
Executive Summary

Embedded OEMs – especially those whose products

have complex human-machine interfaces, manage

many degrees of motion, and require hard real-time –

have traditionally relied on Field Programmable Gate

Arrays (FPGA) and Digital Signal Processors (DSP) to

meet precision and performance requirements.

Today, that hardware-centric model is undergoing

intense scrutiny as OEMs face increasing market

pressures to cut their costs, improve quality, and

differentiate their products.

By adopting a Soft-Control Architecture, OEMs have

an opportunity to do all three. They can differentiate

their products and improve their competitiveness by

significantly increasing yields/throughputs, and by

shortening time to market. They can also reduce their

bill-of-materials costs and shrink the compute footprint

while simplifying and streamlining development, usability

and training.

In the relentlessly changing world of technology, several

important advances and trends have emerged that

allow OEMs to transition to a Soft-Control Architecture

that will not only to move them away from dependence

on FPGAs and DSPs, but also to change the basis

of competition in the equipment and machine tool

industries.

The major trends favoring a Soft-Control Architecture

include:

1. Increasingly powerful x86 processor technologies,

2. �Renewed commitment to commercial off the shelf

(COTS) hardware and software,

3. �Advances in, and availability of COTS-based field

buses,

4. �Convergence of components in system design,

and

5. �The advent of touch-centered usability and motion

sensing technologies.

Although there are several competing approaches for

capitalizing on these trends, a Soft-Control Architecture

has emerged as the leader.

By utilizing hard real-time symmetric multiprocessing

(SMP) support on multiprocessor architectures, and

through tight integration to the Microsoft Windows’

environment, OEMs get a powerful, versatile Soft-

Control Architecture that moves the hard real-time

control logic, such as PLC or motion logic, from

specialized hardware components to software

components. With x86 processor advances, OEMs

can take the C/C++ source-code logic that traditionally

has been compiled and run on DSPs or FPGAs and

Soft-Control Architecture White Paper

A Soft-Control Architecture:
Breakthrough in Hard Real-Time Design for complex Systems

Page 1

By adopting a Soft-Control Architecture,

OEMs can differentiate their products and

improve competitiveness by significantly

increasing yields/throughputs, and by

shortening time to market.

port the source code to target a real-time operating

system (RTOS), or a real-time extension to Microsoft

Windows, such as IntervalZero’s RTX 2009. The result

is a hard real-time, SMP-enabled application that runs

directly on x86, eliminating the need for an FPGA or

DSP to perform the logic.

The software component runs on multicore, commodity

x86 processors and uses both open standards and

standard communications architectures, such as USB

and real-time Ethernet.

IntervalZero’s RTX 2009 SMP real-time software

extension for Windows is one of several key

components of a Soft-Control Architecture. By enabling

hard real-time, scalable SMP that leverages both

Windows and multicore, RTX allows machine tool

OEMs to significantly improve yields and throughput;

to shrink compute footprint; and to significantly reduce

both their costs and their customers’ costs.

Sources of Product Differentiation for Complex

Hard Real-Time Systems

In equipment design, the real value – the source of the

intellectual property and product differentiation – is the

logic that is executed when a task is performed. Where

it performs – on DSP, FPGA or x86 processor – is

not as important as it once was. Depending upon the

application, that logic can be captured in DSP or FPGA

hardware – ladder logic in a PLC, for example – or

captured as a software algorithm running in a C/C++

program on an x86 chip.

The platform and architecture for how the logic

gets implemented is dictated by several important

requirements including form factor, performance, and

user experience.

For many real-time systems, the performance

requirements historically have been so tightly bounded

that FPGAs and DSPs were the only viable choice for

implementing the logic. Therefore, the architecture was

preordained. Even if programmers could be 10 times

more productive by using an Integrated Development

Environment such as Microsoft Visual Studio that targeted

an x86 processor, unless the resulting product could

satisfy the performance requirements, it didn’t make

business sense to use the more productive environment.

For the last decade, x86-based hard real-time systems

grew at a steady rate as companies committed to

software-based hard real-time. Siemens, for example,

did so with their Simatic WinAC RTX PLC. But FPGAs

and DSPs have continued to rule the market when

it came to hard-real time for motion control or other

complex, high-precision and high-performance

systems. That is no longer the case. Advancing

technologies make it possible for OEMs to deploy a

breakthrough Soft-Control Architecture that changes

the game.

Changing the Basis of Competition for

Embedded Systems

As mentioned above, there are five distinct trends in the

embedded industry that are driving OEMs toward a Soft-

Control Architecture. Although it is true that capitalizing

Page 2

FPGAs and DSPs have ruled the market

when it came to hard-real time for motion

control or other complex, high-precision

and high-performance systems. That is

no longer the case. Advancing technologies

make it possible for OEMs to deploy

a breakthrough Soft-Control Architecture

that changes the game.

on just one of these trends can give a machine designer

a competitive edge, when taken together, they create

clear separation from all competitors.

Once the trends are understood, it is easier to see

how a Soft-Control Architecture is possible, and why it

is so effective.

1. Advancing x86 Chip Technologies

For a long time, performance requirements trumped all

other requirements for embedded real-time systems.

Meeting yield and quality requirements by satisfying

very tight performance guidelines was the top priority.

It didn’t matter how the human-machine interface

was if the tool couldn’t perform as designed. Often

the performance and precision requirements were so

tightly bounded that only Application-specific Integrated

circuits (ASIC), DSP or FPGA chips could be considered

for the hard-real time processing requirements.

Additionally, because the real-time component was

isolated in order to perform the mission-critical logic

on DSPs, FPGAs and an RTOS, if there was a need for

a complex user interface, the machine designer would

have to add an operator workstation that relied on

a general purpose operating system (GPOS). In other

words, the architecture demanded two computing

platforms in a two-tier client (GPOS) /server (RTOS)

configuration.

With advances in x86 multicore, multiprocessor

computers, and 64-bit processors, that de facto two-

tier architecture is no longer the most effective.

Far from it.

In fact, a real-time subsystem that can distribute

threads across multiple cores or processors in a SMP

implementation easily out scales a DSP or FPGA solution.

Freed from architectures that isolate the real-time

subsystem, machine designers can compete in new

ways. They can innovate with new architectures that

offer a better user experience in a unified development

environment, and that also enable them to reduce

product costs and increase operational efficiencies.

Because x86 processor power has increased so much,

it is possible for even a single core to outperform FPGA

and DSP-based applications. This has allowed machine

designers to move their FPGA and DSP functionality

off custom boards (e.g. motion boards) and onto one

of the cores in a multicore system. We will detail the

benefits later in this paper, but it is important to note

that yields and quality go up dramatically and costs are

reduced as well.

To add even more power to their systems, many OEMs

are moving to quad-core where multiple cores can

run hard real-time processes in parallel. This positions

the x86 favorably against FPGA and DSP-based

applications for even the most high-end and most

demanding hard real-time deployments.

In many ways we’re seeing a repeat of the CISC versus

RISC war. We know who won that one and why.

Of course the relentless push to double the performance

of the x86 doesn’t stop with multicore. For example,

64-bit offers more flexibility and supports functionality

demanded by other trends that are impacting the ideal

architecture for hard real-time systems.

In summary, performance requirements alone no

longer dictate the embedded system architecture. X86

processors with multicore, multiprocessing, and 64-bit

enable breakthrough architectures that can outperform

and outscale a traditional embedded environment

relying on DSPs, FPGAs, microcontrollers and RTOSs.

Page 3

2. Commitment to Commercial off the Shelf

(COTS)

A great deal of ink and bits have been used to describe

how open standards can drive costs out of systems and

increase quality. No need to belabor the point here. Suffice

it to say that as the performance of the x86 increases, the

move to COTS will only accelerate. All the components

that previously required DSPs or FPGAs to perform

the hard real-time tasks can be converted to software

components and run as a process on one of the x86 cores

in a multicore environment. This is COTS at the extreme

and it is coming.

Siemens’ soft PLCs represent a good example of how

COTS can drive rapid change. About five to seven years

ago, Siemens started offering industrial PLCs that ran on

PCs instead of relying on proprietary hardware. Siemens

innovated the industry and continues to see success.

CNC manufacturers quickly embraced the soft PLC for

their deployments, but when it came to their own motion

logic, they still relied on motion boards built with DSPs or

FPGAs because the performance of the x86 was not yet

comparable.

However, as the performance and precision of the x86

improved to match the requirements in the CNC industry,

thought-leading machine designers began moving toward

soft motion where their motion logic runs on an x86.

In fact, it is now possible to have the soft PLCs run on one

core and soft motion run on another core. The whole CNC

machine can now be driven on an industrial PC without a

custom board.

In the past, machine designers have complained that it

can be difficult to optimize on a PC because the chipsets

change frequently. Although this is true for consumer PCs,

companies offer industrial PCs that circumvent the “end-

of-life” issues with x86 chip sets by guaranteeing up to 10

years of availability.

3. Advances and Availability of COTS-based

Field Buses

The term “embedded system” gives the impression that the

deployed system is stand-alone. Not so. In today’s world

everything is interconnected, including embedded systems.

Whether real-time Ethernet, USB, or IEEE1394, many

complex systems demand real-time communications.

The rapidly evolving standards for intercommunication

are another example of the COTS trend. Increasingly,

real-time standards are seeking to use the hardware

available on an off-the-shelf PC such as the USB ports

or NIC card or 1394 port.

4. Convergence of Components in System

Design

Today’s end customers want whole or pre-integrated

solutions rather than acquiring components for

assembly themselves. This trend is forcing OEMs to

reconsider the scope of their product offerings.

To better meet customers’ needs, responsive OEMs

are looking at ways to become more vertically or

horizontally integrated.

Page 4

Components that previously required

DSPs or FPGAs to perform the hard

real-time tasks can be converted to

software components and run as a

process on one of the x86 cores in

a multicore environment. This is COTS

at the extreme and it is coming.

Good examples of vertical integration are the CNC and

machine tool designers that are developing their own

motion logic in-house rather than buying component

parts, such as motion boards and soft PLCs, to be

included in a machine design.

An example of horizontal integration would be the

motion board vendors that are expanding their offerings

to include PLCs. OEM customers want the PLC and

motion logic pre-integrated so most motion vendors are

now adding soft PLC.

Either way, the end user benefits because more parts

are pre-integrated, which shortens the time to market,

improves quality, and reduces maintenance.

The trend is gaining momentum because the scalability

and performance of the multicore processors

allows a deeper level of integration than could be

achieved previously. Integration wasn’t as possible

before because motion logic demanded a dedicated

processor/board and the same was true for the PLC.

The architecture called for different components that all

stood alone. Now that there is a scalable hard real-time

SMP alternative, developers can move motion control

logic and PLC into new architectures.

In fact, many stand-alone systems can become one

highly integrated system, which further improves quality,

speeds time to market and lowers cost.

5. Touch-centered Usability and Motion-

Sensing Technologies

Don’t underestimate the power of the user experience.

Sizzle sells.

As we’ve seen, real-time systems have historically

demanded an architecture that separated the user

experience from the hard real-time subsystems. Focusing

on achieving breakthroughs in performance rather than

on user experience made perfect sense. A terrific user

experience was useless if the machine couldn’t deliver

the required bounded latency and precision.

Now that motion logic can run in different architectures

and now that tighter integration is possible, equipment

and machine designers see an improved user

experience as one means of competitive separation.

This is precisely why Microsoft Windows quickly

became the strategic platform for simple embedded

systems. It is also why Windows is rapidly becoming

the strategic platform for complex equipment and

machine designs with hard real-time requirements and

complex human-machine interfaces.

The Windows platform leads in market share and has

the most development resources behind it. It is the de

facto standard for the user experience and is the most

common form factor in the world. It’s hardly surprising

that as companies come to market with new multimedia

experiences, boards, or technology, the first operating

system they target is Windows because it represents

the greatest revenue opportunity.

It is impossible for a proprietary RTOS, or even an open

source real-time solution, to keep pace with the Windows

user experience. And as we’ve seen, in a traditional two-

tier hard real-time architecture, the RTOS didn’t have

to keep pace with the Microsoft user experience. But

this two-tier architecture doubles many costs: two chips

sets, two tool chains, two code bases, two development

groups, two maintenance efforts and so on. By integrating

the systems more tightly, costs decrease significantly.

Page 5

Many stand-alone systems can become

one highly integrated system, which further

improves quality, speeds time to market

and lowers cost.

The pace of change in the user experience is

accelerating, which plays to Windows’ and Microsoft’s

tremendous strengths. In fact, two new technologies

that Microsoft is innovating will dramatically change

the way everyday users of embedded systems engage

with PC-based solutions. Surface technologies, for

example, which support touch-centered input, are

starting to be reflected in current releases of Silver

Light and with Windows 7. Using their fingers to zoom

and pan, dramatically changes the way users engage

with a system. Imagine an ultrasound medical system

that allows the technician to zoom around by pointing

at the actual graphic rather than relying on a trackball

or joystick. This technology – and its differentiating

capabilities – will become mainstream with the release,

and rapid adoption, of Windows 7.

Microsoft is also working on motion sensing. In grimy

industrial environments where it might not make sense to

have a touch screen, a motion-detection system could

let an operator communicate a starting position for a

CNC machine. Through motions or hand movements,

the operator could walk through the set up faster.

This latter technology is more futuristic, but the point

remains the same. Microsoft is absolutely committed to

remaining the standard for the user experience. Now that

the user experience is better able to be a differentiating

factor for complex embedded systems, Microsoft

Windows is the right choice. No other company is better

able to maintain the pace of innovation.

Key Characteristics of a Breakthrough Soft-

Control Architecture.

So, the technologies are shifting the competitive

landscape, but before they can be evaluated for how

they fit in the new world, we must first examine the

ideal characteristics of a new architecture. What are the

best practices that define a Soft-Control Architecture

or a breakthrough architecture that capitalizes on the

advances and opportunities cited above?

As we’ve seen, the playing field was level when all

parties were forced to separate the hard real-time

subsystem from the complex user interface. All OEMs

had two sets of hardware, two tool chains, two source

code models, two engineering teams and so on.

Additionally, the real-time team was often hardware-

oriented, with a design process far different from the

user interface team. This required careful coordination

and made communications more difficult. Still, as all

OEMs had the same challenges and costs, gaining a

competitive advantage was difficult.

With the increased performance of the x86 multicore

a unified system, it is possible to control both the hard

real-time and complex HMI on a single integrated

system. The breakthrough opportunity is to have a

single Integrated Development Environment handle

both the complex user interface and the hard real-time

subsystem. This approach simplifies and streamlines

the development process because there is only one

development environment and one target environment.

The engineering teams speak the same language so

communications and coordination are easier. This

directly translates to improved quality and time to market.

Wanting to take advantage of the increase performance

of the x86, the industry has seen two basic processing

models emerge that are contenders for consideration to

be the underpinning of a Soft-Control Architecture – SMP

and Asymmetrical Multiprocessing (AMP) or virtualization.

Page 6

A two-tier architecture can double many

costs: two chips sets, two tool chains,

two code bases, two development

groups and two maintenance efforts.

By integrating the systems more tightly,

costs decrease significantly.

For a variety of reasons, an integrated development

environment can deliver the best of two worlds when

SMP is enabled. (Figure 1) Windows is known for its

incredibly powerful, world-class user interface, but not

for meeting the hard real-time demands. The role of the

RTOS should be real-time deterministic performance,

not a highly graphical interface for the user.

In the end, to achieve the scalability that allows an x86

multiprocessor environment to perform better than a

DSP or FPGA, a true SMP environment is the most

viable model because of it offers the most scalable and

maintainable deployment environment.

A noteworthy characteristic of a true deterministic

SMP implementation for Windows is a hard real-

time extension, which serves as the RTOS in this

configuration. The real-time extension adds a real-time

scheduler and some other functionality to allow threads

that required determinism to run in real-time container

outside the constraints of Windows. In this configuration,

only a single instance of Windows and a single instance

of the real-time extension are required, regardless of the

number of processors being used. This means system

resources, like memory, are not overburdened and it also

means that the OEM does not have to maintain multiple

instances of the same software. System objects and

resources, such as IPC objects and shared memory, are

maintained by the single instance of the subsystem. All

threads on any processor have the same direct, equal

access to these resources.

This approach is in direct contrast to AMP or

virtualization architectures (Figure 2) that introduce

great complexity and customization and cannot provide

the same scalability that a true SMP model offers.

There are two AMP/virtualization models.

Page 7

Symmetric Multiprocessing (SMP) Architecture

Figure 1

Figure 2

A noteworthy characteristic of a true

deterministic SMP implementation for

Windows is a hard realtime extension,

such as IntervalZero RTX 2009 SMP,

which serves as the RTOS. The real-time

extension adds a real-time scheduler

and some other functionality to allow

threads that required determinism to

run in real-time container outside the

constraints of Windows.

In the heterogeneous virtualization model,

the hardware is divided. The operating

system that drives the user interface runs

on one or multiple cores and the RTOS

runs on separate cores.The OEM is no bet-

ter off than in the traditional architecture –

two tool chains, two development teams…

The first virtualization model is a heterogeneous

implementation where the architecture supports two

different operating systems on a single processor. The

other virtualization implementation is a homogeneous

implementation where the architecture replicates the

same Windows OS with real-time extension in multiple

virtual machines.

In the heterogeneous virtualization model, the hardware

is divided. The operating system that drives the user

interface runs on one or multiple cores and the RTOS

runs on separate cores. The hardware is divided

with a hypervisor, and even though the two systems

happen to be running on the system, the user interface

is separated from the real-time subsystem in much

the same way it was in the inefficient, costly two-tier

architecture described previously. The OEM is no better

off than in the traditional architecture – back to two tool

chains, two development teams, and so on.

The homogeneous virtualization approach is to have

Windows and a Windows hard-real time extension

replicated on as many cores as needed. A quad-

core solution will require a hypervisor and some

combination of four copies of Windows or copies

of the hard real-time subsystem. If these instances

need to communicate, or need to share resources,

then programmers must develop the equivalent of

interprocess communication and remote procedure

calls must be created in order for the systems to

be synchronized. This approach requires heavy

customization on the OEMs’ part because the

coordination and versioning that is necessary is fraught

with quality and maintenance challenges. The overhead

of the interprocess communications and the hypervisor

add too much latency and complexity to come close to

being competitive with the SMP approach.

There is a final virtualization architecture that has yet

to be released to the market and it represents the

most viable virtualization platform for hard real-time

embedded systems that take advantage of SMP.

This future platform is a blend of the heterogeneous

and homogeneous implementations and presents an

opportunity for Microsoft to win the embedded hard

real-time virtualization market. This mixed virtualization

environment would allow the Windows user interfaces

to run in a HyperV virtualization environment and allow

a Windows hard real-time extension subsystem to run

in SMP mode on multiple cores that are protected

from HyperV. This means the real-time extension

could directly see and control multiple cores and

the resources in an SMP-enabled mode and then

communicate via direct memory.

This solution is contrasted to a virtual machine Windows

hard real-time solution because of the fact that the

Windows environment and the real times subsystem

can run on different cores and the real time subsystem

can run in SMP mode. Both are required to meet the

scalability and performance requirements.

There are other advantages of SMP over a non-HyperV

Windows virtualization model.

SMP treats the multi-processor hardware as a shared

resource with a single real-time subsystem running

across all configured processors. Virtualization’s goal is

isolation, which is completely opposite of integration. For

example, having access to all resources directly enables

scalability of the system. Taking advantage of a multicore

chip means the OEM must be able to assign processes

and threads to multiple cores and be able to set priority

levels of threads within each core. Only an SMP-capable

kernel can schedule threads directly to cores.

AMP/virtualization systems have an OS/scheduler per

virtualized OS, so communication and synchronization

between threads becomes too complex too quickly

to allocate threads to any core other than the core

the process it is running on. This alone limits the value

of a virtualization environment because the lack of

direct interprocess communication directly limits its

ability to scale.

Page 8

And it’s not only resource access that should be

considered, but also data. SMP cores must have

immediate and direct access to shared data. AMP relies

heavily on programmer-developed mechanisms to

replicate the equivalent of interprocess communication

and memory copying to allow access to shared data

regions. This leads to data corruption and synchronization

issues with parallel code. Again, a lot more complexity

that the OEM must take responsibility for rather than

letting the system do the work as is the case with SMP.

SMP is superior to virtualization because it relies on

a smaller memory footprint for the actual real-time

subsystem. A small-memory footprint improves the

overall system performance and scalability. Ideally,

on four-core systems a real-time extension should

only require about 250k of memory to run the

actual subsystem only – not user applications. In a

virtualization environment the real-time extension will

require memory for each instance on each core, rather

than SMP’s one instance across all needed cores.

Finally, while it does require some thought, scalability

of an SMP deployment is parameterizable if the code is

designed from the start to do so. In other words, code

can be written once and the performance will scale

automatically with an increased number of processors –

without code changes or even rebuilding.

In summary, the best practices that an SMP

environment offers are:

• �One common Integrated Development Environment

and world-class GUI – e.g. Microsoft Windows

• �Single real-time subsystem instance executing

directly on multiple assigned processors

• All resources visible to all real-time processes

• �Schedule real-time threads across multiple

processors, or dedicate certain logic to specific cores

• �Direct access to shared data without additional

copies and heavy IPC usage

• �Minimize system memory requirements – footprint/

power usage

• Code once with parameters for parallelism

While virtualization is conceptually pleasing because

it simplifies each isolated instance, interprocess

communication is necessary for all-important scalability.

Optimizing Best Practices in a Soft-Control

Architecture

A Soft-Control Architecture capitalizes on all the recent

technology advances – particularly x86 multicore

processors – and also blends the best of a general

purpose operating system and a real-time operating

system to deliver a breakthrough in systems design that

is changing the basis of competition across markets

that typically have relied heavily on DSPs and FPGAs.

Impacted industries include the Industrial Automation,

Medical Systems, Test and Measurement and Digital

Media markets to name a few.

As stated at the outset, the key to a Soft-Control

Architecture’s value is moving the hard real-time control

logic, such as PLC or motion logic, from specialized

hardware components to software components. With

x86 processor advances, OEMs can take the C/C++

source-code logic traditionally compiled and run on the

DSP or FPGA and port the source code to target an

RTOS-like real-time extension to Microsoft Windows.

The extension runs as a hard real-time, SMP-enabled

application directly on x86, therefore eliminating any

need for the FPGA or DSP to perform the logic. The

software component runs on multicore, commodity

x86 processors and uses both open standards and

standard communications architectures, such as USB

and real-time Ethernet. As an example, a contrasting

look at an SMP-enabled CNC machine design versus a

traditional hardware-centered CNC machine design can

be seen in Figures 3 and 4.

Page 9

To deliver this value, a Soft-Control Architecture blends

three components: Windows, x86 multicore chips and

an RTOS-like, SMP-enabled hard real time extension.

Windows delivers the optimal user experience and

is the foundation of this breakthrough architecture.

Clearly, no RTOS can compete with its usability. It is

far easier to add real-time capability to Windows than

it is to get an RTOS vendor to keep pace with the user

interface. To achieve a single integrated development

environment, Windows must be extended with a real-

time scheduler and other RTOS-like features. It is then

simply a matter of selecting the best hard real-time

extension for Windows.

The requirements for this Windows hard real-time

extension are stringent. SMP-enabled hard real-time is

a prerequisite:

• for sufficient scalability

• �for the levels of performance required to support

the migration of logic from DSPs and FPGAs into

software that runs on an x86, and

• �for optimizing the utilization of the x86 multicore

processors.

While it is difficult to provide benchmark data directly

because PCs vary, it should be noted that the minimum

sleep time for Windows is 1 millisecond +/- 7.5

milliseconds. IntervalZero RTX offers a 1 microsecond

timer, but because little can be performed in the

interval, customers often use a 100 microsecond timer

and experience jitter of only 2 microseconds. Other

customers have opted to work with a 20 microsecond

timer, which is required to sufficiently replace DSPs

and FPGAs in some industries. Now, consider running

multiple threads in parallel across multiple cores. The

point here is that RTX is capable of delivering equivalent

determinism of RTOSs or competing extensions, and

can outperform DSPs and FPGAs.

At the same time, x86 multicore chips are capable

of supporting SMP and enabling the scalability and

performance requirements that OEMs demand.

The resulting benefits are real. A Soft-Control

Architecture gives OEMs clear competitive advantages

and product differentiation by delivering breakthroughs

in throughput and yields; in production quality; in a

more compact physical footprint; and in substantial

cost reductions. In addition to reducing product costs,

Figure 3

Figure 4

In the heterogeneous virtualization model,

the hardware is divided. The operating

system that drives the user interface runs

on one or multiple cores and the RTOS

runs on separate cores.The OEM is no bet-

ter off than in the traditional architecture –

two tool chains, two development teams…

Page 10

266 2nd Avenue, Waltham, MA 02451						 IntervalZero.com

Copyright © 2009 IntervalZero, Inc. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their
respective companies

a Soft-Control Architecture can improve operational

efficiencies for an OEM. By transforming hardware

components to software components, there is nothing

to inventory and parts are infinitely replicable.

IntervalZero RTX Enables Scalable, Hard Real-

Time SMP

IntervalZero’s RTX 2009 is an essential, enabling

component in this powerful new Soft-Control

Architecture. The economics are too compelling to

ignore, and companies that move first will have a

significant advantage.

RTX is the only solution in the world that integrates

seamlessly into the Microsoft Visual Studio Integrated

Development Environment; that deploys to a single

integrated Windows system; that extends Windows,

delivering hard real-time precision with bounded

latency; and that does so on multi-core processors

as a natively SMP-enabled solution.

