPAGE_MIPS 101, 123
SYSPAGE_PPC 101, 123
SYSPAGE_SH 123
SYSPAGE_SH4 101
SYSPAGE_X86 101, 123
system page area 6, 97, 99

accessing data within 100
fields in 100

T

TCP/IP 199
temporary directory, creating on a RAM-disk

195
timer_load() 127
timer_reload() 127
timer_value() 127
truncation 47
tulip_reset() 147
type buildfile attribute 195
typed_strings area 116
typographical conventions xv

U

uart_hex16 90
uart_hex32 91
uart_hex8 90
uart_init 91
uart_put 91
uart_string 91
uart32_hex16 92
uart32_hex32 92
uart32_hex8 92
uart32_init 92

230 Index April 20, 2009

© 2009, QNX Software Systems GmbH & Co. KG. Index

uart32_put 93
uart32_string 93
uid buildfile attribute 41
uncompress() 82, 83, 147
union 123
Universal Disk Format (UDF) filesystem 54
unmask() 127

V

video, displaying on 89, 90
virtual buildfile attribute 35, 36, 76, 200

W

waitfor 56
warm-start IPL 4, 68
Windows NT filesystem 54

X

X86_CPU_BSWAP 110
X86_CPU_CMOV 110
X86_CPU_CPUID 110
X86_CPU_FXSR 110
X86_CPU_INVLPG 110
X86_CPU_MMX 110
X86_CPU_MTRR 110
X86_CPU_PAE 110
X86_CPU_PGE 110
X86_CPU_PSE 110
X86_CPU_RDTSC 110
X86_CPU_SEP 110
X86_CPU_SIMD 110
X86_CPU_WP 110
x86_cpuid_string() 147
x86_cputype() 147
x86_enable_a20() 148
x86_fputype() 148
x86_init_pcbios() 148
x86_pcbios_shadow_rom() 148

x86_scanmem() 141, 149
x86-specific information 123

Z

zombies, surfeit of 37

April 20, 2009 Index 231

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

