
Executive Summary

Three main trends that are shaping the embedded device
market today are smaller form factors, standardization, and
improved performance per watt. In addition, applications
across all device categories, from signal processing in
aerospace devices to multimedia processing in consumer
devices, continue to require higher performance. However,
the traditional method of achieving higher performance,
increasing the processor clock frequency, causes the thermal
dissipation of the processor to increase as well, and higher
thermal dissipation drives up the overall platform energy
requirements. In contrast, multicore technology benefits
devices and applications by improving performance per watt
ratios and by reducing the board real-estate required by
multiple-processor designs that place only one core in each

package. This allows software developers to leverage
symmetric multiprocessing (SMP) capabilities at lower price
points than ever before.

The challenge for embedded developers is identifying and
extracting parallelism within serially designed applications and
designing software so that it scales as the number of cores
increases. This paper discusses the combined performance
and SMP capabilities of the Intel Core microarchitecture and
Wind River VxWorks SMP operating system and walks through
SMP software design considerations, methodologies, and
Wind River tools that help with each step of the multicore
software development cycle.

Introduction

Multicore, also referred to as chip multiprocessing (CMP),
is a processor technology that provides parallel processing
capabilities by containing multiple independent execution
cores and instruction pipelines within one packaged pro-
cessor assembly. It supports increased platform performance
with lower power cores. System software utilizes this tech-
nology for load balancing and simultaneously executing the
workload across the multiple cores.

Multicore can be used to optimize system performance by
using the additional cores to execute multiple streams of
code simultaneously. Multicore technology reduces the costs
of multiprocessing and provides unprecedented increases
in capacity for new uses and functions such as hardware
consolidation and robustness of virtualized systems.

Applications can benefit from multicore technology by
simultaneously processing multiple concurrent functions
within one application, as well as by decomposing data to be
equally distributed and simultaneously processed across all
cores. Multicore technology can also increase application
responsiveness by allowing one or more tasks to execute
simultaneously, while another task waits for data or a user
command.

Table of Contents

Executive Summary... 1

Introduction... 1

Intel Multicore Processors... 2

Symmetric Multiprocessing Operating Systems................. 4

Multicore and SMP Software Considerations...................... 5

Concurrency vs. Parallelism... 6

Migrating Applications to SMP... 6

Parallelism Inherent in the Application................................ 6

Dependencies and Resource Contention............................ 7

Minimize OS Synchronization Calls..................................... 7

Excessive Context Switching .. 7

Tools for SMP Development ... 9

Optimizing Software for SMP Environments..................... 10

Conclusion... 11

Best Practices: Adoption of Symmetric
Multiprocessing Using VxWorks and
Intel® Multicore Processors
Lori Matassa, Digital Enterprise Group, Intel Corporation
Yatin Patil, VxWorks Product Division, Wind River

2 | Best Practices: Adoption of Symmetric Multiprocessing Using VxWorks and Intel Multicore Processors

Intel Multicore Processors

Intel multicore technology provides new levels of energy-
efficient performance, enabled by advanced parallel
processing and next-generation hafnium-based 45nm
technology. These processors contain multiple processor
execution cores in a single package, which benefits SMP
designs by providing full parallel execution of multiple
software threads on cores that run at a lower frequency.

Intel Core Microarchitecture

Intel first introduced Intel Core microarchitecture in 2006 in
the Intel Core 2 processor family manufactured with the 65nm
silicon process technology. Intel Core microarchitecture

extends the energy-efficient philosophy first delivered in
Intel’s mobile microarchitecture (Pentium M processor) and
greatly enhances it with many leading-edge microarchitectural
advancements, as well as some improvements on the best of
Intel NetBurst microarchitecture. This new microarchitecture
also enables a wide range of frequencies and thermal
envelopes to satisfy different performance needs.

Intel Core microarchitecture is designed with shared L2 cache
between cores. An SMP benefit of shared cache is that it pro-
vides improved performance (by reducing cache misses) when
data is shared between threads running on cores that share
cache. The VxWorks SMP operating system takes advantage

Intel® Core Microarchitecture Ingredients

Intel Core microarchitecture includes five new and
innovative ingredients enabling new levels of energy-
efficient performance.

Intel® Wide Dynamic Execution

First implemented in the P6 microarchitecture, Intel Wide
Dynamic Execution is a combination of techniques (data
flow analysis, speculative execution, out of order execution,
and super scalar) that enables the processor to execute
more instructions on parallel, so tasks are completed more
quickly. It enables delivery of more instructions per clock
cycle to improve execution time and energy efficiency.
Every execution core is 33% wider than previous genera-
tions, allowing each core to fetch, dispatch, execute, and
retire up to four full instructions simultaneously. Further
efficiencies include more accurate branch prediction,
deeper instruction buffers for greater execution flexibility,
and additional features to reduce execution time. Intel
Wide Dynamic Execution enables increased instruction
execution efficiency, thus boosting performance and
energy efficiency.

Intel® Advanced Digital Media Boost

Intel Advanced Digital Media Boost is a feature that
significantly improves performance when executing Intel
Streaming SIMD Extension (SSE/SSE2/SSE3) instructions. It
accelerates a broad range of applications, including video,
speech, image, photo processing, encryption, financial,
engineering, and scientific applications. Intel Advanced
Digital Media Boost enables 128-bit instructions to be
completely executed at a throughput rate of one per clock
cycle, effectively doubling the speed of execution compared
to previous generations.

Intel® Smart Memory Access

Intel Smart Memory Access improves system performance
by optimizing the use of the available data bandwidth from
the memory subsystem and hiding the latency of memory
accesses. Intel Smart Memory Access includes an important
new capability called “memory disambiguation,” which
increases the efficiency of out-of-order processing by
providing the execution cores with the built-in intelligence
to speculatively load data for instructions that are about to
execute before all previous store instructions are executed.

Intel® Advanced Smart Cache

Intel Advanced Smart Cache is a multicore optimized cache
that significantly reduces latency to frequently used data,
thus improving performance and efficiency by increasing
the probability that each execution core of a multicore
processor can access data from a high-performance, more
efficient cache subsystem. Intel Core microarchitecture
shares the level 2 (L2) cache between the cores. This better
optimizes cache resources by storing data in one place
where each core can access it. By sharing L2 cache between
each core, Intel Advanced Smart Cache allows each core to
dynamically use up to 100% of available L2 cache.

Intel® Intelligent Power Capability

Intel Intelligent Power Capability is a set of capabilities for
reducing power consumption and device design requirements.
This feature manages the run-time power consumption of all
the processor’s execution cores. It includes an advanced
power-gating capability that allows for an ultra fine-grained
logic control that turns on individual processor logic sub-
systems only if and when they are needed. Additionally, many
buses and arrays are split so that data required in some modes
of operation can be put in a low-power state when not needed.

For more details about Intel Core microarchitecture innovative
ingredients visit http://softwarecommunity.intel.com/
UserFiles/en-us/sma.pdf.

http://softwarecommunity.intel.com/UserFiles/en-us/sma.pdf

3 | Best Practices: Adoption of Symmetric Multiprocessing Using VxWorks and Intel Multicore Processors

of shared cache benefits by providing the CPU affinity func-
tion, which allows the developer to map threads to specific
cores and can improve performance on multiprocessor sys-
tems. Figure 1 depicts a dual-core configuration of the Intel
Core microarchitecture.

Intel Core 2 Processor Family, Codenamed ‘Penryn’

In the second half of 2007, Intel began production of the Intel
Core 2 processor family codenamed “Penryn.” The Penryn-
based Intel Core 2 processor family is based on Intel’s
industry-leading 45nm high-k metal gate silicon technology
and Intel’s latest microarchitecture enhancements. This next
evolution in Intel Core microarchitecture builds on the success
of Intel’s revolutionary microarchitecture (currently used in
both the Intel Xeon and Intel Core 2 processor families). With
more than 400 million transistors for dual-core processors and
more than 800 million for quad-core, the 45nm Penryn family
introduces new microarchitecture features for greater
performance at a given frequency, up to 50% larger L2 caches
(up to 12 MB), and expanded power management capabilities
for new levels of energy efficiency. The Penryn family also
includes nearly 50 new Intel Streaming SIMD Extensions 4
(Intel SSE4) instructions for speeding up the performance of
media and high-performance computing applications.

Next-Generation Intel Core Microarchitecture,
Codenamed ‘Nehalem’

Coming in 2008 is the latest Intel Core microarchitecture
codenamed “Nehalem.” Nehalem is designed from the
ground up to take advantage of hafnium-based Intel 45nm
Hi-k metal gate silicon technology; and with its dynamic and
design scalable microarchitecture, Nehalem can deliver both

performance on demand and optimal price/performance/
energy efficiency for each type of platform.

Nehalem delivers the following:

•	 Dynamically managed cores, threads, cache, interfaces,
and power for energy-efficient performance on demand

•	 Simultaneous multithreading (SMT) that enables running
two simultaneous threads per core

•	 Extensions to the Intel SSE4 that center on enhancing XML,
string, and text processing performance

•	 Multilevel cache, including an inclusive shared L3 cache
•	 Memory bandwidth that delivers from two to three times

more peak bandwidth and up to four times more realized
bandwidth (depending on configuration) as compared to
today’s Intel Xeon processors

•	 Performance-enhanced dynamic power management

Intel QuickPath Technology

Nehalem will be the first to introduce Intel QuickPath tech-
nology, which is a new system architecture that unleashes
performance with an interconnect system architecture that
provides point-to-point high-speed links to distributed shared
memory. Each processor core will feature an integrated
memory controller and high-speed interconnect, linking
processors and other components. Intel QuickPath
technology delivers the following:

•	 Dynamically scalable interconnect bandwidth designed
to set loose the full performance of Nehalem and future
generations of Intel multicore processors

•	 Outstanding memory performance and flexibility to
support leading memory technologies

•	 Tightly integrated interconnect reliability, availability, and
serviceability (RAS) with design-scalable configurations
for optimal balance of price, performance, and energy
efficiency

L1 D-Cache and D-TLB

Instruction Fetch and
Predecode

uCode
ROM

Instruction Queue

Decode

Rename/Alloc

Retirement Unit
(Reorder Buffer)

Schedulers

ALU Branch
MMX/SSE
FPMove

ALU FAdd
MMX/SSE
FPMove

ALU FMul
MMX/SSE
FPMove Load Store

2MB/4MB
Shared

L2 Cache

Up to
10.4 GB/s

FSB

Store Load

ALU FMul
MMX/SSE
FPMove

ALU FAdd
MMX/SSE
FPMove

ALU Branch
MMX/SSE
FPMove

Schedulers

Retirement Unit
(Reorder Buffer)

Rename/Alloc

Decode

Instruction Queue

Instruction Fetch and
Predecode

L1 D-Cache and D-TLB

uCode
ROM

Figure 1: Intel Core microarchitecture, dual-core configuration

4 | Best Practices: Adoption of Symmetric Multiprocessing Using VxWorks and Intel Multicore Processors

Symmetric Multiprocessing Operating Systems

Besides being an application with an ample amount of
built-in concurrency, the SMP operating system is probably
the most important software factor that affects parallel
processing capabilities. The following topics explain
multicore software development.

A symmetric multiprocessing configuration (depicted in
Figure 2) is where one operating system controls more than
one identical processor (or core in a multicore processor).
Applications “see” and interact with only one operating
system, just as they do in single-processor systems. The fact
that there are several processors in the system is a detail that
the operating system hides from the user. In this sense, an
SMP operating system abstracts the hardware details from
the user. An SMP operating system is also symmetric—it
needs to work with multiple identical processors, each of
which can access all memory and devices in the system in a
uniform fashion. Therefore, any processor (or core) in an SMP
system is capable of executing any task just as well as any
other processor in the system. This symmetry in the hardware
allows an SMP operating system to dispatch any executing
task to any processor in the system. An SMP operating
system tries to keep all processors busy running application
threads, in effect load balancing the system’s work.

As a result of hardware abstraction and load balancing in
the system, the SMP operating system simplifies the task
of developing software to run on SMP hardware. From the
programmer’s view, there is only one operating system to
write an application for, which will automatically distribute
the workload to all available processors. An SMP operating
system hence provides the same programming semantics as
a uniprocessor system.

All processors in an SMP system share one pool of memory
under the control of one operating system. The memory and
local caches for each individual processor are kept synchro-
nized by the processor hardware. Therefore, applications in
an SMP system can share data with each other in memory
very easily and efficiently. This makes SMP systems suitable
for applications that need to share large amounts of data with
low latency.

Real-Time Capabilities of VxWorks SMP

Real-time is a very relative concept, dependent on the
maximum response time that is permissible for the given
application. If the application can accept a response time in
seconds and the footprint is acceptable, even a desktop
operating system might qualify as a real-time system, but
only for that application, not every application. At the other
extreme, something that needs to be controlled at nano-
second speeds may not be suitable for any OS. Such a system
may be better served by hardware control logic instead of a
microprocessor running an operating system.

Any SMP kernel has to manage and synchronize more than
one CPU, which makes its overhead necessarily higher
than that for a uniprocessor kernel. Therefore, benchmark-
for-benchmark, any SMP kernel will be slower than the
corresponding kernel built for only one CPU. However, SMP
wins out in its ability to parallelize execution and thus gain
performance in ways that a single processor cannot match.

The real-time characteristics of VxWorks are preserved in the
SMP case by kernel design choices that emphasize
deterministic behavior of kernel operations and lowest
possible latencies. This allows VxWorks SMP to be applicable
in the same target markets and target applications as
uniprocessor VxWorks systems. VxWorks SMP has a
deterministic scheduler, which guarantees task execution in
priority order. The scheduler dispatches the N highest
priority tasks that are ready to run, where N is the number of
processors in the system. Deterministic priority-based
scheduling is also one of the critically differentiating features
of VxWorks on single-processor systems; this is what
differentiates a real-time operating system (RTOS) from a
general-purpose operating system.

VxWorks SMP implements interrupt-level parallelism, namely
the ability for more than one core in the system to handle
different interrupts simultaneously. This increases the
responsiveness of the system as a whole. Many critical
operations within the OS are protected by spin-locks. These
operations complete in deterministic time, which is a function
only of the time for which the spin-lock is held. Spin-locks
also protect critical data during interrupt processing. These
spin-locks are held for a deterministic length of time, which in
turn makes the system’s interrupt latency deterministic as
well.

Multicore by itself does not affect real-time behavior. If
anything, multicore technology allows the device as a whole
to do more and be more feature-rich and capable. But if the
timing tolerances are especially tight, SMP may not be the
right choice. An AMP system design is a much more suitable
alternative because each core can run a uniprocessor
operating system with the lowest possible latencies.

SMP OS

CPU 0 CPU 1 CPU n

Figure 2: A symmetric multiprocessing OS configuration

5 | Best Practices: Adoption of Symmetric Multiprocessing Using VxWorks and Intel Multicore Processors

Multicore and SMP Software Considerations

Multicore requires software that exploits the presence of
multiple processing units. It’s important to understand your
multicore system objectives and how your applications will
be affected before starting the migration to multicore and
developing a migration plan.

Depending on the objectives and design of the current
software, the migration might be as easy as just porting your
software to the multicore platform without changes, or it
could require design changes of the application(s) as well as
other changes:

•	 If the current applications are already designed for a
multiprocessor system, they should already be capable
of utilizing and benefiting from multicore hardware.

•	 If the current applications are designed for a uniprocessor
platform, they will need to be surveyed and updated as
needed to meet the migration plan objectives. This could
require changes throughout the applications.

Improve Turnaround, Throughput, or Add Processing

Multicore processors improve software performance by
using the additional cores to improve turnaround and/or
throughput of data processing. For example, in a factory
assembly line, the amount of time it takes to assemble one
unit of the product is called turnaround time. The number
of products produced per day or per month is called
throughput. These two terms are not mutually exclusive;
a reduction in turnaround time increases throughput.
However, if increased throughput is the end goal, it may be
achieved by increasing the turnaround time per unit and/or
adding more assembly lines to operate in parallel. When
considering how to optimize the performance of software
applications, it is up to the developer to decide which of
these performance improvements will be used at various
points in the code. One area of processing might benefit
from improved turnaround (i.e., a “divide and conquer”
strategy), while another benefits from improved throughput
(bandwidth):

•	 An imaging application might benefit from improved
turnaround and would therefore use a four-core system to
divide the image processing for each frame between the
four cores. The code would create a minimum of as many
threads as there are cores, and each thread would process
the pixels for the portion of the image within its assigned
region of the screen. Four cores could have four threads
operating on a total of four regions (quadrants) of the screen
image simultaneously and thus turnaround could theoret-
ically be improved by a factor of four times. Visit http://
download.intel.com/technology/advanced_comm/315697.pdf
to read a case study about an open source medical imaging
application that was threaded for multicore.

•	 A packet-processing application might benefit from
improved throughput and would therefore use the four
cores to theoretically process four times as many packets

in the same amount of time as on a single core. Visit
http://download.intel.com/technology/advanced_comm/
31156601.pdf to read a case study about an open source
intrusion detection program that achieved supralinear
performance across four cores and the parallel program-
ming IP packet processing methodologies that were used.

Regardless of whether an application needs more perfor-
mance, it can also benefit from multicore by using the
additional cores to support more processing, such as adding
new features to applications or adding new applications that
can run simultaneously with the others. Multicore technology
also allows designers to consolidate systems previously built
with many boards into one or a few boards, saving space,
weight, and power in doing so.

Assess the Readiness of the Applications

As part of the migration plan, the applications should be
surveyed for SMP readiness. Any software that is not ready
for the requirements called out in the migration plan must
be updated. Three application types that should be given
particular attention when assessing for SMP include the
following:

•	 Applications that are serially coded and can multitask well
together: Applications that don’t contend for hardware
resources could be run on multicore platforms without
changes. However, to get the best performance of the
application on the multicore platform and to achieve the
best scalability to future processors with increasing cores
without additional code or configur-ation changes, the
application should be redesigned to take advantage of the
additional cores by decomposing the work within the
hotspots of the code (areas that do the heaviest processing).

•	 Libraries and device drivers: All routines called
concurrently from multiple threads must be thread-safe.
Two methods are available to ensure thread safety:

Routines can be written to be reentrant.1.	

Routines can use mutual exclusion synchronization to 2.	
avoid conflicts with other threads. As far as possible,
it is better to make a routine reentrant than to add
synchronization objects because synchronization
prevents parallelism.

	 Update the libraries and device drivers that were written
in-house, and check for SMP-safe versions from vendors.
The operating system must support multiple processors,
such as SMP operating systems. VxWorks SMP provides
SMP capa-bilities to VxWorks. It leverages multicore
processors to achieve true concurrent execution of appli-
cations, allowing applications to improve performance
through parallelism. VxWorks SMP, when combined with
Wind River Workbench, provides users with a complete
VxWorks SMP–ready platform comprising the run-time,
middleware, and Wind River’s market-leading develop-
ment tools suite.

http://download.intel.com/technology/advanced_comm/31156601.pdf
http://download.intel.com/technology/advanced_comm/315697.pdf

6 | Best Practices: Adoption of Symmetric Multiprocessing Using VxWorks and Intel Multicore Processors

•	 Development tools: Some software tools (and hardware
tools) such as performance analyzers will need the
capability to recognize and analyze the software that is
running on all of the cores. From hardware and board
initialization to device management, Wind River
Workbench offers deep capabilities throughout the
development process in a single integrated environment,
with complete platform integration and tools for
debugging, code analysis, advanced visualization,
root-cause analysis, and test. The Wind River Workbench
suite was upgraded as needed to support debugging and
analyzing an SMP environment. Workbench 3.0 has the
ability to debug the VxWorks SMP kernel and real-time
processes (RTPs) in system or task mode. Workbench and
in particular Wind River System Viewer enhancements
simplify the diagnosis of race conditions and deadlocks,
two common issues that arise when developing programs
for multicore environments. All tools work identically with
VxWorks SMP as they do with uniprocessor VxWorks.

Concurrency vs. Parallelism

Concurrency is having two or more threads in progress at the
same time. Parallelism is having two or more threads actually
executing at the same time. On a uniprocessor platform, only
one thread can execute at any given time; any other threads
in progress must wait. Although concurrency is achieved,
parallelism is not possible. On a multi-CPU platform, these
threads can execute simultaneously, thus providing
parallelism.

The amount of parallelism that can be achieved on a multiple
core system is limited by the level of concurrency that is
designed in. The maximum theoretical speedup of a serial
application that will be redesigned to run on multiple cores is
restricted by the amount of code that must remain serial. This
is known as Amdahl’s law. All jobs include some work that has
to be serial. Amdahl’s law says serial processing limits
speedup: Parallel speedup = 1/(Serial% +
(1-Serial%)/N).

Threads have a performance overhead in their creation and
termination. So beware that adding too many threads could
actually degrade the efficiency of the processing. A good
rule of thumb to follow is to have as many simultaneously
active threads as the number of available cores. Any less
would be considered undersubscribed and any more would
be oversubscribed.

Migrating Applications to SMP

During the design stage of the multicore application, the
developer will need to identify areas of high processing in
the code and then decide how to decompose the work being
performed in that code. The work will either be decomposed
by data or by function:

•	 Data decomposition divides large datasets, whose
elements can be computed independently, between the
available cores. The same task operates on different data.
This is typically found in “for” loops.

•	 Functional decomposition (i.e., task decomposition)
divides the computation to the available cores based on
the natural set of independent functions (tasks), different
functions operating on the same data.

Locating Opportunities for Parallelization

The most important advantage offered by an SMP operating
system is the opportunity to run code in parallel.
Performance speedups on SMP originate from the ability to
run more than one stream of code in parallel. Therefore
parallelism is the key to achieving higher performance in SMP
environments. System designers must find ways to maximize
the system’s ability to run as much code in parallel as
possible if they are to get the most amount of performance
possible in SMP environments.

Three factors limit the amount of parallelization and therefore
the amount of performance gain that can possibly be
achieved in an SMP system:

1.	The amount of parallelization possible given the
application algorithm; Amdahl’s law illustrates how much
speedup is theoretically possible for a given ration of
serial-parallel execution

2.	The number of OS synchronization calls used by the
application

3.	Excessive context switching

Parallelism Inherent in the Application

Applications have differing amounts of parallelism that are
inherently possible by their nature and the design of the
algorithm. More parallelism contributes to better utilization
of multiple cores and therefore better performance in SMP
operating systems. To better understand the issues involved
consider a few real-life situations.

If there is a job to do, it can get done faster with many people
working on it than with only one. Cores in a multicore
processor are like more workers who can be applied to a job.

9

8

7

6

5

4

3

2

1
 16 8 4 2

50% 20%

Sp
ee

d
up

10% 5%

Processors

Serial

Figure 3: The theoretical maximum performance gains possible for a varying
number of CPUs and percentage serialization

7 | Best Practices: Adoption of Symmetric Multiprocessing Using VxWorks and Intel Multicore Processors

Obviously there must be enough work to keep all the workers
busy. Then you have to be able to split the work into enough
pieces to give every worker something to do. But it can also
be similar to having too many cooks in the kitchen: The work
can’t get done faster just by assigning more workers. The
workers have to work well together or the efficiencies that
could be gained could be lost. The workers need to be kept
busy, not waiting around for something to happen. The more
time workers spend waiting for work to do, the less
productivity and output from the kitchen.

Dependencies and Resource Contention

In the real world, assembly lines are an example of multi-
processing. A lot of work can be accomplished by carefully
coordinating multiple activities so that they happen in
parallel as much as possible. Yet there are dependencies
between the actual stages through which the work goes.
If the dependencies are not right or the work is not done
correctly, the subsequent steps stall and output suffers.

A delivery warehouse that sorts packages and loads them on
to the right delivery truck is an example of an application
with almost no dependencies. Each package is processed
independently from every other package. This system has a
very high level of parallelism. The challenge is that of shared
resources. In this example, if there were too few carts
available to move the packages around, every worker would
be waiting. This situation is called resource contention.

Some tasks simply cannot get done faster by adding more
people or resources to it. Reading a book, for example, is a
strictly serial operation. Every chapter in the book must be
read in order for the story to be understood. Adding more
readers to read chapters in parallel would not help. This
is an example of an application that cannot benefit from
multiprocessing.

Computing applications have many of the same character-
istics. There are applications that have inherently high
degrees of parallelism possible. There are also applications,
though not originally written to exploit parallel execution,
that can nonetheless be changed to work in parallel. These
applications and algorithms are ideal targets for running in
SMP environments. On the other hand, there are applications
that by their nature are very serial and gain little or nothing
from running in multiprocessor environments.

Maximizing Application Parallelism

The following can maximize parallelism in the application:

Decompose the application into multiple threads or tasks 1.	
that can be scheduled by the operating system in parallel.
Although your design might use many more threads than
available cores, remember that a good rule of thumb to
follow is to have as many simultaneously active threads as
the number of available cores. Otherwise the processor
utilization is “oversubscribed.”

Reduce dependencies between threads as much as 2.	
possible. With many threads and processors in action,
dependencies and synchronization points defeat
parallelism and ultimately bring down the performance
gains that would otherwise have been possible.
Dependencies take the form of shared data variables or
messages passed between threads that affect their
execution.

Audit your application for resources contention. The 3.	
“resources” in this case can be frequently used objects
such as semaphores for synchronization, spin-locks, critical
sections that must be single-threaded, and so on. The
more frequently threads wait for access to these resources,
the more time is spent waiting, and correspondingly less
time is spent executing the application. Performance
ultimately suffers. It is advisable to redesign the
application to use such shared resources as sparingly as
possible.

Operate on local, independent data sets as much as 4.	
possible. This allows threads to operate with reduced or
no synchronization with other threads. Operating on local
data also maximizes the chances of finding the needed
data in local cache, thus boosting performance.

Use lock-free algorithms. These are algorithms designed 5.	
in such a way as to eliminate the need for access to shared
data to be locked with semaphores. Part of this process
may involve using dedicated threads for certain kinds of
operations, thus precluding the possibility of other threads
reentering the same critical section.

Minimize OS Synchronization Calls

OS synchronization calls limit the amount of parallel activi-
ties in the system. Synchronization calls need to enforce
mutual exclusion, which serializes thread execution. Thus,
synchronization calls can impact performance and should
be used sparingly. Examples of synchronization calls are
semaphore operations, spin-locks, calls to other interprocess
communication (IPC) facilities, and context switches.

Excessive Context Switching

An SMP operating system by design will schedule threads on
any available core because it tries to keep all cores in the
system busy. Often this can lead to threads “migrating” from
one core to another as the OS schedules them. Frequent core
migration of threads leads to significant cache miss penalties
when the thread begins running on a core that does not have
its data in cache and reduced performance results. Frequent
core migration is typically caused when there are many more
threads ready to execute than there are cores available to run
them.

8 | Best Practices: Adoption of Symmetric Multiprocessing Using VxWorks and Intel Multicore Processors

Writing Thread-Safe Code

Thread-safe code is code that is able to work correctly and
coincide with other threads running in the same address
space. Thread safety becomes especially more important in
SMP environments, where it is routine to have several threads
running concurrently. For performance reasons, it is advan-
tageous to have multithreaded software share data. But the
sharing of data must be regulated with protected mutually
exclusive access to that data. In single-processor environ-
ments, programmers can often make assumptions about
concurrency based on the fact that there is only one processor
and on other OS factors such as priority-based scheduling. It
is common to find software written for single-processor
systems making such assumptions that are never violated.
Effectively these are shortcuts that work because there is only
one processor in the system. In a multiprocessor system,
single-threaded code execution assumptions break down.
Shared data between threads must be protected explicitly or
else software no longer works correctly. Writing thread-safe
code involves the following:

•	 Having fewer or ideally no global variables at all: Every
global is a shared data item and access should be mutually
exclusive for correct operation. Locks to enforce mutual
exclusion increase serialization and reduce performance by
making threads wait for locks. Use only as many global
variables as you must.

•	 Adding mutual exclusion locking around shared data items
and critical sections that operate on them: Such
protections could be avoided in several carefully analyzed
code paths when only a single processor is involved but
become mandatory with SMP.

•	 Making no assumptions about execution order or
concurrency in the system (e.g., thread priority–based
concurrency assumptions): Often such assumptions are
used to increase performance by dispensing with correct
protections on shared data items.

•	 Having proper synchronizations around shared data
access between task and interrupt level: This is most often
found in drivers. VxWorks on a single-processor system
always guarantees that interrupt handling and task
execution are mutually exclusive. This could be used to
avoid protection on variables shared between tasks and
interrupt service routines (ISRs). On VxWorks SMP, however,
task execution and interrupt handling may execute
concurrently. Adding appropriate protections around
shared variables (typically they tend to be global variables)
is mandatory in an SMP environment.

VxWorks SMP APIs

The vast majority of VxWorks APIs work identically
between VxWorks uniprocessor and SMP environments.
Many new APIs have been added and are available in the
VxWorks uniprocessor to perform the same as SMP
systems. These are the following:

Spin-locks, for mutual exclusion, are based on 1.	
instruction set primitives such as test-and-set
instructions. Spin-locks are best suited for short-
duration critical sections (about 10 to 20 lines of code
is a rule of thumb). A spin-lock protects the locked
critical section from being accessed by multiple
processors. Other processors spin while they wait to
acquire the locks. Hence spin-locks should be used for
brief durations. Longer-duration critical sections
should be protected with semaphores.

Atomic operators are a completely new class of APIs 2.	
that operate on single variables in memory. They
atomically operate on variables to perform arithmetic
and logical operations. These operations are atomic
with respect to other processors in the system. The
short code segment in the following table illustrates a
common use of an atomic operator to increment a
global counter.

Without Atomic
Operators

With Atomic
Operators

level = intLock ();

++globalCounter;

intUnlock (level);

 vxAtomicInc
 (&globalCounter);

A reader-writer semaphore is a new type of semaphore 3.	
in VxWorks 6.6 (available in both uniprocessor and
SMP). A reader-writer semaphore allows many reader
threads to gain fast read access on a shared data
structure. Only one writer thread is allowed to modify
the data structure at a time. These semaphores are
optimized for situations having multiple readers and
one writer. Their use is encouraged in producer-
consumer-type software algorithms and is especially
suited for multiprocessing systems.

Thread-local storage is now implemented using a 4.	
multiprocessor-safe compiler feature and the thread
storage class to manage thread-local variable storage.
It supersedes the legacy VxWorks taskVarLib facility in
kernel mode and the tlsLib facility in user mode,
neither of which is available in an SMP environment.

}

9 | Best Practices: Adoption of Symmetric Multiprocessing Using VxWorks and Intel Multicore Processors

Tools for SMP Development

Contrary to popular belief, there is nothing inherently
different between SMP and uniprocessor systems when it
comes to most debugging and tuning workflows. One unique
SMP requirement is ensuring that the maximum throughput
and CPU utilization is achieved. For this specific problem, the
system visualization tools help users understand CPU
utilization and concurrency interactions.

The bugs and problems that a developer will see in an SMP
system are the same kind of problems that appear in
uniprocessor multithreaded systems. Some kinds of bugs are
more likely to occur in an SMP system than a uniprocessor
system, especially if the software makes certain assumptions
about concurrency, but they are not strictly SMP issues.
Debugging SMP is not inherently different than uniprocessor
systems. That said, here is some guidance to problems that
developers are more likely to see in SMP systems and how
to find them:

•	 Problems arising from unprotected or incompletely
protected critical sections, such as race conditions and

memory corruption, are more likely to occur when threads
are running concurrently. This happens because concur-
rently running software is far more likely to execute such
erroneous code than software that runs with little or no
concurrency. Memory profiling and System Viewer help
catch these errors, same as in uniprocessor systems.

•	 Priority inversion, for example, a low-priority thread inherits
priority over a higher-priority thread waiting on a resource,
could be caused when other threads make assumptions
about thread priority. System Viewer can help visualize this
just as on uniprocessor systems.

•	 Task-interrupt concurrency issues result from handling
interrupts on one core while another core is running a task.
Legacy VxWorks applications could assume that task and
interrupt processing are mutually exclusive, which is not
true in SMP. System Viewer can help visualize this just as on
uniprocessor systems.

In general, all of the common issues that the run-time analysis
tools let you observe and understand work equally well with
uniprocessor and SMP systems. It is just as easy to use the
tools in an SMP environment.

Wind River SMP-Capable Tools

The Wind River Workbench suite has been upgraded to
support debugging and analyzing an SMP environment.
Workbench 3.0 has the ability to debug the VxWorks SMP
kernel and RTPs in both system or task mode. Workbench
enhancements simplify the diagnosis of race conditions and
deadlocks, two common issues that arise when developing
programs for multicore environments. The Wind River
Debugger, System Viewer, Performance Profiler, Code
Coverage Analyzer, Memory Analyzer, Data Monitor, and
Function Tracer were updated so they can be used equally
well on SMP as on uniprocessor systems.

Wind River System Viewer

Wind River System Viewer contains new analysis capabilities
to aid SMP kernel and application developers. For SMP the
System Viewer event graph is annotated with information
providing core awareness to help developers identify and
isolate race conditions, deadlocks, and starvation in the same
way they would on a uniprocessor system. This can be useful to
minimize performance losses. Using System Viewer, developers
can see parallel activity going on in the system: task-level
parallelism, task-interrupt parallelism, and interrupt-interrupt
parallelism, all synchronized to a common time source for
timing accuracy. This can be useful to visualize the execution
characteristics of the application and aids in diagnosing
software defects arising from concurrent execution. In
addition, System Viewer shows the level of CPU loading on
every core in the system. This is useful for performance tuning
and effective load balancing across all cores in the system.

VxWorks Simulator

VxWorks Simulator can simulate SMP applications on single-
CPU or multi-CPU host machines. Using Simulator, users can
perform basic to advanced levels of application porting,
simulation, and characterization before moving to real
multicore hardware. System Viewer is also available on the
host machine to enable the user to collect and visualize
SMP data even when run using Simulator. Note, however,
that while Simulator provides an accurate view of SMP
application behavior, it cannot be used to provide accurate
estimates of SMP application performance because the
underlying host hardware is likely to be significantly
different from the desired target hardware.

Wind River Analysis Tools

Wind River Run-Time Analysis Tools (formerly known as
ScopeTools) work with VxWorks SMP just as they do on the
uniprocessor version of VxWorks. These tools provide
capabilities for code profiling, data monitoring, memory
usage, and leak detection.

Hardware Debug Tools

Wind River’s JTAG-based on-chip debugging solution
is useful for hardware bring-up on through OS-aware
application debugging. As an OS debugger, Wind River ICE
is aware of the VxWorks kernel environment and symbol
table. It is able to debug at task level through the JTAG
interface. On hitting breakpoints, all cores are stopped,
giving the user a view of program execution on all cores.
This is useful in debugging concurrency-related issues that
depend on the effects of code executing on other cores.

10 | Best Practices: Adoption of Symmetric Multiprocessing Using VxWorks and Intel Multicore Processors

Optimizing Software for SMP Environments

For software to perform optimally in an SMP system, it must
exploit parallelism in as many ways as possible, making sure
that the CPUs are busy executing the application as much as
possible. Parallelism is the key to getting the most perfor-
mance out of an SMP operating system.

Use every possible approach to promote parallelism in the
execution of the system. The CPUs in the system should be
kept as busy as possible doing useful work. Applications
should be decomposed into threads that can execute in
parallel as much as possible. As a note of caution, it is not
advantageous to have too many more threads than there are
CPUs in the system, or context-switch time will become an
increasingly significant factor in reducing performance.
Lock-free algorithms are very beneficial whenever
appropriate. The absence of a lock promotes parallelism,
which enhances performance with SMP. Getting the best
performance from any SMP operating system involves the
following three approaches.

Use Lightweight Synchronization Primitives

Every OS synchronization call asks the kernel to enforce
mutual exclusion, which requires other CPUs in the system to
wait until an operation is completed. Since SMP kernels have
to manage more than one CPU, their overhead for the same
operation is higher than a uniprocessor kernel. When
synchronization is required, it is suggested to use the
lightest-weight synchronization primitive that is right for the
job at hand. Single variable accesses can be atomically
performed using atomic operators. Spin-locks are
encouraged for short-duration critical sections (typically 10 to
20 lines of code). Longer duration critical sections are best
protected using semaphores. Spin-locks are not the best
choice in this case, as other CPUs will be forced to spin (i.e.,
do no useful work) while waiting for the lock. Reader-writer
semaphores are ideally suited for producer-consumer type
algorithms. Mutex semaphores should be used only when
really necessary because mutexes allow no more than one
task at a time to access the critical section, which does not
promote concurrency in SMP environments.

Use Task-CPU Affinity Judiciously to Tune Performance

Task-CPU affinity is a powerful though double-edged tool to
tune performance on SMP systems. Setting affinity on a task
locks it to running only on an assigned core. Henceforth, the
kernel will only run that task on that core. The following code
example illustrates how to set the affinity for a task to CPU1:

	 cpuset_t affinity;

	 /* Clear the affinity CPU set and set index

	 for CPU 1 */

	 CPUSET_ZERO (affinity);

	 CPUSET_SET (affinity, 1);

	 if (taskCpuAffinitySet (taskId, affinity) ==

	 ERROR)

		 {

	 	 /* Oops, looks like we’re running on a

		 uniprocessor */

		 return (ERROR);

		 }

The following are the benefits of using affinity for
performance-critical tasks in the system:

Optimized cache locality for the task’s data; in other 1.	
words, the task’s data has the highest chance of being
located in local cache. This reduces the number of
cache-miss penalties it encounters, which contributes to
application performance. Without affinity, the kernel may
schedule tasks on other CPUs to balance system load. A
good rule of thumb is to run threads that share data on
cores that share cache.

Higher performance due to lower bus contention, again 2.	
due to the locality of the tasks data.

Deterministic CPU bandwidth allocation for performance-3.	
critical tasks, which can have a more assured share of CPU
time for the core the tasks run on.

Task-CPU affinity can also be used to migrate legacy code
that is not yet safe to run in an SMP environment. This is code
that still uses locking primitives (such as the intLock or
taskLock APIs) that are suitable for and only available on
uniprocessor environments. Non-SMP-ready applications can
experience single-processor system semantics by confining
them to one core in the system. Thus they can continue
working on an SMP operating system; though because of
affinity they will not be able to run concurrently. Task-CPU
affinity when used this way is a migration aid not a
performance enhancement.

Minimizing Thread Load Imbalances

Errors and inefficiencies can be brought on by concurrent
execution in the system: from task-level parallelism, task-
interrupt parallelism, or interrupt-interrupt parallelism. System
visualization tools can be used to discover the timing and type
of activity and the loads on each core. This is useful for
performance tuning and effective load balancing across all
cores in the system. Core loading data can be used to set
task-CPU affinity for those tasks that are critical or that tend to
move from one CPU to another. It is also possible to see in the
execution event logs which resources have the most conten-
tion (i.e., those that frequently have threads pending on them).
Resource contention can be reduced or eliminated by modi-
fying the algorithm to remove over-reliance on frequently
used resources such as semaphores and message queues.

Conclusion

As the embedded device market continues to trend toward
smaller form factors, standardization, and improved perfor-
mance per watt, Intel has responded by producing leading-
edge microarchitectural advancements and processor
innovations in its multicore product lines. The end result is
that Intel is increasingly meeting the needs of embedded
market segments and has become a pervasive embedded
processor.

Wind River’s VxWorks SMP operating system harnesses the
power of multicore by scheduling the processes to be
executed among all of the cores and also provides APIs that
are optimized for multicore. Wind River has simplified the
migration from VxWorks uniprocessor systems to VxWorks
SMP operating systems because the vast majority of VxWorks
APIs work identically between both environments. Addition-
ally, the Wind River Workbench suite provides several soft-
ware development tools that help the developer throughout
SMP software development.

For embedded software developers, multicore provides an
exciting new era of design possibilities and opportunities to
extend the performance and capabilities of their software
systems. Multicore processor technology is here. The time to
get started with designing your software for multicore is now,
and Intel and Wind River solutions guide the way.

Wind River is the global leader in Device Software Optimization (DSO). We enable companies to develop,
run, and manage device software faster, better, at lower cost, and more reliably. www.windriver.com

© 2008 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc.
Other marks used herein are the property of their respective owners. For more information, see www.windriver.com/company/terms/trademark.html. Rev. 10/2008

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by
this document. Except as provided in Intel’s terms and conditions of sale for such products, Intel assumes no liability whatsoever and Intel disclaims any express or implied warranty,
relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or
other intellectual property right.

Unless otherwise agreed in writing by Intel, the Intel products are not designed for nor intended for any application in which the failure of the Intel product could create a situation
where personal injury or death may occur.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or
instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata that may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents that have an order number and are referenced in this document or other Intel literature may be obtained by calling 800-548-4725 or by visiting Intel’s website.

Intel, the Intel logo, Intel Core, Intel NetBurst, Xeon, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries. Copyright © 2008, Intel Corporation. All rights reserved.

