
Executive Summary

The growth in multiprocessing is the beginning of a very 
important trend. More and more devices are being designed 
using multicore processors because getting to the next level 
of device performance is necessary. This paper explores 
multicore technology and the choices and challenges it 
presents to organizations and developers building next-
generation multicore devices. It also describes Wind River’s 
VxWorks SMP product and how it addresses the opportuni-
ties presented by multicore technology to enable Wind River 
VxWorks platform users to move into this exciting new area of 
embedded computing.

Introduction to Multiprocessing

Multiprocessing is the use of two or more processors in a 
system, in which the processors cooperate and distribute 
among themselves the total processing load. Multiprocessing 
is not new. Servers, enterprise systems, and telecom carrier 
equipment providers have used multiprocessing for many 
years. Some high-end embedded devices use many discrete 
boards on backplane busses and even several discrete 
processors on a board. 

Today’s new technology is not multiprocessing by itself, but 
multiprocessing using multicore processors. Multicore 
processors have more than one processor engine (core) on 
the same chip. Each core has its own program counter (i.e., 
its own instruction stream). Chip architectures allow the cores 
to “talk” over an interconnect medium of some type, most 
typically local memory. 

Every multicore processor allows the execution of more than 
one piece of software simultaneously. Multiprocessing gives 
you true concurrency, meaning that more than one piece of 
software is running at exactly the same instant on one or 
more other processors, but their behavior when they run is 
fundamentally different. Multitasking and multithreading  
on single-processor systems has typically interleaved the 
execution of more than one thread at different points in time.

Terms such as hyperthreading, simultaneous multithreading, 
and chip multithreading are all architectural techniques 
applied to a single processor. Instructions go into the 
processor through a pipeline waiting to execute. Processors 
are often blocked while waiting for instructions to be fetched 
from memory. Multiple instructions are in progress, but still 
there is a sequential stream of instructions going in and a 
sequential stream of completed results coming out. In chip 
multithreading, the concept is expanded a little more 
because there are more likely to be dependencies between 
instructions in the same thread than between instructions in 
separate threads.

Chip multithreading switches between multiple threads at 
the hardware level, much like an operating system does in 
software. This is still not the same as multicore because the 
different hardware threads are being multiplexed onto one 
core. Hyperthreading, simultaneous multithreading, and chip 
multithreading concepts are not mutually exclusive. You can 
have a chip multithreaded multicore processor running a 
multitasking operating system. 

These technological developments put multiprocessing 
within the cost, power, and space budgets of many more 
device applications than is possible with multiple discrete 
processors or boards. This is significant because more and 
more device companies will be motivated to enter the 
multiprocessing world on the promise of increased device 
performance, cost and space savings, and feature richness 
made possible by using multicore processors. 

Table of Contents

Executive Summary ............................................................ 1

Introduction to Multiprocessing ......................................... 1

Multicore Processor Trends ................................................ 2

Multicore Technology and the Device Software Market .... 2

Multicore Business Issues ................................................... 2

The Difference in Multicore Technology ............................. 3

Application Suitability ........................................................ 3

Amdahl’s Law: Realistic Performance Expectations ........... 3

Operating System Configurations for Multiprocessing ...... 5

Choosing Between SMP and AMP ..................................... 6

VxWorks SMP ..................................................................... 6

Conclusion ........................................................................ 10

About Wind River ............................................................. 10

An Introduction to Multicore Technology 
and VxWorks SMP



2   |   An Introduction to Multicore Technology and VxWorks SMP 

Multicore Processor Trends

Semiconductor manufacturers are driving the trend toward 
multicore processors. For years, higher performance was 
achieved by packing more transistors on chips and by 
increasing clock frequencies. These advances could be 
realized within a power budget and a cost envelope that were 
acceptable to customers. But the semiconductor industry is 
now at the point where the physics behind that strategy no 
longer allows those advances. Semiconductor manufacturers 
cannot raise the frequency as high and keep the power 
consumption of the device at a reasonable level. Figure 1 
shows the effect of decreasing frequency on the power 
consumption. 

In a processor the power consumption is proportional to the 
cube of the voltage, and the voltage proportionally relates to 
the frequency. So at a lower frequency you can run the 
processor at a lower voltage and the power consumed is 
substantially reduced. If the clock frequency is dropped by 
10%, performance goes down by 10% but the power reduction 
is much bigger, as seen in the center bars in Figure 1. A little 
sacrifice in performance saves a lot on power consumption. 
Now if two of those processors can be put on the same chip 
with a small reduction in clock frequency, in theory, there 
would be the situation shown on the right of Figure 1: a 
processor with about the same power consumption but  
with a lot more theoretical processing power.

Shrinking geometries and an increasing number of transistors 
on a die made it economical to place multiple CPU cores on 
dies operating at slightly lower frequencies. It is these trends 
that have resulted in multicore processors. But for software 
engineers to exploit increased processing power delivered in 
this way is fundamentally different than exploiting increased 
processing power resulting from higher clock frequencies. 

Multicore Technology and the Device Software Market

Survey data from Venture Development Corporation (VDC),  
an independent technology market research and strategy 
consulting firm, shows strong interest in and increasing use  
of multicore technology in the device software market. Many 
device manufacturers are already using multicore processors 
and multiprocessing for high-performance systems. In the 
enterprise space, multicore processors are already dominant: 
nine out of 10 Intel processors shipped for servers are already 
multicore. The enterprise market has already tipped toward 
multicore processors. 

The device software market is not going to tip nearly that  
fast. But as a trend, multicore is going to keep on marching 
forward. The semiconductor manufacturers, because they  
are in the business of providing compute power in smaller 
packages at lower costs, are all manufacturing their own 
multicore processors. Some, such as Intel, have directed their 
entire product line toward multicore technology; while others, 
such as Freescale, maintain a more balanced portfolio of 
single-core and multicore processors, depending on the 
markets they serve.

More and more devices will require higher-performance 
processors, and architects and developers will find themselves 
with no choice but to adopt multicore processors to achieve 
higher-performance devices within the constraints of power, 
weight, space, and cost. The commercial off-the-shelf (COTS) 
board manufacturers are also supporting this trend. There are 
many COTS multicore processor–based boards available today 
from companies such as Curtiss-Wright, Kontron, Radstone, 
and Mercury Computer.

Multicore Business Issues

The benefits of multicore processors are the same as the 
benefits of any other high-performance processors at the 
same level of power for the same level of cost. They provide 
the ability to run more software concurrently and conse-
quently to speed up devices, add more feature content, 
optimize performance, and ultimately increase customer 
value. 

But there is a real cost in adopting multicore for most if not all 
device manufacturers. Most developers will have to deal with 
true software concurrency for the very first time. Writing new 
software or reusing existing software investments for a multi- 
processing environment is more complicated, takes longer, 
and introduces more risk to projects. The transition to 
multicore technology will be relatively simpler for those 
device manufacturers that have already been building 
multiprocessing systems. However the majority of device 
manufacturers that have only ever created software for 
single-processor systems are going to step into a 
fundamentally different environment. 

.8

.6

.4

.2

1

.8

.6

.4

.2

0
 Maximum 80% Dual-Core
 Frequency Maximum

Performance               Power

N
o

rm
al

iz
ed

 P
er

fo
rm

an
ce

 a
nd

P
o

w
er

 C
o

ns
um

p
ti

o
n

Figure 1: Normalized performance and power consumption for a given 
processor shown at left



3   |   An Introduction to Multicore Technology and VxWorks SMP 

The Difference in Multicore Technology

Three aspects make developing applications for multicore 
environments fundamentally different than developing for 
single-core environments: 

1. It’s not guaranteed that your application will gain 
performance from multiprocessing. Not all problems can 
be solved with multiprocessing. You may have to find a 
fundamentally different algorithm to do the work. Existing 
algorithms may work in uniprocessor environments but 
may not scale to more than one processor. 

2. The system design is more complicated than a single-
processor system, assuming you have an algorithm that 
can be concurrently executed. There is a strong interaction 
between the way the hardware supports multiprocessing, 
the way the operating system and system software 
support multiprocessing, and the way the application is 
partitioned to take advantage of multiple processors. 
Users must select the right combination of hardware, OS, 
and application design to realize a system that delivers 
higher performance than a single-processor system. Often 
there is a fair amount of trial and error involved in getting 
the right combination that optimizes performance. 

3. There is a great deal of complexity in the software 
development environment. Programmers for years have 
learned the concepts of and have practiced sequential 
programming. For example, when multiple threads of an 
application are operating concurrently it exposes latent 
programming defects. It violates some fundamental 
assumptions against which the software was originally 
written: that concurrently executing pieces of code were 
never expected to run concurrently. Developers must deal 
with synchronization issues (i.e., adding synchronization on 
shared data that did not exist before) and race conditions 
exposed by these assumptions. The behavior of software 
can become less deterministic because of the interaction 
of all these different threads, the interrupt activity in the 
background, and the way the operating system schedules 
the threads. 

Application Suitability

If you have a job to do and you have two people to do it, you 
can get it done faster than with only one person. Cores in a 
multicore processor are like more workers you can apply to 
the job. Obviously you have to have enough work to keep all 
the workers busy. Then you have to be able to split the work 
into enough pieces to give every worker something to do.  
But sometimes it can be like having too many cooks in the 
kitchen, where more workers does not solve the problem 
faster. The workers have to work well together or efficiency 
can suffer. 

Assembly lines are an example of multiprocessing. A lot of 
work can be accomplished by carefully coordinating multiple 
activities so they happen in parallel as much as possible. Yet 
there are dependencies between the actual stages through 

which the work goes. If the dependencies are not right or the 
work is not done correctly, the subsequent steps stall and 
output suffers. A delivery warehouse that sorts packages and 
loads them on to the right delivery truck is an example of an 
application with almost no dependencies. Each package is 
processed independently from every other package. This 
system has a very high level of parallelism. The challenge is 
that of shared resources. In the example of the delivery 
warehouse, if there were too few carts available to move the 
packages around, every worker would be waiting. This 
situation is called resource contention. 

Some tasks simply cannot be done faster by adding more 
people or resources, such as reading a book. It is strictly a 
serial operation. Supercomputers and massively parallel 
computers are used only for certain kinds of applications 
such as weather forecasting, financial modeling, and so on, 
but not necessarily for every computing problem. 

Amdahl’s Law: Realistic Performance Expectations

Amdahl’s law is another limit that must be understood. Every 
problem has a percentage of work that can be done in 
parallel and a percentage of work that must be done in order 
(i.e., serially). Think about cooking; certain things have to be 
done in a specific order and some things can be done in 
parallel. Depending on how much of the work can be done in 
parallel, there is a limit on how much faster the work can be 
done no matter how many workers (or processors) are applied 
to the problem. Amdahl’s law states the following: 

Parallel speedup = 1/(Serial% + (1-Serial%) / Number  
of processors)

Here Serial% is the percentage of work that must be done 
serially, and (1-Serial%) is the percentage of work that can be 
done in parallel. Figure 2 shows the effects of Amdahl’s law 
on applications with varying degrees of serialization and 
number of available processors.

9

8

7

6

5

4

3

2

1
       16                 8                    4                    2

50% 20%

Sp
ee

d
 U

p

10% 5%

Processors

Serial

Figure 2: The effects of Amdahl’s law on applications with varying degrees of 
serialization and number of processors



4   |   An Introduction to Multicore Technology and VxWorks SMP 

With 5% serialization, the performance speedup is relatively 
linear as the number of processors increases. But with 16 
processors, the maximum speedup achieved is nine times. 
The 5% serialization limits the maximum speedup possible  
to well below 16 times for a 16-processor system. As the 
percentage of serialization increases, the maximum speedup 
gained as well as the rate of performance gained is reduced 
significantly. At 50% serialization, performance gain almost 
flattens beyond four processors. Developers building a 
device with 10% serialization will not feel that they are 
getting good value from an eight-core system that is only 
performing at four times the speed of a single core device.

Even small increases in the amount of work that has to be 
done serially can reduce your maximum performance gains 
by large amounts. Therefore, there is a limit to obtaining 
more performance by adding more CPUs for many appli-
cations. Tools and techniques for reducing the amount of 
software serialization become key to optimizing the device 
for multiprocessing.

Problems that can be parallelized more (or completely) are 
the ones where multiprocessing delivers significant gains in 
throughput and performance. One example is in networking 
on the data plane where the system is handling multiple 
independent streams of incoming packets. Each stream is 
independent of the others; as many processors can be 
applied as there are data streams. Multicore processors help 
such systems because more processors on a chip yields a 
system that is smaller and lower power yet allows more work 
to be done as compared to a single-processor system. 

Multiprocessing, and multicore in particular, heavily influence 
the architecture of the hardware, which in turn determines 
the architecture of the system software, and in turn influen-
ces the architecture of the application. 

There are many ways in which work in a given application can 
be partitioned for parallelism. Application partitioning is one 
of the most important aspects device manufacturers have to 
worry about when designing multiprocessing systems. 

All forms of application partitioning shown in the figures are 
valid and appropriate for different problems. The system 
designer’s task is to find the right application partitioning 
design for his problem and his hardware design. On the top  
is a pipelinelike design, much like an assembly line. On the 
bottom is the distribution of independent work to more than 
one worker (such as in the example of the delivery warehouse). 

The most complicated partitioning design is shown in Figure 6. 
This design deals with fine-grained partitioning. Here there is 
one set of data, and to get the performance required, multiple 
operations must be completed on that data; there is no strict 
ordering in which these operations need to be completed. 
Maximizing performance requires more than one worker 
working on the same problem at the same time. This is like 
putting many workers on the job but it must be done in a way 
that they are all able to work effectively on the same job and 
get it done faster. Each worker takes up a little piece of the 
larger job and works on it independently from other workers; 
the work is partitioned on a fine granularity as compared to 
assigning bigger blocks of work to each worker.

System
Software

Architecture
Hardware

Architecture

Figure 3: Application architecture

Stabilize Image 1

CPU 2/Process 2

Data
Decode Image 2

CPU 1/Process 1

Figure 4: Coarse-grained serial execution

Decode Image 1

Stabilize Image 2

CPU 2/Process 2

Data

Decode Image 2

Stabilize Image 1

CPU 1/Process 1

Figure 5: Coarse-grained parallel execution

Decode Image 2

CPU 2/Process 2

Data
Decode Image 1

CPU 1/Process 1

Figure 6: Fine-grained simultaneous data access



5   |   An Introduction to Multicore Technology and VxWorks SMP 

Operating System Configurations for Multiprocessing

There are two configurations of operating systems suitable 
for multiprocessing systems: symmetric multiprocessing 
(SMP) and asymmetric multiprocessing (AMP).

In an AMP configuration (shown in Figure 7), an operating 
system runs on each processor, or core, of the multi-
processing system. Each processor/OS combination is really 
a single-processor computer in its own right. The system as  
a whole is comprised of more than one of these computers 
(also referred to as nodes), which act in concert to do a given 
job. What ties together these independent nodes into a 
larger system is an interconnect mechanism the processors 
use to communicate with each other. The interconnect 
mechanism is most typically a bank of shared memory 
between the processors but can sometimes be a network 
connection or other peripheral bus. In an AMP system, the 
job performed by each individual node must be defined 
when the system is designed. The job of the whole system is 
thus partitioned into work items assigned to each individual 
node in the system. 

AMP systems can come in a variety of combinations. You can 
choose to have dissimilar processors in the system. You can 
choose different operating systems in an AMP system, 
depending on your needs. For example, VxWorks could 
handle real-time sensitive tasks while Wind River Linux could 
handle the media interface. Sometimes some nodes may 
perform a very limited function that does not require them to 

have a complete operating system but just a simple executive 
program leveraging the hardware directly. 

AMP systems typically need more memory than SMP systems 
to hold all the different operating systems and their appli-
cations. AMP systems by their very nature are very dependent 
on the precise hardware configuration you design for. Moving 
to another hardware configuration with fewer or more 
processors or different interconnect mechanisms, as when 
creating a family of devices with different price points, causes 
you to repartition your applications and reverify the system 
to work on the new hardware configuration. 

An SMP configuration (shown in Figure 8) is where one 
operating system controls more than one identical processor 
(or core in a multicore processor). Applications “see” and 
interact with only one operating system, just as they do in 
single-processor systems. The fact that there are several 
processors in the system is a detail that the OS hides from 
the user. In this sense, an SMP operating system abstracts the 
hardware details from the user. An SMP operating system is 
also symmetric; it needs to work with multiple identical 
processors, each of which can access all memory and devices 
in the system in a uniform fashion. Therefore, any processor 
(or core) in an SMP system is capable of executing any task 
just as well as any other processor in the system can. This 
symmetry in the hardware allows an SMP operating system to 
dispatch any work to any processor in the system. An SMP 
operating system tries to keep all processors busy running 
application threads, in effect load balancing the system’s 
work. 

As a result of hardware abstraction and load balancing in  
the system, the SMP operating system simplifies the task  
of developing software to run on SMP hardware. From  
the programmer’s view, there is only one OS to write an 
application for, which will automatically distribute the 
workload to all available processors. An SMP operating 
system therefore provides the same programming semantics 
as a uniprocessor system.

All processors in an SMP system share one pool of memory 
under the control of one operating system. The memory and 
local caches for each individual processor are kept 
synchronized by the chip hardware. Therefore applications in 
an SMP system can share data with each other in memory 
very easily and efficiently. This makes SMP systems suitable 
for applications that need to share large amounts of data with 
low latency. 

OS1

CPU

OS1

CPU

OS1

CPU

Figure 7: An asymmetric multiprocessing OS configuration

SMP OS

CPU CPU CPU

Figure 8: A symmetric multiprocessing OS configuration



6   |   An Introduction to Multicore Technology and VxWorks SMP 

Since any SMP operating system must synchronize and 
control more than one processor, it will necessarily have 
higher internal overheads than an operating system that  
only controls one processor. On individual benchmark 
comparisons, SMP systems are almost always slower than 
uniprocessor systems, but SMP outperforms uniprocessor 
systems when there is a high degree of parallelism in the 
application that allows the system to do more work in a given 
time than a uniprocessor system can. 

Choosing Between SMP and AMP

An SMP operating system is the best choice when the OS  
is expected to effectively load-balance differing parallel 
workloads. One of the essential properties of the hardware 
for SMP to run is hardware-enforced cache coherency. This 
causes the hardware to automatically update copies of data 
in a processor’s cache when it is modified by another 
processor. For running programs, this update is transparent 
so that modified data can be immediately visible in memory 
and accessible by fast memory. When tasks share a lot of 
data located in memory, accessing this data at memory 
access speeds is both fast and easy in an SMP operating 
system. SMP is also the right choice when the application 
needs to be portable between systems with a differing 
number of cores. In all these cases, the hardware abstraction 
and load balancing performed by SMP kernels will free 
application developers from having to tune their applications 
for different hardware configurations. 

AMP is best suited for systems that are cleanly partitioned 
into different subsystems that are mostly autonomous but 
have limited well-defined data communication needs with 
other nodes. This gives system designers the choice of 
designing their hardware with a heterogeneous mix of 
processors that are ideally suited for the function each node 
in the system performs. AMP is also the most suitable choice 
for redundant systems needing high availability, as each node 
in an AMP system is a standalone single-processor computer 
in its own right. 

VxWorks SMP

Wind River’s VxWorks SMP is an add-on product to all Wind 
River VxWorks platforms (6.6-based and later) that provides 
SMP capabilities to VxWorks. VxWorks SMP leverages multi- 
core processors to achieve true concurrent execution of 
applications, allowing applications to improve performance 
through parallelism. 

The VxWorks SMP add-on, when combined with a VxWorks 
platform, provides users with a complete symmetric 
multiprocessing–ready platform comprising the run-time, 
middleware, and Wind River’s market-leading development 
tools suite. 

Along with providing SMP capabilities, VxWorks SMP has 
been designed to be compatible with the uniprocessor 
version of VxWorks. This is to allow VxWorks users to more 
easily migrate their VxWorks applications, drivers, and other 
legacy software from a uniprocessor environment (VxWorks 
UP in short), to an SMP environment. 

VxWorks SMP is purchased as a separate add-on product to 
any of the Wind River VxWorks 6.6 platforms (versions 3.6 of 
Wind River General Purpose Platform, Wind River Platform  
for Automotive Devices, Wind River Platform for Consumer 
Devices, Wind River Platform for Industrial Devices, or  
Wind River Platform for Network Equipment). Once installed, 
users can develop either uniprocessor or SMP applications as 
needed. 

The following table explains the advantages and drawbacks of 
each OS configuration.

AMP SMP

When to Choose

•	 Application	is	easy	to	
partition into loosely 
coupled nodes

•	 Redundancy	is	needed	
for reliability

•	 Hardware	configuration	
is not suitable for SMP

•	 Multiple	processor/OS	
types are needed

•	 Assignment	of	
applications to hardware 
resources must be 
explicit

•	 Minimum	scheduling	
overhead is required

When to Choose

•	 Application	exhibits	a	
high enough degree of 
parallelism to keep the 
processors busy

•	 Tasks/threads	need	to	
share a lot of data 
frequently

•	 Load	balancing	is	
important

•	 Application	portability	
across different 
hardware is essential

What to Watch Out For

•	 AMP	design	may	use	
more memory (multiple 
OS images)

•	 AMP	system	needs	to	be	
tuned for that hardware 
configuration

•	 Setting	up	
communications 
between cores and 
debugging is complex

What to Watch Out For 

•	 SMP	kernels	have	
higher overhead than 
uniprocessor kernels

•	 Applications	making	a	
lot of OS calls will run 
slower than on a 
uniprocessor system

•	 Latent	software	defects	
arising from 
concurrency 
assumptions are likely 
to be exposed when 
migrating code from 
uniprocessor systems



7   |   An Introduction to Multicore Technology and VxWorks SMP 

Figure 9 depicts a VxWorks 6.6 installation with SMP.

VxWorks SMP Features

VxWorks SMP provides symmetric multiprocessing 
capabilities to the world-leading VxWorks RTOS. VxWorks 
SMP is built from the same source base as VxWorks. 
Specifically, VxWorks SMP provides the following:

1. SMP capability 
VxWorks SMP provides VxWorks users with the capability 
to run applications in an SMP environment on industry-
leading multicore processors. This enables the delivery of 
more functionally rich, higher-performing devices than is 
possible with single-processor systems.

2. Compatibility  
VxWorks SMP is API compatible with the uniprocessor 
version of VxWorks (with a few exceptions). API 
compatibility promotes reuse of existing VxWorks-based 
software, allowing companies to leverage previous 
VxWorks investments. Major features such as real-time 
processes and error detection and reporting are fully 
supported even in an SMP environment.

3. Real-time behavior 
VxWorks SMP adds SMP capabilities to VxWorks without 
compromising on the real-time behavior and character-
istics of VxWorks. This allows VxWorks SMP to be 
applicable in the same target markets and target 
applications as uniprocessor VxWorks systems are. 
VxWorks SMP has a deterministic scheduler that 
guarantees task execution in priority order. The scheduler 
dispatches the N highest priority tasks that are ready to 
run, where N is the number of processors in the system. 
Deterministic priority-based scheduling is also one of the 
critically differentiating features of VxWorks on single-

processor systems; this is what differentiates an RTOS  
from a general-purpose operating system. VxWorks SMP 
implements interrupt-level parallelism, namely the ability 
for more than one core in the system to handle different 
interrupts simultaneously. This increases the respon-
siveness of the system as whole. Many critical operations 
within the OS are protected by spin-locks. These 
operations complete in deterministic time, which is a 
function only of the time for which the spin-lock is held. 
Spin-locks also protect critical data during interrupt 
processing. These spin-locks are held for a deterministic 
length of time, which in turn makes the system’s interrupt 
latency deterministic as well.

4. Support for leading multicore silicon 
VxWorks SMP runs on all the leading multicore processors 
that are in the market today. This includes multicore 
processors from ARM, Broadcom, Cavium, Freescale, Intel, 
and Raza Microelectronics. This offers users a wide choice 
of hardware platforms on which to build their next 
generation of devices. 

5. Cross-architecture portability 
This has been a VxWorks hallmark since its inception.  
Like its uniprocessor sibling, VxWorks SMP is a portable 
operating system running on a wide variety of processors 
with uniform characteristics. SMP truly extends this unique 
VxWorks capability to the multiprocessing domain. 

6. Familiar development environment 
Wind River Workbench and its constituent tools work with 
both uniprocessor and SMP versions of VxWorks. Also, the 
tools have additional capabilities for VxWorks SMP, which 
are designed to visualize parallel execution and loading 
patterns in all cores. The following sections provide more 
details on the capabilities of the various tools.  

Wind River Workbench 3.0
(Uniprocessor + SMP Extended Features

Software Partners

Middleware

VxWorks 6.6

(Uniprocessor)

VxWorks 6.6 SMP Add-on

(VxWorks 6.6 SMP Run-Time Libraries)

Hardware Partners

Services

Figure 9: VxWorks SMP installation with Wind River VxWorks Platforms



8   |   An Introduction to Multicore Technology and VxWorks SMP 

Applications VxWorks SMP Is Suited For

VxWorks SMP is suited for problems that need both an SMP 
operating system and RTOS capabilities such as determinism, 
low latency, and small footprint. The preceding sections show 
the distinctions and unique capabilities of an SMP operating 
system configuration. To recap, VxWorks SMP would be the 
right solution when one or more of the following conditions 
are true:

1. The application is (or will be) designed in terms of a set of 
parallel threads, allowing the system to perform more work 
simultaneously than a uniprocessor VxWorks system would. 
There must be enough parallelism in the application to 
allow meaningful performance gains from using multiple 
processors. Recall Amdahl’s law and how it puts an upper 
limit on how much performance may be gained for a given 
level of parallelism.

2. Threads share large amounts of data, or have a fine-
grained data-sharing design. 

3. The system designer prefers not to explicitly partition 
applications to individual processors, instead relying on 
the operating system to schedule ready-to-run threads on 
all available processors (also known as load balancing). 

For example, a network router can get better throughput by 
having multiple cores process packets from many different 
streams in parallel. Network throughput can also be 
increased by having some cores act like security processing 
hardware offload engines, in which one core can run the main 
TCP/IP stack logic, while others concentrate exclusively on 
routing or crypto functions. In the example of the network 
router, multiple cores can process additional independent 
data streams in parallel, while in the other example, a part of 
the network processing load is performed in parallel by other 
cores. Both of these examples exhibit the possibilities 
offered by multiprocessing, getting more work done in a 
given quantum of time than possible with just one processor. 

New Features in VxWorks SMP

Some of the major new features and APIs in VxWorks SMP are 
described here. This is not an exhaustive list of features, so 
for more information visit www.windriver.com or contact your 
Wind River account team.

1. Spin-locks 
Spin-locks are lightweight, fast, multiprocessor-safe 
mechanisms used to synchronize threads and interrupt 
handlers running on different processors in an SMP 
system. Spin-locks can be thought of as lightweight mutex 
semaphores for multiple processor environments. 
Spin-locks are of two basic types (task-level and interrupt-
level) and can be used to provide synchronization both 
between different tasks and between tasks and interrupt 
service routines.  
 

2. Atomic operators 
Atomic operators are a class of APIs that provide fast 
multiprocessor-safe operations on simple memory 
variables, for example, increment, decrement, bitwise 
logical operations, and simple arithmetic operators. These 
operators update the variables atomically with respect to 
other processors in the system and obviate the need to 
use slow, higher latency mechanisms such as interrupt 
locks or preemption locks (as are often used in unicore 
processor or uniprocessor systems). The atomic operators 
developed for VxWorks SMP are also available in the 
uniprocessor version of VxWorks. Their use is encouraged 
for all VxWorks application development in VxWorks 6.6.

3. Reader-writer semaphores 
A reader-writer semaphore is a new type of semaphore in 
VxWorks 6.6 (available in both uniprocessor systems and 
SMP). A reader-writer semaphore allows many reader 
threads to gain fast read access on a shared data 
structure. Only one writer thread is allowed to modify the 
data structure at a time. These semaphores are optimized 
for situations with multiple readers and one writer. Their 
use is encouraged in producer-consumer type software 
algorithms and is especially suited for multiprocessing 
systems. Like VxWorks mutex semaphores, reader-writer 
semaphores also support priority inversion protection as 
an option. 

4. Thread-local storage APIs 
Thread-local storage is a new multiprocessor-safe facility 
to manage thread-local variable storage. It supersedes the 
legacy VxWorks taskVarLib facility in kernel mode and the 
tlsLib facility in user mode, neither of which is available in 
an SMP environment. 

Wind River Workbench with VxWorks SMP

VxWorks UP and SMP share the same Wind River Workbench 
development suite. The Workbench suite was upgraded as 
needed to support debugging and analyzing an SMP 
environment. Workbench 3.0 has the ability to debug the 
VxWorks SMP kernel and real-time processes (RTPs) in both 
system or task mode. Workbench enhancements simplify the 
diagnosis of race conditions and deadlocks, two common 
issues that arise when developing programs for multicore 
environments. 

In Workbench, VxWorks SMP projects are set up in exactly 
the same way as they are for the uniprocessor version of 
VxWorks. Users can choose to develop with either VxWorks 
UP or SMP on a project-by-project basis. Since not every 
project or application is suited for SMP, users can choose the 
OS configuration that best suits their needs. Workbench 
features Workbench Debugger, System Viewer, Workbench 
Performance Profiler, Workbench Code Coverage Analyzer, 
Workbench Memory Analyzer, Workbench Data Monitor, and 
Workbench Function Tracer were updated so they can be 
used equally well in SMP as in uniprocessor systems.



9   |   An Introduction to Multicore Technology and VxWorks SMP 

Debugging SMP Systems 

There is nothing inherently different between SMP and 
uniprocessor systems when it comes to most debugging and 
tuning workflows. One workflow that is unique about SMP is 
that it ensures the maximum throughput and CPU utilization 
is achieved. For this specific problem, the System Viewer was 
enhanced to help users understand CPU utilization and 
concurrency interactions.

The bugs and problems that a developer will see in an SMP 
system are the same kind of problems that appear in uni-
processor multithreaded systems. Some kinds of bugs are 
more likely to occur in an SMP system than in a uniprocessor 
system, especially if the software makes certain assumptions 
about concurrency, but they are not strictly SMP issues. 
Debugging SMP is not inherently different than in uni-
processor systems. The following is some guidance about 
problems that developers are more likely to see in SMP 
systems and how to find them:

•	 Problems	arising	from	unprotected	or	incompletely	
protected critical sections, such as race conditions  
and memory corruption, are more likely to occur when 
threads are running concurrently. This happens because 
concurrently running software is far more likely to 
execute such erroneous code than software that runs 
with little or no concurrency. Memory profiling and 
System Viewer help catch these errors, same as in 
uniprocessor systems.

•	 Priority	inversion,	for	example,	a	low-priority	thread	
inherits priority over a higher-priority thread waiting on  
a resource, could be caused when other threads make 
assumptions about thread priority. System Viewer can 
help visualize this just as on uniprocessor systems.

•	 Task-interrupt	concurrency	issues	result	from	handling	
interrupts on one core while another core is running a 
task. Legacy VxWorks applications could assume that 
task and interrupt processing are mutually exclusive, 
which is not true in SMP. System Viewer can help 
visualize this just as on uniprocessor systems.

In general, all the common issues that the run-time analysis 
tools let you observe and understand work equally well with 
uniprocessor and SMP systems. It is just as easy to use the 
tools in a multicore environment as in a uniprocessor 
environment.

System Viewer

System Viewer contains new analysis capabilities to aid SMP 
kernel and application developers. For SMP, the System 
Viewer event graph is annotated with core information 
providing core awareness to help developers identify and 
isolate race conditions, deadlocks, and starvation in the same 
way they would on a uniprocessor system. This can be useful 
to minimize performance losses. Using System Viewer, users 
can see parallel activity going on in the system: task-level 
parallelism, task-interrupt parallelism, and interrupt-interrupt 
parallelism, all synchronized to a common time source for 
timing accuracy. This can be useful to visualize the execution 
characteristics of the application and aids in diagnosing 
software defects arising from concurrent execution. In 
addition, System Viewer shows the level of CPU loading on 
every core in the system. This is useful for performance 
tuning and effective load balancing across all cores in the 
system.

VxWorks Simulator

VxWorks Simulator can simulate SMP applications on 
single-CPU or multi-CPU host machines. Using Simulator, 
users can perform basic to advanced levels of application 
porting, simulation, and characterization before moving to 
real multicore hardware. System Viewer is also available on 
the host machine to enable the user to collect and visualize 
SMP data even when run using Simulator. Note, however, that 
while Simulator provides an accurate view of SMP application 
behavior, it cannot be used to provide accurate estimates of 
SMP application performance because the underlying host 
hardware is likely to be significantly different from the 
desired target hardware.

Wind River Analysis Tools

Wind River Run-Time Analysis Tools (formerly known as 
ScopeTools) work with VxWorks SMP just as they do on the 
uniprocessor version of VxWorks. 



Conclusion

In the past, increasing processor clock frequency and 
shrinking geometries provided the path to huge advances  
in CPU performance. But of late this strategy is reaching its 
physical limits. In its quest for ever higher performance, the 
semiconductor industry has now switched to putting more 
than one processing core on a single chip. 

Multiprocessing isn’t new to computer science but its use in 
device software is a new and growing trend driven by the 
increasing use of multicore processors. While the promise  
of higher-performance, rich-featured devices is obvious, 
multicore technology does pose challenges and compli-
cations to software developers. Unlike single-processor 
systems, multiprocessing systems exhibit true concurrency. 
This exposes many programming assumptions and latent 
defects that might never be seen in the single-processor 
systems for which most legacy software is written. Migrating 
software from single-processor systems to those with 
multiple processors is a challenge.

Software speedup from using multiple processors is very 
dependent on the amount of parallel software execution 
possible in a system. Depending on the inherent ratio of 
serial to parallel work in it, not every algorithm will provide 
notable performance gains from using multiple processors.

Operating systems for multiprocessing systems can be 
classified as either SMP or AMP in nature. SMP systems rely 
on hardware symmetry to provide symmetrical software 
execution across more than one processor. AMP systems use 
more than one OS in a system consisting of many individual 
nodes that come together to form a system. Which configur-
ation to use depends on the problem to be solved. SMP 
systems are relatively easier to program for than AMP, though 
the nature of some problems make an AMP configuration the 
better choice for performance.

VxWorks SMP brings symmetric multiprocessing capabilities 
to the world’s leading commercial RTOS. In doing so, it 
retains the same core, distinguishing real-time characteristics 
as does VxWorks on a single-processor system. API com-
patibility and a single set of tools in the same Workbench 
environment ensure a minimal learning curve and reuse of 
existing VxWorks applications. The tools support new 
capabilities for SMP environments. VxWorks SMP is designed 
to coexist in the same platform environment for VxWorks on  
a single processor. The VxWorks SMP run-time and tools 
technology make the only RTOS platform solution with both 
breadth and depth, backed up by the best support and 
services teams in the device software industry.

About Wind River

Wind River is the global leader in Device Software 
Optimization (DSO). Wind River helps develop, run, and 
manage device software faster, better, at lower cost, and 
more reliably, to accelerate time-to-market for highly 
differentiated devices. Only Wind River can deliver on  
all of your requirements across the DSO life cycle, from 
development through deployment and management, from 
hardware optimization through middleware and application 
integration. To learn more, visit www.windriver.com or call 
800-545-WIND.

Wind River is the global leader in Device Software Optimization (DSO). We enable companies to develop,  
run, and manage device software faster, better, at lower cost, and more reliably. www.windriver.com

© 2008 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc. 
Other marks used herein are the property of their respective owners. For more information, see www.windriver.com/company/terms/trademark.html. Rev. 06/2008


