
As project resources and time frames
shrink, developers must leverage cost-
effective, leading-edge technologies to
keep up with market requirements.
Meanwhile, advances in Linux are creating
emerging opportunities to use open
source solutions for a variety of projects.
Linux is the ideal platform for building
embedded devices and is gaining rapid
adoption, given the flexibility, innovation,
performance, and total cost of ownership
advantages of the open source model.

Wind River Linux 3.0 is a commercial-
grade Linux solution for embedded device

development. The platform contains a
fully tested, validated, and supported
Linux distribution based on Linux 2.6.27

kernel technology. Wind River Linux offers
the optimal combination of integrated
and validated open source software with
advanced features, optimized for specific
target device markets.

Wind River Linux 3.0 is the latest release
to meet the demands of embedded
device developers and is delivered in an
optimized platform design to address the
unique needs of developers of devices for
markets such as aerospace and defense,
networking, industrial and medical
devices, and consumer electronics.

Figure 1 is an overview of the components
of Wind River Linux. The product consists
of source code and a build system that
generates an optimized run-time image
suitable for embedded devices. The
components of the product are referenced
by the developer to create a defined
run-time image.

Wind River Linux contains the following
components:

•	Application packages: Hundreds of
software packages that operate in
protected Linux user mode

•	Kernel source: The 2.6.27 Linux kernel
with many fixes and feature enhance-
ments

•	Board support packages (BSPs): Hard-
ware enablement components

•	Tools: Software development tools,
including the award winning Eclipse-
based Wind River Workbench develop-
ment suite

Wind River Linux 3.0

Table of Contents

Benefits of the Wind River
Linux Solution2

The Wind River Linux Distribution
Assembly Tool2

 Typical Use Cases2

 Other Features of LDAT3

Toolchain ...3

 Toolchain Vendor4

 C Library ...4

 Validation ..4

 Custom Features4

 Multilib Support4

 Prebuilt Multilibs4

 Toolchain Wrappers4

 Toolchain Building4

 Toolchain Export4

 License Management4

Wind River Linux Development
Tools and Wind River Workbench4

 Analysis Tools5

 Package Management5

 Development Tools5

Run-Time Features5

 Kernel Development5

 Kernel Features...............................6

 Networking Features7

 Hardware Support: Board
 Support Packages8

 Applications8

Optional Add-on Products9

 Wind River Real-Time Core for Linux ... 9

 IPL Cantata++ for Wind River
 Workbench 10

 Wind River Workbench On-Chip
 Debugging 10

 Wind River Test Management 10

 Wind River Network Management ... 10

 Wind River SNMP 10

 Wind River Advanced
 Networking Technologies 11

Testing and Validation 11

Partner Ecosystem 12

 Alignment with the Open
 Source Community 12

Professional Services 13

Education Services 13

 Personalized Learning Program 13

Support Services 13

 Technical Support 13

Appendix A: Package Summary
by Category 14

Appendix B: Supported Target Boards ..15

Appendix C: Supported
Development Hosts 15

Developer’s
Run-Time

Image

User Space Packages

Kernel Source

BSPs

Tools

Build System (LDAT)

Toolchain

Figure 1: Major components of Wind River Linux

2 | Wind River Linux 3.0

•	Build system: The Wind River Linux
Distribution Assembly Tool, which is
used by the developer to compile and
assemble these components

•	Toolchain: The cross compiler based
on the GNU Compiler Collection (GCC)

Wind River Linux 3.0 now comes with all
the features and hardware support of the
previous platform editions in one single
product and replaces the previous Linux
editions: Wind River General Purpose
Platform, Wind River Platform for
Consumer Devices, and Wind River
Platform for Network Equipment. This
provides customers with more flexibility
and reduces purchasing and licensing
complexity. Wind River Linux 3.0 comes
with a set of preconfigured system
profiles that make it easy to jump-start
device-specific development and allow
device manufacturers to bring devices to
market easier, faster, and more cost-
effectively than ever before. The following
are the profiles:

•	Consumer premise equipment
•	 Industrial equipment
•	Mobile multimedia device
•	Carrier Grade Linux
•	Enhanced Carrier Grade Linux
•	Limited Platform for Network Equipment

Benefits of the Wind River Linux
Solution

The following are some of the competitive
advantages of Wind River Linux:

•	Commercial product quality with
extensive testing and quality assur-
ance (QA), reliable service packs, and
security patches with standard software
product life cycle support

•	Extensive hardware and software eco-
system support

•	Lower costs, by eliminating the burden
of building, supporting, and main-
taining your own Linux distribution,
allowing you to focus on differentiating
applications rather than on maintaining
Linux itself

•	Reduced complexity of present and
future projects, by leveraging the
Wind River Linux cross-build system
and layers development methodology

•	Rich tools and development-
environment support based on the
Eclipse framework

•	Compliance with industry standards
such as Carrier Grade Linux (CGL) to
meet market-specific needs

•	Delivery of advanced functionality/
capabilities with guaranteed real-time
performance, advanced networking
stacks, and enhanced multicore support

•	Predictable roadmap for long-term
product planning

•	Complete and detailed documentation
of software package license informa-
tion to help ensure compliance with
legal and regulatory requirements

The Wind River Linux Distribution
Assembly Tool

The Wind River Linux Distribution
Assembly Tool (LDAT) is a build system to
cross-compile and assemble components
for run-time images. LDAT is licensed
under the GNU General Public License,
version 2.

Typical Use Cases

LDAT commonly addresses the use cases
shown in Figure 2.

Project Creation

Users start by creating a project using
LDAT. They reference configuration
information such as the hardware target,
kernel type, profiles, and pointers to other
custom software. This creates a project.
LDAT uses autoconf to generate a
configured build directory. There are a
large number of options to select the
board, kernel configuration, user space
configuration, and so on. The profile
option may be used to automatically
select the kernel and user space
configuration based on the selected BSP
and profile combination. The core layers

are selected automatically based on the
LDAT configuration directory (toolchain
version, kernel version, etc.) unless
overridden by user arguments.

Additional layers may be included either
at the user’s request or automatically by
other layers. The configure script searches
for layers specified without an absolute or
relative path.

The configured project directory is itself a
layer that can provide modified versions
of packages or tools, change
configuration information, and include
other layers. The project directory can
resynchronize these external layers. This
allows for the user to include software
being actively developed externally.

Development

Users can use tools such as Wind River
Workbench to add packages, make
changes, debug, and compile software.
LDAT creates file systems in a multitude of
configurable ways. Nevertheless, it may
be the case that in the field, the original
equipment manufacturer (OEM), one of
the subsequent integrators or developers,
or even the final users will want to modify
the file system composition. To this end,
all the user space components, regardless
of their origin, open source trees, source
RPMs, or customer trees, are packaged as
binary RPMs, and they can be added or
deleted or updated at will using the target
bound RPM binaries, which also can be
included to the file system.

Custom
Layer 2

Binary RPMs

Run-Time
Image

Custom
Layer 1

Core
Layer

Kernel
Layer

Root File
System

Creation

Package
Compilation

Toolchain

Project
Creation

Project

Figure 2: Typical use cases enabled with Wind River Linux

3 | Wind River Linux 3.0

Package Building

Users compile packages from source
packages to binary RPMs. This uses the
Wind River toolchain. The LDAT cross-
build environment uses a simple front-end
Makefile fragment and, for SRPM
packages, a modified spec file to provide
the information required to make the
package conform to LDAT and make it
cross-buildable. If source code changes to
the package are also required, patches are
either applied once the package is
extracted or during the normal prep stage
of the RPM build. Patches (and the spec
file) can be provided with the package in
the layer and via templates included in the
configuration if configuration-specific
modifications are required. Most open
source packages can be imported with
minimal changes and are immediately
buildable with LDAT.

Both package formats support a pristine
source model. This means the original
upstream open source code is provided,
plus incremental patches that each
implement one major feature. This allows
for maximum transparency of source code.

LDAT understands dependencies so that
packages are rebuilt when their
dependents are changed. To determine
whether a package is valid for the current
configuration, LDAT uses a checksum
value calculated for the current
configuration and compares it with the
version stored in the RPM. The
configuration checksum includes the
sources and patches for the package or
tool, the LDAT Makefile fragment for the
package, any additional configuration
files, toolchain flags, and so on, along with
the configuration checksums of any other
package this package depends on. When
the checksum doesn’t match, the prebuilt
version is ignored and the package will be
rebuilt (as will any packages that depend
on it).

To build packages, the build system calls
the cross-toolchains with minimal
performance overhead. The ability to use

prebuilt versions of most or all host tools
and target packages with checksums to
ensure they are valid, along with the ability
to update the build configuration with
layer changes and to update the target file
system without reassembling it from
scratch, provides quick turnaround for
development builds.

Package building also generates a sysroot
to ensure that the right development
libraries are being used. This can be
exported to other users.

File System Creation

Users create a tuned root file system and
run-time image. Once all of the packages
are built, the target file system is
assembled from the RPMs. If the file
system has previously been assembled in
this build directory, it can either be rebuilt
from scratch or updated in place by
uninstalling and reinstalling RPMs that
have been changed, added, or removed.

Footprint optimization tools are included
to reduce resources.

Exporting a Layer

Users can also create a custom layer for
reuse for other development groups or
other projects. After the system is built,
the make export-layer command can be
used to generate a layer that incorporates
any local changes to the configuration,
packages, or tools. The make install-
prebuilt target can be used to place
prebuilt copies of the host tools, target
packages, and kernel into either a new or
existing layer for use by subsequent
builds.

Other Features of LDAT

Pseudo

To allow package builds and file system
creation without root privileges, Wind
River Linux supplies a tool that provides
limited emulation of root access,
preserving user ownership, modes, and
device nodes correctly for the eventual
target file system.

QEMU

Wind River Linux ships with a hardware
simulator built in. It simulates ARM,
PowerPC, x86, and MIPS hardware. This is
integrated tightly with LDAT so that
launching a test version in simulated
hardware is trivial.

Layers

LDAT uses a hierarchical “layer” structure
where each layer may provide anything
from a simple configuration setting or a
single package to something more
complicated such as completely replacing
the kernel or augmenting toolchains, host
tools, and so on.

The layers provided with Wind River Linux
include the “core” layer (called wrll-
wrlinux), which supplies the user space
packages and core configuration
information, the kernel layer for the kernel
sources, a host-tools layer for tools that
run on the build host, and a toolchain
layer that contains the toolchains for
cross-development. Add-ons for
ecosystem products are typically provided
as layers that may augment or modify the
default configuration. User-defined layers
may provide local changes and prebuilt
binaries to speed development.

Contact Wind River for more information.

Server Install

A possible output of LDAT is a bootable
DVD image to boot an x86 machine that
will then launch an interactive installer. The
user can then use this tool to install the
generated run-time image on that
machine’s hard drive.

Toolchain

The Wind River Linux toolchain is a core
component of the Wind River Linux build
system, providing a number of features
specifically suited to embedded
development. This section outlines some
of the key toolchain features that make
embedded development easier and more
productive. The toolchain is based on
open source components, such as the

4 | Wind River Linux 3.0

GNU Compiler Collection (GCC version
4.3.2), GNU binutils version 2.18.50, and
the GNU debugger (gdb version 6.6). Note
that toolchain version numbers can be
misleading because Wind River makes so
many changes to the upstream releases.
All these changes are transparent to the
developer.

The Wind River Linux toolchain supports
ARM, x86, MIPS, PowerPC, and SPARC
architectures.

Toolchain Vendor

The Wind River Linux toolchain is a
customized distribution of Code Sourcery’s
Sourcery G++ distribution. Code Sourcery
maintains the toolchain, providing support
from some of the major contributors to the
core toolchain components. Wind River’s
toolchain has full support for a broad
range of target architectures and several
host systems. Code Sourcery’s toolchain
expertise provides confidence that bugs
will be fixed quickly and correctly.

C Library

To enhance support for embedded
systems in the C library, Wind River has
collaborated with other key vendors to
found eGlibc, an embedded-oriented
distribution of the GNU C library, and
continues to sponsor the eGlibc project.
The eGlibc project provides superior
support for non-x86 architectures such as
ARM, PowerPC, and MIPS and has a
number of features to make it easier to
build with a smaller footprint for target
systems. Wind River also has uClibc
support, suitable for small footprint
targets.

Validation

Code Sourcery runs a large set of
toolchain tests, including publicly available
tests and proprietary tests. All Wind River
Linux toolchain changes are validated, no
matter how minor the changes appear to
be. Wind River performs additional testing
and validation upon receiving a new
toolchain. Validation is performed for all
supported multilibs for each architecture.
This testing procedure ensures that
regressions are caught before the
compiler ships to a customer.

Custom Features

The Wind River Linux toolchain has a
number of features not found in
corresponding versions of the upstream
compilers and sometimes not available in
upstream at all. Vendor-specific updates
are included in the toolchain as well as a
few features that were added to address
specific embedded development
concerns. Some such features include
architecture- and chip-specific
optimizations, support for new opcodes,
and improved kernel debugging support
in gdb. Finally, all of these features are
tested and validated, ensuring reliable
behavior even when using custom
features.

Multilib Support

The Wind River Linux build system
supports simultaneous use of two different
CPU types (within the same general family)
on a single target; for instance, a target
could be configured with both 32-bit and
64-bit binaries, allowing per-package
choices of space/speed trade-offs.

Prebuilt Multilibs

The Wind River Linux toolchain provides
prebuilt library components, including the
C library, for a large variety of multilibs.
Each prebuilt library is fully validated as
part of the validation process. Prebuilt
libraries reduce compilation time while
providing extra security and certainty. For
each multilib, the toolchain contains
configuration files to set up the compiler
and other tools to produce compatible
code for that multilib. Additional CPU-
specific optimizations are available for a
broad range of CPUs and configurations.

Toolchain Wrappers

Wind River Linux uses toolchain wrapper
scripts that simplify cross development.
The project configuration process sets up
toolchain wrappers for each CPU type
used in the project. These wrappers
combine target sysroot configuration and
toolchain compilation options to provide
seamless building for a target CPU. Users
can then use the wrapper program as a
substitute for GCC rather than trying to
embed needed compiler options in

package build processes. The
preconfigured CPU templates provide the
right combination of options to get good
results out of each CPU.

Toolchain Building

The Wind River Linux toolchain is
distributed and fully supported as a
collection of prebuilt binaries. However,
source for every toolchain component is
provided, along with configuration data
and build scripts to rebuild the toolchain
completely from source. Each toolchain
component is distributed as a combination
of a specific upstream source release or
snapshot plus any additional patches
provided by Code Sourcery or Wind River.
The toolchain build process automates the
task of bootstrapping a new cross-compile
toolchain, reducing hundreds of
commands and configuration steps to a
simple “make toolchain.”

Toolchain Export

When a toolchain has been configured for
a project on a Linux host, it is possible to
export that toolchain as an archive that
can be used as a toolchain on another
host. This can help with distributed
development environments.

License Management

The Wind River Linux toolchain provides a
license management feature. Customers
who want to keep an eye on their compiler
usage or who have site license agreements
can use the provided license management
software, which is fully integrated into the
toolchain. If the license management
software is not found, the toolchain
produces diagnostic messages but runs
with full functionality and full performance.

Wind River Linux Development Tools
and Wind River Workbench

The Eclipse-based Wind River Workbench
development suite offers deep capability
throughout the development process in a
single integrated environment, with
complete platform integration and tools
for debugging, code analysis, advanced
visualization, root-cause analysis, and test.

5 | Wind River Linux 3.0

Analysis Tools

Workbench and Wind River Linux offer a
number of analysis tools available to the
developer. Some are enhanced versions of
open source tools related to profiling and
memory usage, and some are specifically
developed by Wind River:

•	 Performance analysis: The Wind
River Workbench Performance Profiler
analyzes how a CPU is spending its
cycles by providing a detailed function-
by-function analysis that shows how
individual routines within the processes
consume those cycles. This feature is
based on the open source tool oprofile,
with additional visualization and inte-
gration in Workbench.

•	 Memory analysis: Wind River Work-
bench Memory Analyzer is a dynamic
memory analysis tool that helps prevent
and fix such problems as memory leaks,
excessive number of memory alloca-
tions, and excessive memory allocation
sizes. The memory analyzer uses the
open source tool mpatrol, with addi-
tional visualization in Workbench.

•	 Boot-time analysis: This uses the ftrace
tool to provide lightweight function
tracing and includes dynamic ftrace and
early-ftrace for boot-time analysis.

•	 Code execution coverage: The code
coverage analyzer feature of Wind River
Workbench determines the percent-
age of source code executed by your
software test case and points to the
sections of code that have not been
fully tested.

•	 System viewer: Wind River System
Viewer supports visualization of multi-
core systems; per-core filter and search
facilities; the recording of a number of
custom events, which use a printf-like
format string; graphical and tabular
representations of various types of log
file analyses, such as CPU usage (ag-
gregate and per core), system load, and
per-core ready and running states. Sys-
tem Viewer also supports a host-driven
upload method for log files, resulting in
log transfer without interference from
task CPU use. It also allows for transfer
of multiple logs, plus transfer without
requiring you to call target functions.

Package Management

Wind River provides several tools to
examine the file system’s package list,
examine package-level dependencies,
perform safe package addition or removal
based on those dependencies, and
perform file-level examination and control
of the file system contents:

•	 Package lists and snapshots: The
user space file system is built up from
discrete packages, from open source,
user source, and virtual packages from
custom content. Workbench provides a
way to control that package list, to ex-
plore different package combinations,
and to preserve safe combinations as
the user explores the combinations.

•	 Dependency tracking: Workbench
allows the user to visualize the (deep)
forward and reverse dependencies and
to add or remove packages, knowing
that the dependencies are reported
and managed.

•	 Direct package updates to target:
Workbench facilitates RPM manage-
ment on the target as on a regular Linux
host. Packages can be developed and
compiled and then pushed to the run-
ning target for fast turnaround debug-
ging using incremental updates.

Development Tools

Wind River provides several tools to
examine and directly control the file
system content below the package level.
There are also tools to import new open
source packages, import new patches, and
directly examine a package’s patch tree:

•	 File system layout: The user can directly
see the final file system content and di-
rectly remove or add files at a fine-grain
level below the courser package-level
dependencies, allowing direct control
of the file system footprint. Wind River
also provides tools to discover and
visualize which files are touched during
a target run.

•	 Package import tools: Workbench has
a feature to handle most of the initial
package importation and cross-com-
pilation setup, to help speed up the
adoption of new open source packages
into a user’s project.

•	 Patch import and export tools: Work-
bench enables the user to view the
patch tree directly and patch files for
both source RPM and regular packages.
It also provides tools to help import
and resolve new patches and to export
user changes as new portable patches
into a layer directory.

•	 Export layer: This tool can automati-
cally export many changes made in a
project into a new portable Wind River
Linux layer. This includes package list
changes, file system trimming, kernel
configure changes, and new local pack-
ages.

Run-Time Features

The following are features of the run-time
image that runs on the target.

Kernel Development

The 2.6.27 Linux kernel forms the basis of
Wind River Linux’s kernel. Wind River adds
many features and bug fixes to this kernel,
and this specific kernel source
configuration is tested and supported.

Kernel Changes

The Wind River kernel adds to the
kernel.org 2.6.27 base by importing and
validating changes from the following
categories:

•	 mainline: The feature set of the Linux
kernel from kernel.org; extended or
validated features in particular configu-
rations and applications, by Wind River

•	 external: Features imported from an-
other external source and merged into
the Wind River kernel

•	 internal: Features that are in layers or
merged into the kernel, developed by
Wind River

•	 fixes: Bug fixes for drivers; features in
mainline or external projects

These features are tested individually,
merged, and then tested as a complete
system. This includes stress and use case
testing and ensures that the features are
stable individually, integrate with Wind
River tools, and form a solid base for
deployment tuning.

6 | Wind River Linux 3.0

Kernel Presentation

The Wind River kernel is presented to the
developer via a fully patched, history-clean
Git repository (see http://git-scm.com/ for
more information on Git). This stores the
selected features, board support, and
configurations extensively tested by Wind
River. Presenting the Wind River kernel in
this manner allows the end user to
leverage community best practices to
seamlessly manage the development,
build, and debug cycles.

The build system generates a flat tree
from this Git tree that contains the specific
features required for the target kernel’s
use. Storing the source code in Git
enables users to more easily understand
what changes have been made to the
kernel and why. Wind River uses a
combination of tags and branches to assist
in delineating between the various added
features.

The workflow of the Wind River kernel
follows the recognized community best
practices. In particular, the kernel as
shipped with the product should be
considered an “upstream source” and
viewed as a series of historical/
documented modifications (commits) to
the kernel. These modifications to the
kernel represent the development and
stabilization done by the Wind River kernel
development teams.

Contact Wind River for more information
about kernel development workflow with
Wind River Linux.

Browsing Changes

Wind River Linux’s kernel development
methodology simplifies the following use
cases for browsing and understanding
kernel code:

•	 Showing changes, e.g., “What changes
were made to foo.c?”

•	 Showing foo.diff
•	 Showing groups of changes, e.g.,

“Show me only the LTTng patches.”
•	 Comparing branches, e.g., “What’s

different between the ixm27 and imx31
BSPs?”

•	 Completing annotation for all changes,
e.g., “Where did feature X come from
and why is it there?”

•	 Showing standard commit IDs, e.g., “I
see a kernel change on another tree; is
this included in my tree?”

Kernel Features

The kernel forms the basis of many
features in Wind River Linux’s run-time.

Kernel Styles

The code base of the Wind River Linux
kernel supports many features that are
available for specific applications but not
necessarily suitable for all. Wind River
provides predefined kernel styles that are
specific to these applications. The kernel
styles shipped with the product are
described here:

•	 standard: The standard kernel repre-
sents a common feature and technol-
ogy base for all other kernel types. It is
Wind River’s goal to include all possible
features in this single kernel type,
making it suitable for many applica-
tions and a jumping-off point for more
specific kernel implementations. When
it isn’t possible for a feature to coexist
at either compile time or run-time, it is
merged into a specific kernel type.

•	 small: The small kernel is built on top
of the standard kernel and is targeted
for smaller devices, where functionality
such as boot time, memory footprint, or
power management may be of primary
concern. As a result, it is configured
with fewer features, includes boot-time
features, and is normally coupled with
smaller root file systems.

•	 cgl: This kernel is targeted at network-
ing equipment. This kernel includes
upgrades such as shelf management,
security, fault tolerance, threaded
interrupt request lines (IRQs), and
crash analysis that are not available in
the other kernel types. This kernel is
a suitable jumping-off point for high
availability solutions.

•	 ecgl: This is a superset of CGL and con-
tains additional features and configura-
tion for specific networking situations.

•	 preempt_rt: The preempt_rt or “real-
time preemption” kernel implements
real-time capabilities for specific hard-
ware.

•	 Real-time core: The rtcore kernel type
includes the proprietary real-time
core patches and creates a “guaran-
teed real-time” kernel with a defined
programming interface. Wind River
Real-Time Core for Linux is an add-on
product, described later in this docu-
ment.

Networking Subsystem

The following are specific networking
subsystem features:

•	 TCP/IP v4
•	 IPv6, MIPv6
•	 IPsec
•	 Stream Control Transmission Protocol

(SCTP)
•	 VLAN tagging
•	 Transparent Interprocess Communica-

tion (TIPC)
•	 Network block device (NBD)
•	 cgroups and controllers: Control group

support adds support for grouping
sets of processes together, for use
with process control subsystems such
as Cpusets, CFS, memory controls,
and device isolation. It includes net
traffic controller, memrlimit controller,
dm-ioband bio_tracking, and group
scheduling controllers.

•	Other RFCs (contact Wind River for
details)

Security

The following are specific kernel
security features:

•	 BSD jail (bsdjail): The Linux port of the
FreeBSD “jail” facility provides the
ability to partition the operating system
environment while maintaining the
simplicity of the UNIX chroot model.

•	 Simplified Mandatory Access Control
Kernel Support (SMACK): This light-
weight implementation of name-based
security labels is useful for providing
Mandatory Access Control (MAC) with-
out a full SELinux policy.

Debugging and Profiling

The following are specific debugging
features:

•	 oprofile: Kernel.org oprofile enhanced
with tracing through the syscall bound-
ary

•	 ftrace: Lightweight function tracing,
includes dynamic ftrace (backport from
2.6.29) and early-ftrace for boot-time
measurement enhancements

•	 ptrace: Process trace, single step, multi-
threaded trace support

•	 kprobes: Kernel address trapping
•	 KGDB: Kernel debug support over se-

rial, Ethernet, and console
•	 lockdep: Lock dependency checking

and analysis
•	 wrnote: ELF image annotation for core

dumb debug

7 | Wind River Linux 3.0

•	 On-chip debugging
•	 Linux Trace Toolkit (LTTng): Extensible,

lightweight kernel instrumentation for
tracing program execution and debug-
ging parallel and real-time behavior

•	 latency top: Latency visualization sup-
port

•	 Boot-time reduction: Enhancements for
measuring and streamlining boot time

•	 Footprint reduction: Kernel configura-
tion and modifications to limit the run-
time kernel footprint

•	 kmemcheck: Kernel memory checking
and leak detection

File Systems

The following are kernel file system
features:

•	 Boot technologies: ramdisk, execute in
place (XIP), kernel libc support for boot
environments (klibc), initial ramfs sup-
port (initramfs), fastboot (asynchronous
boot/init)

•	 Flash file systems: yaffs, yaffs2, jffs,
advanced XIP file system (axfs)

•	 Logical Volume Manager (LVM and
LVM2)

•	 RAID
•	 Network file systems: NFS, smb
•	 Disk file systems: ext2, ext3, FAT, VFAT
•	 Other file systems: Stackable unification

file system (unionfs), file system for large
device scalability (logfs), compressed
read-only file system (squashfs), com-
pressed ROM file system (cramfs)

•	 Revoke: revokeat() system call for
inode-based revocation

Input and Output

The following are input and output (IO)
features of the kernel:

•	 I/O splice: A system call that copies
data between a file descriptor and
a pipe, or between a pipe and user
space, without actually copying the
data

•	 User space I/O: Drivers that allow pro-
grams easy access to kernel interrupts
and memory locations; used for user
mode drivers

•	 Asynchronous I/O

Real-Time and Deterministic
Scheduling Behavior

The following are specific real-time and
deterministic scheduling behavior features:

•	 Wind River Real-Time Core for Linux:
See “Optional Add-on Products” on
page 9.

•	 preempt_rt: Complete preemption
(real-time) reduces the scheduling la-
tency of the kernel by replacing almost
every spinlock used by the kernel with
preemptible mutexes and thus making
all but the most critical kernel code
involuntarily preemptible

•	 Voluntary kernel preemption (desktop):
Reduces kernel latency by adding more
explicit preemption points to kernel
code

•	 No forced preemption (none): Tradi-
tional Linux preemption model

•	 Robust priority inheritance mutex:
Robust and priority inheritance support
for user space mutexes

•	 High resolution timers (HRT)
•	 Dynamic tick support (NOHZ): Timer

interrupts will only trigger on an as-
needed basis both when the system is
busy and when the system is idle

Hardware Support

The following are highlights of hardware
features:

•	 Multiarchitecture: Five architectures
(MIPS, ARM, SPARC, x86, PowerPC) and
eight subarchitectures (MIPS, MIPS64,
ARM, SPARC64, x86, x86-64, PowerPC,
PPC64)

•	 SMP/AMP/multicore: SMP safety of driv-
ers and core kernel functionality

•	 CPU isolation (cpuisol)
•	 CPU hotplug
•	 IEEE float: IEEE floating point confor-

mance for PowerPC processors sup-
porting Signal Processing Extensions
(SPE)

•	 SEC (Talitos Freescale Security Engine):
Hardware acceleration for PowerQuicc E
processors

•	 Peripherals: Device drivers for periph-
erals such as audio, Ethernet, GPIO,
SDIO, SCSI, MTD, serial, framebuffer,
VGA (graphics), keyboard, USB (gadget,
host, OTG), touch screen, PATA/SATA,
sound, PMEM, wireless (Wi-Fi), Blue-
tooth, MTP

Other Features

•	 kexec: A system call that provides the
ability to shut down the current kernel
and start another without rebooting
hardware

•	 kdump: Kernel crash dump
•	 Kernel virtual machine (KVM): OS virtu-

alization for certain architectures
•	 Clock API: Wind River interface for

manipulating clock sources and data
sampling

Networking Features

These highlights describe features
relevant to network equipment. They may
overlap with the kernel features described
previously.

System Black Box

Taking cues from the aviation industry,
Wind River Linux’s persistent memory
framework (PMEM) provides a system
black box acting much like the combined
flight data recorder (FDR) and cockpit
voice recorder (CVR). Scheduler decision
history, logs of all exceptions, panic and
console logs, kernel log messages, system
reset and reboot logging, Linux Trace
Toolkit (a set of kernel patches and
supporting user space tools to control
tracing) logs, even end-user defined
events can all be logged to dedicated
nonvolatile memory, external memory,
peripherals, or even protected segments
of normal system RAM. This enables faster
recovery and better system uptimes by
allowing all necessary debug information
to be preserved by the PMEM driver in
these protected regions of memory for
later analysis while allowing the system to
reboot and re-enter service immediately.

Transparent Interprocess
Communication Protocol

As a major contributor and one of the
maintainers of the TIPC project, Wind
River actively develops this cross-platform,
high-speed communications technology
aimed specifically at clustered computing
environments. TIPC is a communications
protocol that provides developers with an
extremely flexible means of creating
distributed, cooperative applications that
may migrate as required throughout the
cluster seamlessly. Wind River continues to
invest in TIPC, and Wind River Linux
remains up-to-date with developments in
the TIPC project.

Security

Originally developed by the National
Security Agency (NSA), SELinux remains
the premier method of ensuring a flexible
and trusted computing environment.
SELinux is both a Linux Security Module
(LSM)—a piece of the kernel that arbitrates
access to all system resources based on
the system policy—and a collection of
supporting user space tools for

8 | Wind River Linux 3.0

developing, applying, enforcing, auditing,
and debugging the security policy used by
the LSM. Wind River Linux includes three
levels of security out of the box for
SELinux-enabled configurations and all the
tools necessary to customize or develop
new policies from the ground up.

Additionally, Wind River Linux includes
advanced, preemptive security
technologies such as run-time stack and
buffer overflow protection and a suite of
tools that together provide a complete
intrusion detection and prevention system.
The Wind River Linux kernel also includes
the PaX patch set implementing least-
privilege protections for memory pages or
memory segments as well as GRSecurity,
further kernel patches that build upon PaX
and implement a trusted execution model,
role-based access control, detailed system
accounting logs, and fine-grained
privilege separation.

Further user containment features that
resist all known chroot-jail attacks protect
your system even when deployed in a
hostile environment or with an unknown
user base.

Carrier Grade and Network Equipment
Provider Ready

The first Linux distribution registered as
fully compliant with the Carrier Grade
Linux 4.0 specification, Wind River Linux
3.0 offers expanded support of CGL
features including better support for
clustered computing environments and
better support for developing and
deploying highly available systems.

Wind River Linux also meets the SCOPE
Alliance Linux profile and addresses key
SCOPE Alliance gaps. These include
persistent shared memory with the system
black box, coherent user and kernel
tracing framework with LTTng, run-time
analysis tools, and common command-line
tools such as strace and ltrace for doing
system call and library tracing. The
following are additional SCOPE Alliance
gaps that are addressed by Wind River
Linux:

•	 Coarse resource enforcement: Wind
River Linux’s group scheduling and
resource controllers allow memory and
scheduling limits to be enforced on a
group basis rather than simple per-
process or per-object.

•	 Layer 2 Tunneling Protocol (L2TP)
support

•	 File access tracing: Linux kernel fea-
tures such as inotify as well as Wind
River Linux features such as GRSecurity
provide extensive logging and notifica-
tion options for monitoring file access
and recording system events.

With support for both standalone and
clustered systems as well as the PICMG
Advanced Telecommunications
Computing Architecture (ATCA)
specification, Wind River Linux provides
highly available solutions for devices at
both the network core and edge.

Advanced Network Equipment
Features

With Wind River–developed proven
technologies such as the virtual
management controller, it becomes easy
to develop complex applications that can
run on a variety of hardware using
common intelligent platform management
interface (IPMI) commands for health
monitoring even on systems without a
baseboard management controller (BMC).
The addition of the application monitoring
and migration feature (memmon) allows
complex applications to transparently
migrate between systems to ensure zero
service interruption even in the case of a
scheduled outage. Additional system
engineering tools such as flexible out of
memory (OOM) killer behavior, Ethernet
link bonding, and statistics gathering and
reporting on a per-socket and per-
interface basis allow designers to engineer
their systems to the absolute maximum
capabilities of the hardware. This is
combined with Wind River’s support for
error detection and correction (EDAC) on
new chipsets.

Network-Based Storage Solutions

Integrating technologies such as the
distributed replicated block device
(DRBD), multiple redundant
communication paths to external storage
over fiber channel links, ATA over
Ethernet, the Oracle Cluster File System
version 2 (OCFS2), and Internet Small
Computer System Interface (iSCSI), Wind
River Linux provides functionality for
centralized logging servers, centralized
billing and accounting servers, and share
file system servers.

Hardware Support: Board Support
Packages

Wind River Linux board support packages
(BSPs) are hardware-enablement
components that contain elements such as
drivers and settings needed to make Wind
River Linux support specific hardware.

BSPs are separable configuration
components that can be created and
added to Wind River Linux at any time. In
addition to the BSPs Wind River Linux
ships with, Wind River continues to add
boards according to customer demand
and hardware availability. Such additional
BSPs are available via Wind River’s Online
Support website to customers under an
active platform subscription. Also, Wind
River Services can create customer-specific
BSPs for hardware that is not covered by
existing ones.

A typical BSP includes board-specific
configuration files that overwrite or add
configuration options defined by the
common platform templates. Additional
kernel patches included in the BSP can
add new device drivers or apply necessary
changes to existing Linux code. BSPs can
also contain additional user space
components or other files.

Wind River has validated proper operation
of the Linux run-time for each supported
reference board. The supported features
are board-specific and depend on
availability and maturity of the code in the
open source community.

The product ships with more than 40 BSPs
covering the following target processors:

•	 ARM
•	 Intel x86
•	 MIPS
•	 PowerPC
•	 UltraSPARC T2

BSPs are also created and shipped
asynchronously, after the product is
released. For this reason, the list of BSPs is
not static. Contact Wind River to get an
up-to-date supported BSP list with
detailed descriptions of supported
peripherals.

Applications

Wind River Linux provides more than 500
integrated user space application
packages. They implement functionality
typical of an embedded Linux run-time.

9 | Wind River Linux 3.0

The Wind River build system (LDAT)
generates binary RPMs from these
sources. LDAT can then use these to
generate a root file system.

Origins and Porting

A variety of open source projects forms
the origins of the user space code base.
About 100 packages are based on
traditionally prepackaged trees containing
source code, configuration scripts, and
Makefiles or Makefiles precursors (i.e., a
classic package format). The remaining
400 have source RPMs as their base.

Wind River patches these upstream
sources for integration and bug fixing.
These packages generally contain the
following types of patches:

•	Cross compilation: Many packages
are expected to be compiled on x86
architectures for x86 architectures.
This often means host libraries can be
referenced or linked in.

•	Multilib: This ensures that packages can
be built for both 32- and 64-bit targets.

•	Other defects: Wind River ensures
that packages are properly integrated
together.

The Wind River Linux Distribution
Assembly Tool, LDAT, will access the
ported components, pass the appropriate
cross-compilation parameters, and create
a file system matching the target’s
architecture and the kernel’s configuration
and including the features needed.

Customers can add their own user space
packages using the same mechanism.
Instructions for this are included in
product documentation.

Lists of Packages

It is easiest to consider the package list in
terms of categories used. The following is
a list:

•	 Administration
•	 Basic C support
•	 Booting and startup
•	 Daemons
•	 Databases
•	 Debugging
•	 Devices
•	 DirectFB
•	 File systems
•	 File transforms
•	 Graphics
•	 Hardware

•	 Kernel
•	 Languages
•	 Middleware
•	 Multimedia
•	 Networking
•	 Shells and scripting
•	 Security
•	 SELinux
•	 Setup
•	 Sound
•	 System
•	 Host tools
•	 Test
•	 Utilities
•	 Various
•	 Wind River instrumentation
•	 X Server

A full list of the package names can be
found at the end of this document in
“Appendix A: Package Summary by
Category.” For a full list of package details
(source package names, binary package
names, versions, licenses, etc.), contact
Wind River.

Profiles

Wind River also includes several profiles
that define preassembled root file systems
and kernels for specific functionality. The
following are the profiles shipped:

•	 Consumer Premise Equipment
•	 Industrial Equipment
•	 Mobile Multimedia Device
•	 CGL, Carrier Grade Linux
•	 ECGL, Enhanced Carrier Grade Linux
•	 Limited Platform for Network Equip-

ment

Optional Add-on Products

Wind River provides other products to
implement functionality not available in
the base product.

Wind River Real-Time Core for Linux

Wind River Real-Time Core for Linux and
Wind River Linux provide device
manufacturers with a mature, proven
technology for developing complex,
next-generation, Linux-based applications
that require guaranteed hard real-time
with microsecond-level interrupt and
scheduling latency. Wind River Real-Time
Core for Linux employs a simple real-time
executive that runs the non-real-time Linux
kernel as its lowest priority task and routes
interrupts to the Linux kernel scheduler
through a virtual interrupt layer.

All interrupts are initially handled by Wind
River Real-Time Core and are passed to
the standard Linux kernel only when there
are no real-time tasks to run. Real-time
applications are implemented as standard
POSIX threads and receive interrupts
immediately, resulting in near hardware-
threshold speeds for interrupt processing.
Wind River Real-Time Core and user space
tasks communicate through lock-free
queues and shared memory. From the
application programmer’s point of view,
real-time queues look very much like
standard Linux character devices,
accessed via POSIX read/write/open/ioctl
system calls. Shared memory is currently
accessed via the POSIX mmap calls.

Additionally Wind River Real-Time Core
for Linux includes the user space real-time
module that enables programmers to add
a memory protection layer to their
real-time threads. This protection adds a
level of insurance that no real-time thread
will bring the entire system down should
one ever fail. The user space real-time
module also adds a greater programming
language support to Wind River Real-Time
Core for Linux for those developers who
prefer to program in C++ or FORTRAN.

Also included as part of Wind River
Real-Time Core for Linux is a real-time
networking module based on Wind River
Advanced Networking Technologies. This
real-time networking module ensures that
your network applications send and
respond to network packets in a fully
deterministic fashion. A brief list of
network protocols supported includes
TCP, UDP, virtual routing, VLAN, and
telnet.

Wind River Real-Time Core benefits
include the following:

•	 Guaranteed hard real-time response
times regardless of system load

•	 Wind River Real-Time Core applica-
tions implemented as standard POSIX
threads

•	 Largely untouched Linux kernel, main-
taining standard interfaces that do not
interfere with kernel, silicon vendor,
community, or user developed patches

•	 Real-time thread memory protection
utilizing user space real-time

•	 Fully deterministic real-time networking
support

10 | Wind River Linux 3.0

IPL Cantata++ for Wind River
Workbench

IPL Cantata++ for Wind River Workbench
(formerly Unit Tester), now available for
Wind River Linux, is a set of tools that
allows developers greater efficiency in
completing unit testing, integration
testing, and code coverage analysis on the
tests. The integration of Cantata++ with
the Wind River Workbench development
suite places these capabilities within easy
reach. Cantata++ increases software
quality, decreases time-to-market, and
reduces support costs through better,
faster, more automated testing in the
development life cycle.

Wind River Workbench On-Chip
Debugging

In the early stages of hardware and
software development, a robust
connection to the microprocessor through
its run-control port is essential. Wind River
Workbench provides connectivity between
the host development environment and
the target device via the JTAG or on-chip
debugging interface of the microprocessor
that resides on the device.

The on-chip debugging interface of most
microprocessors enables full control of the
microprocessor itself, access to core and
peripheral registers, and access to on-chip
switch fabrics and memory controllers,
along with access to external buses and
many devices attached directly to the bus.
In addition, some microprocessors support
either internal or external trace buffers,
allowing developers to capture
information regarding the exact code that
ran on the target and when.

On-chip debugging provides developers
with complete system-level control of their
environments at all times, enabling more
efficient and effective hardware bring-up,
firmware development, and device driver
and BSP generation. Specifically for Linux
development, Workbench On-Chip
Debugging provides visibility into
hardware and software interactions for
kernel and kernel modules and enables
development and debug of user space
applications. The JTAG-based debug
capability is a useful alternative to
agent-based debugging in applications
where serial, Ethernet, or USB interfaces
are not available or in environments where

agent instrumentation of the operating
system is not desired.

The Wind River Debugger provided with
Wind River platforms can be enabled for
on-chip debugging. This capability, along
with Wind River ICE, Wind River Trace, and
Wind River Probe hardware, provides
access to significant additional capability
within Workbench.

For more information, visit
http://www.windriver.com/products/
workbench.

Wind River Test Management

Wind River Test Management is a scalable
system that links device development and
test teams with a collaborative suite of
applications for efficient system testing
and defect resolution. The system
leverages a unique, dynamic
instrumentation technology to measure
code coverage, profile performance, and
diagnose and repair the system at
run-time. The product is designed to
manage multiple devices under test at
multiple lab locations, maximizing
resource utilization and accelerating the
testing process.

Benefits of Wind River Test Management
3.1 include the following:

•	 Higher quality, faster time-to-market,
lower cost

•	 More testing, more often
•	 Faster defect resolution
•	 Management of progress, quality, and

resources
•	 Benefit to both development and QA
•	 Powerful sensorpoint technology
•	 Open, scalable architecture
•	 Broad platform support

For more information, visit
http://www.windriver.com/products/
test_management/.

Wind River Network Management

Wind River Network Management includes
advanced SNMP, CLI, and web-based
management interface development tools.
The Network Management products are
designed and implemented as cross-
platform and validated on both VxWorks
and Wind River Linux. This makes it easy
for developers to implement management
interfaces for both VxWorks and Wind
River Linux–based devices or to migrate
from VxWorks to Wind River Linux.

The Wind River Network Management
SDK includes a standards-based
implementation of SNMP, consisting of
SNMP v1/v2c/v3 and AgentX support as
well as a scalable, unified, small-footprint
management framework to create
web-based, CLI-based, or custom
management interfaces to manage
networked elements. The scalable
framework consists of a management
backplane that acts as a conduit for data
handling between management interfaces
(consumers) and manageable elements
(producers); it can have any type of
consumer and any type of producer.

Wind River Network Management SDK 3.2
includes the following:

•	 Wind River SNMP 10.3
•	 Wind River CLI 4.7.1, Wind River Web

Server 4.7.1, and Wind River MIBway
4.7.1

•	 Web and CLI-based network manage-
ment interfaces

•	 Standalone web server: HTTP and
HTTPS

•	 Integration with SNMP via MIBway
•	 Wind River Management Integration

Tool (Windows host support only)
•	 Management Configuration Editor

Wind River SNMP

The Simple Network Management
Protocol (SNMP) is designed to facilitate
management and configuration of
networked devices. Wind River SNMP is a
highly portable, memory-efficient, and
standards-compliant implementation of
SNMP specifically designed for original
equipment manufacturers (OEMs) and
system integrators who require full
compliance with SNMP standards in a fast,
small SNMP agent. This complete solution
for integrated SNMP design and
implementation includes a full MIB
development platform. It is composed of
SNMP v1/v2c/v3 and AgentX.

Features of Wind River SNMP 10.3 include
the following:

•	 Bilingual SNMP agent supports
SNMPv1/v2c protocols

•	 Asynchronous support
•	 SNMPv3 security features
•	 SNMP notifications
•	 “Target” and “notify” MIBs
•	 SNMP proxy
•	 SNMP v1/v2/v3 coexistence
•	 AgentX module

11 | Wind River Linux 3.0

•	 MIB compiler
•	 Compact, interoperable, standards-

based configuration
•	 Integration and validation with Wind

River Advanced Networking Technolo-
gies (Interpeak-based)

•	 Portable design and implementation
•	 A new API to support SNMPv3 INFORM

PDU operations

Wind River Advanced Networking
Technologies

Wind River networking add-on products
are delivered in ANSI-compliant C source
code, with ready-to-run examples on Wind
River Linux. The optional Wind River
Advanced Networking Technologies
addresses networking, security, and
mobility requirements in markets such as
wireless infrastructure, network
infrastructure, and consumer devices. In
particular, IPv6, routing, wireless, and
mobility technologies enable device and
equipment manufacturers to deliver
products to market quickly while offering
the latest networking and security
capabilities on Wind River Linux.

Multicore silicon has brought
unprecedented cost, power, and space
efficiencies to networking equipment.
Advanced Networking Technologies 6.7
for Wind River Linux is designed to
optimize multicore network throughput by
utilizing individual cores to process
networking tasks. Candidates for fast path
processing include IPv4/IPv6 forwarding,
IPsec, virtual routing, VLAN tagging, NAT,
tunneling, and access control list filtering.
By using dedicated processing cores for
these tasks, operating system overhead
can be greatly reduced. This yields gigabit
wire speed throughput for packet

forwarding and frees up more processing
resources for Linux kernel tasks and
applications.

The following diagram illustrates the
division of labor for network processing
using Advanced Networking Technologies
6.7.

The number of network acceleration
engines (NAEs) is specified at build time
based on system requirements. Wind River
Linux 3.0 initializes these cores, reserves
them as NAEs, and does not schedule any
other tasks to run on them. Linux then
“gets out of the way” and lets the NAEs
run independently to process network
traffic. Packets in the fast path are
processed using a run to completion

model and do not touch the Linux kernel.
Any packets that are not processed on the
NAE, including locally destined traffic, are
passed from the NAE to the Linux kernel.
This is defined as “normal path”
processing.

Testing and Validation

Wind River is committed to providing
quality products for both proprietary and
open-source-based technologies. Our
quality policies include formal code
inspections, peer reviews, project reviews,
program audits, and traceable
requirements change management. Wind
River Linux was created following a
methodical process to thoroughly test key
features on every supported reference
configuration (defined by development
host, kernel and package configurations,
and supported board).

Wind River has developed a robust,
scalable, and automated build and test
infrastructure with more than 4,000 test
cases and 301,336 test runs. This
infrastructure supports many processor
architectures and uses a combination of
commercial, open source, and proprietary
tests, including LTP Core, LTP Network,
LSB, TAHI, and Open POSIX. Wind River
uses coverage tools, such as gcov and
lcov, to optimize test development and
close gaps in existing test suites.

Wind River Linux 3.0 Using
Symmetrical Multiprocessing

Linux
Processing

Linux
Processing

Linux
Processing

Linux
Processing

Network
Acceleration

Engine

Network
Acceleration

Engine

Network
Acceleration

Engine

Network
Acceleration

Engine

Dedicated
Networking Cores

Figure 3: Network acceleration with Wind River Linux 3.0

Automated testing packages for Wind River Linux 3.0 include the following:

Test Suite Description

Automated Boot Login Test This tests the booting process of any target architecture for a given kernel
and rootfs. The process is completely automated for a set of targets, which
helps in determining the boot sanity of the target.

CD Sanity Test This automation suite covers CD installation on a new release, followed by
building the rootfs for various target combinations using prebuilt RPMs. It
boots the target with the prebuilt kernel and rootfs and executes KGDB
and user-mode tests on the target, then reports the results to the
database.

Linux Test Project (LTP) This test suite validates the reliability, robustness, and stability of Linux
kernel and its network components.

Open HPI This is the Open Hardware Platform Interface (Open HPI) conformance
test.

Open POSIX This test suite is for POSIX 2001 APIs not tied to specific implementations.
It provides conformance, functional, and stress testing, with an initial focus
on threads, clocks and timers, signals, message queues, and semaphores.

Perl_test This tests the Perl package.

RT Feature Testing:
LMBENCH
Realfeel

Real-Time Feature Testing tests performance. LMBENCH is used to
measure I/O of the kernel. Realfeel tests scheduler behavior.

Saftest This tests the Open HPI package.

12 | Wind River Linux 3.0

Partner Ecosystem

Wind River’s world-class partner
ecosystem ensures tight integration
between our core technologies and
those of the premier hardware and
software companies we’ve chosen to
build out our solutions. Our partners help
extend the capabilities of Wind River
Linux by offering out-of-the-box
integration and support for key
technologies in a number of fast-moving
markets. Our team is trained to
troubleshoot partner technologies in use
with Wind River products, making ours
the best-supported ecosystem in the
Device Software Optimization (DSO)
industry.

The Wind River Partner Ecosystem is
constantly expanding. Contact us for more
details or visit http://www.windriver.com/
partners/.

Alignment with the Open Source
Community

Wind River has a long history of working
with and contributing to the open source
community. We were one of the early
adopters of the GNU compiler and
debugging technologies for use with our
VxWorks real-time operating system and
Tornado cross-development environment,
and we contributed bug fixes and
improvements to these projects.

We continue our commitment to enable
our customers to successfully leverage
open source in their development of
next-generation devices through our
active involvement in a number of
organizations.

Carrier Grade Linux

The Linux Foundation CGL working
group is developing the Carrier Grade
Linux specification and driving the
adoption of Linux in the network
infrastructure industry.

Consumer Electronics Linux Forum

CELF drives adoption of Linux in the
consumer electronics industry.

In addition to automated testing, significant manual testing—including feature testing,
Workbench testing, and complete system testing—for Wind River Linux 3.0 has been
completed.

Test Suite Description

3.0 Bug Fix Testing The bugs fixed during various release cycles were tested for the fixes, then
closed.

3.0 New Feature Testing •	 Kernel	test:	Kernel	Feature	Test	Package	(kftp),	feature	matrix	tests
•	 User	space	test:	User	space	packages	sanity	test—442	user	space	

packages sanity tests; user space packages functionality test: 151
packages’ test script

•	 LDAT	test:	Build	system	functionality	test
•	 Toolchain	test:	Toolchain	sanity	test	and	new	feature	test
•	 Nmap:	Network	exploration	tool	and	security	scanner
•	 Netperf:	Networking	performance	test	tool
•	 CGL	compliance	testing:	More	than	120	P1	requirements	tested
•	 Kexec	and	core-dump,	server-based	install:	CGL	features	tested
•	 TAHI	IPv6	conformance	tested
•	 ecgl-tools:	ecgl	kernel	test	tools,	provided	by	Nortel
•	 LSB:	Linux	Standard	Base	Compliance	test	packages	on	sun_cp3020	

– cgl -glibc_cgl
•	 iozone:	File	system	performance	test	tool
•	 Nbnch-bite:	CPU	calculation	performance
•	 Footprint	test:	Static	kernel	footprint—kernel	image
•	 Static	rootfs	footprint:	rootfs	size
•	 Dynamic	footprint:	Run-time	system	footprint
•	 Boot-time	test:	Measurement	of	PCD	board	boot-up	time;	implemented	

by a tool provided in Workbench
•	 Coverity:	Static	code	analysis	software

Board-Specific Testing Along with new BSPs added for release, there are board-specific tests
mentioned in the board readme. These tests were executed as part of
regression testing on Wind River Linux 3.0.

Documentation Testing Documentation for Wind River Linux 2.0 was tested to make sure all steps
are properly recorded.

Host OS Testing Installation testing was done on various host OSes supported for Wind
River Linux 3.0 as well as sample application build and debugging from
Workbench and platform build.

HRT Regression Testing HRT features for previous releases were tested for regression on the
supported platforms.

Install Bundle Testing Installation testing was done for various product structure bundles.

Nessus Report A	Nessus	report	for	Intel	sun_cp3220	and	fsl_8548cds	(glibc_cgl,	cgl)	
was done.

Pre-PRT Testing Some user scenarios for Workbench, Wind River Run-Time Analysis
Tools, and the build system were tested on supported hosts and
platforms, as done by the PRT.

Regression Testing Async
BSPs

We tested the Async BSPs (IMX31) for regression (Workbench and other
platform testing).

Regression Testing Sync
BSPs

We tested the regular BSPs for regression (Workbench and other
platform testing).

RT Regression Testing Regression testing features for previous releases were tested for
regression on the supported platforms.

SNMP Testing SNMP tests were performed.

Stress Testing Stress tests were performed.

Usability	Testing Wind River Linux 3.0 and Workbench 3.1 usability testing is based on
the usability testing document.

Use	Case	Testing The use cases for Workbench, run-time analysis tools, and build system
were tested on supported hosts and platforms.

Workbench Integration
Testing

Wind River tests the feature integration of Workbench with Wind
Manage, System Viewer, and run-time analysis tools.

13 | Wind River Linux 3.0

Eclipse Forum

The Eclipse Forum works to improve and
enhance the core Eclipse framework and
also enables Wind River Workbench to
be integrated with a wide range of
complementary Eclipse plug-ins for
software development.

LiMo Foundation

The LiMo Foundation was established to
develop the Foundation Platform, a
Linux-based, open, mobile communi-
cation device software platform. The
Foundation’s purpose is to advance the
creation, evolution, promotion, and
support of the Foundation Platform and
to cultivate an ecosystem of complemen-
tary products, capabilities, and services.

Mobile Linux Initiative

The Linux Foundation Mobile Linux
workgroup is focused on accelerating the
adoption of Linux in the rapidly growing
mobile device market.

Open Handset Alliance

The Open Handset Alliance is a group of
mobile and technology leaders who
share the vision for building a better
mobile phone and are committed to
changing the mobile experience for
consumers through the efforts of an open
mobile ecosystem.

SCOPE Alliance

SCOPE is an industry alliance committed
to accelerating the deployment of
carrier-grade base platforms for service
provider applications.

Service Availability Forum

The SAF is an organization developing
APIs and specifications for high
availability of hardware and software
applications. Its specifications include
the Hardware Platform Interface (HPI)
specification and the Application
Interface Specification (AIS).

OpenSAF Foundation

OpenSAF is an open source project
established to develop a base platform
middleware consistent with Service
Availability Forum (SA Forum)
specifications, under the LGPLv2.1

license. The OpenSAF Foundation was
established by leading communications
and enterprise computing companies to
facilitate the OpenSAF Project and to
accelerate the adoption of the OpenSAF
code base in commercial products.

TIPC Project

The TIPC Project provides an open
solution for communication and
messaging.

Professional Services

Wind River Professional Services, a CMMI
Level 3–certified organization, enables you
to reduce risk and focus on development
activities that add value and differentiate
design. As part of our comprehensive
solutions, Wind River offers a Linux
Services Practice, with focused offerings
that help you meet strict market deadlines
while keeping development costs down.
Our experienced team delivers device
software expertise that solves key
development challenges and directly
contributes to your company’s success.
Backed by our commercial-grade project
methodology, Wind River Professional
Services include device design, Linux BSP
and driver optimization, software system
and middleware integration, and legacy
application and infrastructure migration.

Education Services

Education is fundamentally connected
not only to individual performance but
also to the success of a project or an
entire company. Lack of product
knowledge can translate into longer
development schedules, poor quality,
and higher costs. The ability to learn—
and to convert that learning into
improved performance—creates
extraordinary value for individuals, teams,
and organizations. To help your team
achieve that result, Wind River offers
flexible approaches to delivering product
education that best fit your time, budget,
and skills development requirements.

Personalized Learning Program

Wind River offers a unique solution to
minimize the short-term productivity
drop associated with the process of
adopting new device software

technology and to optimize the long-
term return on investment in a new
device software platform. The Wind River
Personalized Learning Program delivers
the right education required by individual
learners to accomplish their jobs. The
program identifies work-related skill
gaps, generates development plans,
materials, and learning events to address
these skill gaps, and quantifies the
impact of the development activities for
each individual user.

This programmatic, focused, and
project-friendly approach to skills
development results in a significant
increase in the personal productivity of
your teams, improved efficiency in the
processes they employ, and faster
adoption of the technology you have
purchased. Personalized Learning
Programs deliver improved business
performance—customers have reported
a return on investment ranging from 18
percent to 80 percent over a traditional
training approach. Consult your local
Wind River sales representative for more
information on Personalized Learning
Programs.

Support Services

Wind River Customer Support, a certified
Service Capability and Performance (SCP)
organization, provides support for Wind
River Linux platforms. Your subscription to
Wind River Linux includes full maintenance
and support, delivered through Wind
River’s Online Support website and our
worldwide support team. Wind River
Support includes the development suite
and cross-toolchain, Linux kernel, and the
reference root file system, as validated
on supported boards and development
host operating systems. While under
subscription, customers receive both
maintenance updates and major upgrades.

Technical Support

Wind River works with every customer to
help you solve technical support
problems. We may not be able to support
every configuration of hardware and
software that a customer may have
selected, but we will do everything we can
to provide support. Linux Technical

14 | Wind River Linux 3.0

Support on modified or unsupported
configurations is best-effort-based. Wind
River Customer Support will try to
reproduce the problem on a supported
configuration. If the problem can be
validated, we will provide a fix that will be
tested on a supported configuration. Wind
River Professional Services can provide
support for boards or host operating
system versions that are not supported by
the standard product, as well as for
customized versions of the source code or
additional nonstandard packages.

Customer Support will provide bug
fixes following the process outlined
in Wind River’s Customer Support
User’s Guide (CSUG), available at
http://www.windriver.com/support/
resources/csug.pdf.

If appropriate, Wind River will submit
changes in open source code to the

open source project maintainer for
inclusion in a future release of the open
source package. Wind River will maintain
changes until a new version from the
open source project is available and can
be released for Wind River Linux.

Customers with a valid support or
subscription agreement are eligible for
all respective updates free of charge. If
customers cannot update to a new
version but need critical parts of the
update applied to an older version of the
product, Wind River Professional Services
can be engaged to backport the required
functionality on a case-by-case basis.

Visit Wind River Online Support (OLS) for
fast access to product manuals,
downloadable software, and other
problem-solving resources. OLS offers a
comprehensive knowledge base with a
robust search feature for locating

product information and manuals by
keyword, author, published date,
document type, language, and solution
category. OLS also provides new BSPs,
updates to existing packages, patches,
manuals, the latest errata, and other
announcements about Wind River Linux.
Wind River will also provide new
contributed Linux packages through our
support website. These packages have
been contributed by the open source
community and are prebuilt and tested
with Wind River Linux.

Additional support features, including
proactive email alerts covering particular
technologies, platforms, or product
patches and technical tips for common
problems, are available for all customers
on subscription. OLS visitors can also
access a community of developers to
discuss their issues and experiences.

Appendix A: Package Summary by Category

If you are interested in more detailed package information, contact Wind River.

Administration eel, evlog, fmconf, fmldc, hildon-control-panel, hildon-libs, libglade2, libhildonfm, libhildonhelp, libhildonmime, memstat, monit, openais,
quota

Basic C support binutils, boost, glibc, libaio, libatomic_ops, libcap, libdrm, libgcc, libstdcxx, outo, prelink, wrs_kernheaders

Booting and startup Bootpc, grub, silo, yaboot

Daemons acpid,	audit,	crontabs,	daemontools,	esound,	fam,	iozone,	iscsi-initiator-utils,	mcelog,	ORBit2,	pcsc-lite,	pulseaudio,	quagga,	samba,	
vixie-cron, vsftpd, xinetd

Databases hwdata, libtermcap, mysql, openldap, postgresql, python-ldap, sqlite, unixODBC

Debugging eventlog, gdb, kexec-tools, libevent, logrotate, ltrace, oprofile, smartmontools, strace, sysklogd, syslog-ng, sysstat, watchdog

Devices ccid, device-mapper, device-mapper-multipath, eject, ethtool, ipmitool, ipmiutil, kbd, libfakekey, libusb, lm_sensors, makedev,
mingetty, minicom, nbd, openipmi, parted, pciutils, scsidev, setserial, udev, usbutils, vblade

DirectFB dfbtutorials, directfb, directfb_headers

File systems acl, attr, dmapi, drbd-tools, e2fsprogs, filesystem, fuse, gphotofs, hfsutils, installsw, lsof, lvm2, mdadm, mobile-basic-flash, mtd-utils,
mtpfs, rdist, rsync, samhain, xfsdump, xfsprogs, yaffs2

File transforms bzip2,	cpio,	gzip,	libid3tag,	libidn,	lzo,	shared-mime-info,	tar,	unzip,	zip,	zlib

Graphics atk, cairo, cairo, claws-mail, fbset, fontconfig, freetype, gail, glib2, gnome-desktop, gnome-icon-theme, gnome-keyring, gnome-
menus, gnome-mime-data, gnome-panel, gnome-vfs2, gtk, hicolor-icon-theme, libart-lgpl, libgnome, libgnomecanvas, libgnomeui,
libgsf, libjpeg, libmatchbox, libpng, librsvg, libtiff, libvisual, libwnck, matchbox-keyboard, matchbox-window-manager, metacity,
nautilus, ncurses, pango, pycairo, pygobject, pygtk, sdl, SDL_image, SDL_mixer, SDL_ttf, tslib

Hardware hal, hal-info, RT71W_Firmware

Kernel hotplug, intercept_proprietary, kvm, liboil, linux_filter_proprietary, mac-fdisk, pth, rtcore-docs, small-module-init-tools

Languages gnome-python2, python-gst, ruby

Middleware ace, dbus, dbus-glib, dbus-python, gypsy, libbonobo, libbonoboui, libIDL, libsoup, paste, startup-notification

Multimedia cdparanoia, GConf2, gst-plugins-bad, gst-plugins-base, gst-plugins-farsight, gst-plugins-good, gst-plugins-ugly, gstreamer, ial,
ImageMagick, libcdio, libexif, libgphoto2, libgweather, libksba, libmms, libmtp, libogg, libtheora, neverball, setmixer, sox, timidity,
xulrunner

Networking agent-proxy,	aoetools,	apache-ssl,	atftp,	bind,	bluez-libs,	boa,	curl,	dhcp,	ecgl-tools,	gtkhtml,	heartbeat,	ifenslave,	inetutils,	iproute,	
iptables,	iputils,	klibc,	libnet,	libnl,	libpcap,	librds,	lksctp-tools,	lrzsz,	mailx,	midbrowser,	mipv6-daemon-umip,	netcat,	net-snmp,	net-
tools, nfs-utils, nfs-utils-lib, nspr, portmap, ppp, pyca, radvd, rdate, rsh, sendmail, socat, Socket-CAN, tcpdump, telnet, tipc_demo,
tipc-utils, tnftp, traceroute, tunctl, usagi-tool, vlan, wget

Shells and scripting bash, busybox, expect, gawk, grep, less, microperl, mutagen, pcre, perl, perl_tests, perl-Convert-ASN1, perl-LDAP, perl-XML-Parser,
python, python-imaging, sed, tcl, tcsh, xerces

© 2009 Wind River Systems, Inc. The Wind River logo is a trademark of Wind River Systems, Inc., and Wind River and VxWorks are registered trademarks of Wind River Systems, Inc.
Other marks used herein are the property of their respective owners. For more information, see www.windriver.com/company/terms/trademark.html. Revision 1-301. Rev. 08/2009

Wind River is the global leader in Device Software Optimization (DSO). We enable companies to develop,
run, and manage device software better, faster, at lower cost, and more reliably. www.windriver.com

Appendix B: Supported Target Boards

Supported and unsupported boards can be found in the Wind River Linux Platforms area of the Wind River Online Support
website: http://www.windriver.com/products/bsp_web/.

Appendix C: Supported Development Hosts

The following table contains a complete list of supported development hosts with the necessary updates. It lists which hosts
support the Application Developer package only and which hosts also support the Platform Developer package.

Supported Host Architecture Platform
Developer

Application
Developer

Windows XP Professional x86	32-bit p

Windows Vista Business x86	32-bit p

Windows Vista Enterprise x86	32-bit p

Fedora 9 x86	64-bit p p

Red Hat Enterprise Linux Workstation 5 x86	32-bit p p

Red Hat Enterprise Linux Desktop with
Workstation 5

x86	32-bit,
x86	64-bit

p p

SUSE	Linux/openSUSE	11 x86	32-bit p p

Novell	SUSE	Linux	Enterprise	Desktop	10 x86	32-bit
x86	64-bit

p p

Ubuntu	Desktop	Edition	8.0.4 x86	64-bit p p

Sun	Solaris	9	(Update	9/05,	GTK	only) SPARC 32-bit p

Sun Solaris 10 SPARC 32-bit p

Note that although development may be
possible on other Linux distributions and
versions, Wind River has not certified the
product on them.

For more details on features of Wind
River Linux, contact Wind River or visit
http://www.windriver.com/linux/.

Security beecrypt, cracklib, ecryptfs-utils, freeradius, gnupg2, gnutls, gradm, ipsec-tools, keynote, keyutils, krb5, libassuan, libgcrypt, libgpg-
error, librmisec, libsepol, logcheck, nss, opendiameter, openssh, openssh-sftp-only, openssl, pam, pam_passwdqc, passwd, shadow-
utils, sudo, tcp_wrappers

SELinux libselinux, libsemanage, mcstrans, policycoreutils, pyetree, refpolicy, refpolicy-strict, sepolgen, setools

Setup initscripts, libuser, linux, mm, module-init-tools, procps, psmisc, rng-tools, setup, sysvinit

Sound alsa-lib, alsa-plugins, alsa-utils, audiofile, lame, libmad, libvorbis, samplerate, sndfile

System bluez-utils,	checkpolicy,	crackerjack,	fm,	hdparm,	ipmi-test,	ldcskt,	ltp-full,	netperf,	ocfs2-tools,	oncpu,	openhpi,	osso-gwconnect,	
pinentry, pmem, posixtestsuite, robust-tests, saftest, screen, simple_exec_open, simple_exec_proprietary, unionfs, wireless-tools,
wpa_supplicant

Host tools chkconfig,	db4,	elfutils,	expat,	flex,	libtool,	libxml2,	neon,	paxctl,	rpm

Test application_args_proprietary,	crypto_proprietary,	cyclictest,	hello_proprietary,	lmbench,	low_latency_mem_proprietary,	m4,	
mailbox_proprietary, named_block_proprietary, perl-net-telnet, queue_proprietary, traffic_gen_proprietary, uart_proprietary,
wifitest,	xreg,	xts,	zebra

Utilities at, bc, bootlogger, bridge-utils, coreutils, desktop-file-utils, diffutils, file, findutils, gettext, gmp, gnome-doc-utils, gtk-doc, make,
mhash,	mktemp,	mpatrol,	newt,	ntp,	popt,	readline,	slang,	sysfsutils,	syslinux,	time,	timezone,	ustr,	util-linux,	util-linux,	which

Various cyrus-sasl, ed, ElectricFence, freeglut, galculator, gdbm, gpm, mce-dev, vim

Wind River
instrumentation

wbagent-ptrace, wr-coverageagent, wr-opagent, wrproxy, wrsv-ltt

X Server hildon-desktop, hildon-theme-mobile-basic, hildon-thumbnail, libdmx, libfontenc, libICE, libosso, libSM, libX11, libXau, libXaw, libxcb,
libXcomposite, libXcursor,, libXdamage, libXdmcp, libXevie, libXext, libXfixes, libXfont, libXfontcache, libXft, libXi, libXinerama,
libxkbfile, libxkbui, libxklavier, libXmu, libXpm, libXrandr, libXrender, libXres, libxslt, libXt, libXTrap, libXtst, libXv, libXvMC,
libXxf86dga,	libXxf86misc,	libXxf86vm,	marquee-plugins,	mesa,	mesa-demos,	sapwood,	ttf-arphic-ukai,	ttf-arphic-uming,	ttf-dejavu,	
ttf-kochi, ttf-unfonts-core, xcb-proto, xgtk, xkeyboard-config, xorg-x11-apps, xorg-x11-drv-i810, xorg-x11-drv-keyboard, xorg-x11-drv-
mouse, xorg-x11-drv-vesa, xorg-x11-drv-void, xorg-x11-filesystem xorg-x11-fonts, xorg-x11-font-utils, xorg-x11-proto-devel, xorg-x11-
server, xorg-x11-server-utils, xorg-x11-twm, xorg-x11-util-macros, xorg-x11-utils, xorg-x11-xauth, xorg-x11-xbitmaps, xorg-x11-xinit,
xorg-x11-xkb-utils, xorg-x11-xtrans-devel, xrestop, xterm

Appendix A (cont.)

