

COMPLETE EMBEDDED SOLUTIONS

12276 San Jose Blvd #511 • Jacksonville, FL 32223
Phone: (904) 880-1840 • Fax: (904) 880-1632
Email: cmx@cmx.com • WWW: http://www.cmx.com
Dear Software Developer: Thank you for your purchase.

You MUST Fill out this registration form to receive support, upgrades, etc. Please mail it to
the address above or FAX it. Thank you. Also please make a copy for your records.

CMX REGISTRATION CARD

Your Name: __

Your Company: ___

Address: __

Address: __

City: ______________________________ State: _________ Zip: ________

Country: ___________________________________

Phone: _____________________________________

Fax: _______________________________________

Email: _____________________________________

Software Package: __________________________ Version:______________
Located on Diskette

Serial Number: _____________________________
Located on Licensing Agreement

I hereby agree to the terms and conditions of the license agreement for this software.

Signed: ___

Unsigned registrations will not be accepted.

12276 San Jose Blvd #511 • Jacksonville, FL 32223
Phone: (904) 880-1840 • Fax: (904) 880-1632
Email: cmx@cmx.com • WWW: http://www.cmx.com
CMX Systems, Inc. Software License

The enclosed software and documentation are the exclusive property of CMX Systems, Inc.
(CMX) and CMX Company, a division of CMX Systems, Inc., protected under the copyrights
laws of the United States of America and under international treaty provisions. LICENSOR is
an authorized licensor of CMX software products (herein referred to as the "SOFTWARE").
LICENSOR agrees to grant LICENSEE a license to use the SOFTWARE and LICENSEE
agrees to pay for this license in accordance to the terms specified. By using the SOFTWARE,
the LICENSEE has agreed to the terms set forth in this Agreement whether or not this
Agreement is read.

This License (including the Exhibits hereto) shall constitute the entire agreement between the
parties with respect to the subject matter of this License, and shall not be altered, varied, revised
or amended except in writing signed by both parties. The provisions of this License supersede
all prior oral or written quotations, communications, agreements and understandings of the
parties with respect to the subject matter of this License. Neither this License nor any Exhibit
may be modified or amended except by the mutual written agreement of authorized
representatives of each party. Any purchase order issued shall be for its administrative
purposes only and none of its terms and conditions shall be of any force or effect.

GRANT OF LICENSE: LICENSOR grants to licensee a nontransferable license to use the
SOFTWARE. LICENSEE acknowledges that by virtue of this Agreement, LICENSEE
acquires only the right to use the SOFTWARE and does not acquire any right of ownership in
the SOFTWARE. LICENSOR authorizes the purchaser to make backup copies of the
SOFTWARE for archival purposes only. The respective license is effective until terminated.
You may terminate it by destroying the SOFTWARE and documentation and all copies thereof.
The license will also terminate if you fail to comply with any terms or condition of this
agreement. You agree upon such termination to destroy all copies of the SOFTWARE and
documentation. LICENSOR offers a PER USER license, a PER PRODUCT license, a PER
PRODUCT LINE license and a PER CPU TYPE license based upon the SOFTWARE
purchase terms and as defined below:

PER USER LICENSE: CMX authorizes the purchaser to have only a single user use the
SOFTWARE as a "single seat license" on a royalty free basis. For each "single seat license",
only one (1) person may use this software at a specified site and CMX will only support that
single person. The SOFTWARE or its accompanying documentation must not be copied or
distributed to others in any way. This License allows you to embed (e.g. Hex format) CMX
product software into any number of End-Products using a single, specific, processor type and
its derivatives (e.g. 68HC12, 80x86, ARM, ColdFire, PowerPC, etc.). You can manufacture an
unlimited number of units of each of those products, for the life of the end-products that use
the specified Processor Type. Examples of End-Products can be a combination of all of the
following; so long as they ALL use the Processor Type and the derivatives are: HDTV's, VCRs,
DVD Players, MP3 Players, etc.

PER PRODUCT LICENSE: CMX authorizes the purchaser to have as many users at a single
facility use this software, but only one user may be the point of contact for technical support
and CMX will only support that single person. If additional technical support is required by
more than one person, then the LICENSEE may purchase SUPPORT licenses for those
additional people. The SOFTWARE or its accompanying documentation may be copied and

distributed to others only within the same facility. This license allows you to embed (e.g. Hex
format) CMX product software into one end-product which can be manufactured in any
quantity, for the life of the end-product. In other words, this is a royalty free license but a
different license is required for each different end product (i.e. model) that embeds the CMX
Software even if the end product is in the same family as a previously licensed end product by
a different model number or processor type. For changes such as using a different language or
color, etc. we will consider it the same product. This license is specific to the Processor Type
used AND the specific name and model of the end product. Examples of a Single Product
include any single model of a TV, Cell Phone, VCR, DVD Player, Dishwasher, etc.

PER PRODUCT LINE LICENSE: CMX authorizes the purchaser to have as many users at
a single facility use this software, but only two users may be the point of contact for technical
support and CMX will only support the two people. If additional technical support is required
for additional people, then the LICENSEE may purchase SUPPORT licenses for those
additional people. The SOFTWARE or its accompanying documentation may be copied and
distributed to others only within the same facility. This license allows you to embed (e.g. Hex
format) CMX product software into any number of End-Products within a 'Product Family'
using a specific Processor Type (e.g. 68HC12, 80x86, ARM, ColdFire, PowerPC, etc.). You
can manufacture an unlimited number of units of each of those products, for the life of the end-
products within the product family. In other words, this is a royalty free license but applicable
to all end-products that do similar functions within the same Product Family and Processor
Type (and its derivatives) used. Examples of End-Product lines (using same Processor Type
and the derivatives) are: TV's, Cell Phones, VCRs, DVD Players, Dishwashers, etc
.
PER CPU TYPE LICENSE: CMX authorizes the purchaser to have as many users at a single
facility use this software, but only three users may be the point of contact for technical support
and CMX will only support the three people. If additional technical support is required for
additional people, then the LICENSEE may purchase SUPPORT licenses for those additional
people. The SOFTWARE or its accompanying documentation may be copied and distributed
to others only within the same facility. This license allows you to embed (e.g. Hex format)
CMX product software into any number of End-Products using a specific Processor Type (e.g.
68HC12, 80x86, ARM, ColdFire, PowerPC, etc.). You can manufacture an unlimited number
of units of each of those products, for the life of the end-products that use of the specified
Processor Type. Examples of Per-CPU Type End-Products can be a combination of all of the
following; so long as they ALL use the Processor Type and the derivatives are: HDTV's, VCRs,
DVD Players, MP3 Players, etc.

TERMS OF SOFTWARE: LICENSEE agrees not to distribute the SOFTWARE source code
to any third party in any manner. LICENSEE'S use of the SOFTWARE shall be limited to
integrating the SOFTWARE as an integral component within the LICENSEE'S own product
(PER PRODUCT PER SITE) or products (PER USER PER SITE), depending upon the type
of license acquired from LICENSOR. LICENSEE shall have the right to distribute the
SOFTWARE as an integral component of the LICENSEE'S own products as long as the
SOFTWARE is in absolute machine readable format (e.g., HEX file). The LICENSEE can
NOT sell a product that allows the user(s) of the licensee product(s) to be able to indirectly call
the CMX functions (e.g., The licensee product contains an API [Application Program
Interface] that allows the user(s) to indirectly call and use the CMX functions), without the
user(s) of the licensee's product(s) also purchasing a license to use the SOFTWARE.

12276 San Jose Blvd #511 • Jacksonville, FL 32223
Phone: (904) 880-1840 • Fax: (904) 880-1632
Email: cmx@cmx.com • WWW: http://www.cmx.com
LIMITATION OF LICENSOR'S LIABILITY: LICENSOR shall not be liable for any
damages, including but not limited to, interruption of business, loss of profit, incidental,
consequential or any other claims either by LICENSEE or any other party. LICENSOR shall
not be liable for any damages incurred by LICENSEE or any other person as a result of
LICENSEE'S use or misuse of the SOFTWARE, even if LICENSOR had been advised of the
possibility of such damage.

SEVERABILITY: If any provision of this Agreement shall be held illegal, unenforceable or
in conflict with any law governing this Agreement, the validity of remaining portions shall not
be effected thereby.

NON-WAIVER: Failure of LICENSOR at any time to require performance of this Agreement
shall not limit LICENSOR'S right to enforce the provision, nor shall any waiver by LICENSOR
of any breach of provision constitute a waiver of or prejudice LICENSOR'S right otherwise to
demand strict performance or the provision or any other provision
.
U.S. GOVERMENT RESTRICTED RIGHTS: This SOFTWARE and documentation are
restricted computer software and are provided with RESTRICTED RIGHTS. Use, duplication,
or disclosure by the Government is subject to restrictions of the sort set forth in subparagraph
(c) (1) (ii) of the Rights in Technical Data and Computer Software Clause at DFARS 252.227-
7013.

LIFE SUPPORT APPLICATIONS: CMX SOFTWARE is not designed for use in life
support appliances, devices or systems where malfunction of the SOFTWARE can reasonably
be expected to result in a personal injury. CMX customers using or selling CMX SOFTWARE
for use in such applications do so at their own risk and agree to fully indemnify CMX for any
damages resulting from such improper use or sale.

WARRANTIES: LICENSOR represents and warrants the following: That LICENSOR has
the right to grant LICENSEE a license to use the SOFTWARE and to enter into this
Agreement. That the physical media, on which the SOFTWARE is shipped, is free from defects
and that if a defect is found, a replacement copy will be provided. This limited warranty gives
you specific legal rights. You may have others which vary from state to state.

LICENSEE EXPRESSLY AGREES AND ACKNOWLEDGES THAT THE
FOREGOING WARRANTIES ARE IN LIEU OF ALL OTHER WARRANTIES
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO AN IMPLIED
WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

GOVERNING LAW: This Agreement shall be governed by the laws of the state of Florida.
Some states do not allow limitations on the duration of an implied warranty, so the above
limitations may not apply to you. This limited warranty gives you specific legal rights. You
may have others, which vary from state to state. Because some states do not allow the exclusion
or limitation of liability for consequential or incidental damages, the above limitations may not
apply to you.

CMX INSTALLATION INSTRUCTIONS

The enclosed diskette contains the CMX Real-Time Multi-Tasking Operating System.
We suggest making a copy of this diskette for archival purposes only.

The root directory contains all the CMX files, that you will need to work with.

The CMXMOD directory contains all the CMX functions, make file and support files
in order to create a different memory model library or if the user is using a different
released version of the C compiler, assembler, linker, librarian then what CMX used.

The user should copy all the ROOT directory files to the directory that contains the
target processor C compiler and tools.

The user should then make a sub directory named CMXMOD or user selected name.
Then copy all the files from the diskette CMXMOD directory into this directory.

The user should read the CMXREAD.DOC file that explains what versions that CMX
used for the particular C vendor’s compiler, assembler, linker, and librarian. Also it
may include additional information particular to the processor and C vendor that can
not be found in the manual.

Please thoroughly READ the manual and look at both the C source code and assembly
source code to get a better idea how CMX works. Also work with the sample(s)
supplied before jumping right in and coding your first application program with CMX.

Remember that there will be a learning curve, and some time will be needed to get a
"good feeling" as to how everything comes together. PLEASE be PATIENT.

CMX-RTX AND PCPROTO-RTX USERS

Please disregard any references to CMXTracker and CMXTracker files, if you have not
purchased it. The documentation for CMXTracker is provided to make it easier for you
if you decide to purchase it at a later date.

Please contact us with any questions that you may have with regards to this matter.

SOFTWARE PROBLEM REPORTING

If the user feels there is a problem with the CMX software, the following steps should
be performed.

Please be some what ensured that it is a problem with the CMX Real-Time Multi-
Tasking operating System code supplied and NOT: application coding errors, poor
design of the application code and how it is integrated, misuse of the CMX RTOS, etc.
Try a different approach or try to exercise just the particular problem in a minimal test
if possible.

Email, call or FAX the following.

PRODUCT DETAILS: The company name, name of person reporting problem, the
name and version of the manufacturer's C compiler being used, the version number and
serial number of the CMX RTOS.

PROBLEM SEVERITY: how serious is the problem.

PROBLEM DESCRIPTION: a concise and informative description of the problem, the
results that occurred, and any solution if known.

CMX will try to resolve any problems within a reasonable amount of time. If needed,
CMX may request the user to send or fax the portion of the code that is not working
correctly.

DISCLAIMER: While CMX Systems, Inc. will investigate the problem as soon as
possible and make every attempt to come up with a solution, we do not guarantee to
provide a solution.

NOTICE: CMX is not in the business of writing other companies application code
around the CMX Real-Time Multi-Tasking Operating System, so DO NOT call
expecting this. Also if the user manipulates the CMX code for any reason, then CMX
will not be responsible for how the code executes.

Copyright© 2006
All rights Reserved

CMX Systems, Inc.
12276 San Jose Blvd #511
Jacksonville, FL 32223 U.S.A.
Phone: (904) 880-1840
FAX: (904) 880-1632
Email: cmx@cmx.com
WWW: http://www.cmx.com

USER MANUAL

IMPORTANT LEGAL NOTICE

Please note that there are specific references made in this user's manual, in our
marketing literature, and in the actual software files to CMX Systems, Inc., and CMX
Company. CMX Company is a division of CMX Systems, Inc. and the two company
names should be regarded as the same legal entity for the purposes of copyright,
trademark, licensing and any other legal issues.

COPYRIGHT NOTICE

Copyright© 2000 CMX Systems, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated, in any form
or by any means, electronic, mechanical, manual, optical, or otherwise, without prior
written permission of CMX Systems, Inc.

This documentation is confidential. CMX may, if they so choose, to put some portions
of this documentation within the public domain and if so, then those respective portions
will not be consider confidential.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of CMX Systems, Inc. While the information
contained herein is assumed to be accurate, CMX Systems, Inc. assumes no
responsibility for any errors or omissions.

In no event shall CMX Systems, Inc., its employees, its contractors, or the authors of
this document be liable for special, direct, indirect, or consequential damage, losses,
costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature
or kind.

TRADEMARKS

CMX is a trademark of CMX Systems, Inc.

All other product names are trademarks or registered trademarks of their respective
owners.

 Table of Contents
The CMX Multi-Tasking Executive ...1
The CMX Scheduler ...1
When A Task Is Interrupted ...2
Task States ..2
Setting Up Tasks ...3
CMX Return Status Byte Values ..5
CMX DATA TYPES ..5
Layout Of The Functions ..6
Task Manager Functions ...8

The K_Task_Create function ...8
The K_Task_Create_Stack function ..11
The K_Task_Start function ..14
The K_Task_Priority function ...16
The K_Task_Wait function ...17
The K_Task_Wake function ..19
The K_Task_Wake_Force function ...21
The K_Task_Lock function ...22
The K_Task_Unlock function ...23
The K_Task_Coop_Sched function ...24
The K_Task_End function ...25
The K_Task_Delete function ...27
The K_Task_Name function ..28

Event manager functions ..29
The K_Event_Wait function ..30
The K_Event_Signal function ...34
The K_Event_Reset function ...39

Queue Manager Functions ..40
The K_Que_Create function ..41
The K_Que_Reset function ...43
The K_Que_Add_Top function ...44
The K_Que_Add_Bottom function ...46
The K_Que_Get_Top function ..47
The K_Que_Get_Bottom function ...49

Memory Manager Functions ...51
The K_Mem_FB_Create function ...51
The K_Mem_FB_Get function ..53
The K_Mem_FB_Release function ...55

Message Manager Functions ..56
The K_Mesg_Send function ..57
The K_Mesg_Send_Wait function ..59
The K_Mesg_Get function ..61
The K_Mesg_Wait function ..63
The K_Mesg_Ack_Sender function ..64
 i

ii

Table of Contents
The K_Mbox_Event_Set function ...66
Resource Manager Functions ...69

The K_Resource_Get function ..70
The K_Resource_Wait function ..71
The K_Resource_Release function ..73

Semaphore Manager Functions ..75
The K_Semaphore_Create function ...76
The K_Semaphore_Get function ...77
The K_Semaphore_Wait function ...78
The K_Semaphore_Post function ..80
The K_Semaphore_Reset function ..82

Cyclic Timers Manager Functions ..83
The K_Timer_Create function ...84
The K_Timer_Start function ..86
The K_Timer_Initial function ..88
The K_Timer_Cyclic function ...91
The K_Timer_Restart function ..92
The K_Timer_Stop function ..93

UART Manager Functions ...95
The K_Init_Recv function ...97
The K_Init_Xmit function ...98
The K_Update_Xmit function ...98
The K_Update_Recv function ...99
The K_Put_Char function ..99
The K_Put_Char_Wait function ..100
The K_Put_Str function ...102
The K_Put_Str_Wait function ...104
The K_Get_Char function ...106
The K_Get_Char_Wait function ..107
The K_Get_Str function ...109
The K_Get_Str_Wait function ...111
The K_Get_Str_Wait_Return function ..113
The K_Get_Str_Return function ..116
The K_Recv_Count function ...117

The Operating System Functions ..118
The K_OS_Init function ..119
The K_OS_Start function ..120
The K_OS_Disable_Interrupts function ..121
The K_OS_Enable_Interrupts function ...122
The K_OS_Intrp_Entry function ...123
The K_OS_Intrp_Exit function ...124
The K_OS_Slice_On function ...126
The K_OS_Slice_Off function ..127

 Table of Contents
The K_OS_Tick_Update function ...128
The K_OS_Low_Power_Func function ..129
The K_OS_Task_Slot_Get function ..130
The K_OS_Tick_Get_Ctr function ..131

The CMX Timer Task ..132
Stacks in General ..133
The RTOS Configuration File ..136
Time Slice Chapter ...136
Interrupts in General ...137
How Interrupts Interface with CMX Functions ..138
The CMX Scheduler Chapter ...138
CMX Operating Flags ...138

QUICK REFERENCE..139
Using CMX with C compilers ..139
CMX Return Status Byte Values ..140

K_Event_Reset ...141
K_Event_Signal ..143
K_Event_Wait ..145
K_Get_Char ..147
K_Get_Char_Wait ..149
K_Get_Str ...151
K_Get_Str_Return ..153
K_Get_Str_Wait ...155
K_Get_Str_Wait_Return ..157
K_Init_Recv..159
K_Init_Xmit..160
K_Mbox_Event_Set..161
K_Mem_FB_Create..163
K_Mem_FB_Get ..165
K_Mem_FB_Release..167
K_Mesg_Ack_Sender ...169
K_Mesg_Get ...171
K_Mesg_Send...173
K_Mesg_Send_Wait ...175
K_Mesg_Wait ...177
K_OS_Disable_Interrupts...179
K_OS_Enable_Interrupts..181
K_OS_Init ...183
K_OS_Intrp_Entry..184
K_OS_Intrp_Exit ..186
K_OS_Low_Power_Func...188
K_OS_Slice_Off ...190
K_OS_Slice_On..191
 iii

iv

Table of Contents
K_OS_Start ...192
K_OS_Task_Slot_Get ..193
K_OS_Tick_Get_Ctr ..194
K_OS_Tick_Update..195
K_Put_Char ..196
K_Put_Char_Wait...198
K_Put_Str..200
K_Put_Str_Wait..202
K_Que_Add_Bottom ..204
K_Que_Add_Top..206
K_Que_Create ..208
K_Que_Get_Bottom ...210
K_Que_Get_Top...212
K_Que_Reset ..214
K_Recv_Count..216
K_Resource_Get ...217
K_Resource_Release ..219
K_Resource_Wait ...221
K_Semaphore_Create ...223
K_Semaphore_Get..225
K_Semaphore_Post...227
K_Semaphore_Reset...229
K_Semaphore_Wait..231
K_Task_Coop_Sched ...233
K_Task_Create ...234
K_Task_Create_Stack ..236
K_Task_Delete ...240
K_Task_End ...242
K_Task_Lock..244
K_Task_Name ..246
K_Task_Priority..248
K_Task_Start ..250
K_Task_Unlock ..252
K_Task_Wait ..253
K_Task_Wake ..255
K_Task_Wake_Force ...257
K_Timer_Create ...259
K_Timer_Cyclic ...262
K_Timer_Initial ..264
K_Timer_Restart ..266
K_Timer_Start ..268
K_Timer_Stop ..270
K_Update_Recv..272

 Table of Contents
K_Update_Xmit..273
 v

THE CMX MULTI-TASKING EXECUTIVE

THE CMX SCHEDULER
THE CMX MULTI-TASKING EXECUTIVE

Welcome to the world of multi-tasking. CMX provides the necessary function calls and
operating system to write efficient C and/or assembly code to create a well designed,
multi-tasking application.

The ability of a single processor to run many tasks by swapping different tasks in and
out creates the feeling that many tasks are operating simultaneously. This is what
multi-tasking is all about. CMX is a real-time multi-tasking operating system giving
you function calls and an operating system kernel that will:

allow control of tasks
send and receive messages
handle events
control resources
control semaphores
regulate timing in a variety of ways
provide memory management
handle interrupts
swap tasks.

THE CMX SCHEDULER

The CMX operating system provides real-time processes the ability for task switching
according to the input stimulus received. The heart of this operating system is the
scheduler. The scheduler is based on true preemption. This means that tasks and
interrupts can cause an immediate task switch, if a higher priority task becomes able to
run as the result of a CMX function. Cooperative scheduling is also possible, a task can
let the next task (same or lower priority) run if desired. True time slicing is also
available. The time slicing mechanism allows a higher priority task to preempt the
current running task. The sliced task regains control, when the higher priority task is
done, until its allocated time slice expires.

The scheduler keeps track of variables associated with tasks. Task switches will be
performed by the scheduler depending upon the state of these variables. A task or
interrupt may cause a preemption, which informs the scheduler that a higher priority
task needs servicing. Possibly the interrupt that determines the "system tick", the basis
for all time related activity, occurred. The CMX tick function will determine whether
there are any time related activities that need attention and will tell the scheduler to call
the CMX timer task, which will handle the timing chores.

If a preemption occurs, the task that was running has its context saved. The scheduler
decides which of the tasks to run next. The scheduler will load all the proper
information for this task to operate. If the task had been suspended, for whatever
reason, by a function call or a higher priority task, then all the saved task variables are
reloaded, all registers are restored to their respective values for this task and the task
resumes where it left off as if it was never suspended.
 1

2

THE CMX MULTI-TASKING EXECUTIVE
WHEN A TASK IS INTERRUPTED
For more information, please study the CMX Scheduler Chapter which explains how
the scheduler works in detail. That chapter explains the different flags the scheduler
will act upon and how the scheduler interfaces to the interrupt driven
K_OS_Tick_Update function, tasks, CMX functions and other interrupts.

WHEN A TASK IS INTERRUPTED

A task may suspend itself by a variety of CMX function calls forcing the scheduler to
reschedule immediately without regard to the specified system tick time interval. Also
some CMX function calls that take a task out of the suspended state, or that start a task
that was idle, will force immediate rescheduling, if the suspended or new task has a
higher priority than the running task.

CMX gives you the ability to handle single or multiple (nested) interrupts. The
interrupts may call many CMX functions and CMX provides the necessary interrupt
functions that save and restore the contexts of a task, or interrupt, when nesting occurs.

When a task's (or interrupt's) context is saved, you can be assured that all parameters
dealing with this task or interrupt -- all the CPU registers, local variables and
parameters passing variables -- will be restored properly, as if the task or interrupt was
never suspended.

TASK STATES

There are several possible states a task can be in, though a task can be in only one state
at a time. These states are: IDLE, READY, RUN, WAIT, and ready to RESUME.

IDLE state

A task that has been created with the K_Task_Create function, but not started by the
K_Task_Start function is in the IDLE state. A task that has completed its code and
called the K_Task_End function is placed into the IDLE state if there are no outstanding
triggers in its control block. A task that is in its IDLE state will not run.

READY state

The READY state informs the scheduler that the task is ready to run, but NOT running.
This allows the scheduler to determine what task to run when a scheduling takes place
according to the task’s priority in relation to the other tasks’ priorities.

RUN state

The task that is executing is in the RUN state and owns the CPU time. Only one task
may be in the RUN state at any one time.

THE CMX MULTI-TASKING EXECUTIVE

SETTING UP TASKS
WAIT (suspended) state

A task that suspended itself by a CMX function call is in the WAIT (suspended) state.
There are many function calls that will suspend a task. The WAIT state consists of a
task that is waiting on one or more of the following: time, events, flags, messages, on a
reply, etc.

RESUME state

The RESUME state is treated the same as the READY state. The only difference is that
it informs the scheduler that the task had been started, yet not finished, with its code.
This means that a higher priority task has preempted and forced the original task that
was running to become ready to RESUME, or that the task had suspended itself by a
function call and now has removed itself out of the WAIT (suspended) state into the
ready to RESUME state.

SETTING UP TASKS

Tasks should be coded to perform specific duties. It is up to you to properly create the
tasks to do specific jobs in an orderly fashion. Structuring the individual tasks'
responsibilities in relation to each other, and providing the proper interrupt handling
with respect to other interrupts and tasks is probably the most challenging problem in
writing real-time multi-tasking code.

When beginning a new project and associated application code, you must tell CMX
specific information. This is described briefly here and later in greater detail. Initially,
until the project becomes more defined and near completion, it is recommended that the
values selected are increased over their designed values, so you do not have to change
these parameters constantly.

Some of the information CMX needs to know are:

the number of tasks
the number of cyclic timers
the number of mailboxes
the total number of messages
the number of resources
the stack size for all the tasks
the interrupt stack size
the number of semaphores
the number of queues.
 3

4

THE CMX MULTI-TASKING EXECUTIVE
SETTING UP TASKS
CMX allocates all needed memory before you can enter the operating system. This
saves CPU time when a CMX function is used that involves memory. CMX feels it is
the best way to achieve the fastest possible execution of code. What would the
operating system do if it allocated memory dynamically and found there was no more
memory available? The task would then have to decide how to handle this and always
test whether the CMX function returned indicating that no more memory is available.

For those of you writing part of your application code in "assembly", parameter passing
is done just as the equivalent C code would do. You would compile a function that calls
a CMX function and check the compiler-generated assembly code to call that particular
CMX function.

CMX highly recommends you read the complete manual and any additional
CMXREAD.DOC files that may be supplied before trying to interface with CMX. You
should realize there will be a "learning curve" as with any new software. The more you
work with it, the better you will understand the CMX software and how to incorporate
it into your application code.

THE CMX MULTI-TASKING EXECUTIVE

CMX RETURN STATUS BYTE VALUES
CMX RETURN STATUS BYTE VALUES

Some functions, such as K_Mesg_Get, may return a NULL pointer if there is no
message available. This indicates a possible warning/error to the caller, for NO
message was retrieved. In some cases a return value of zero indicates the CMX
function is telling the caller the item it wanted was not there or a time out occurred.

CMX DATA TYPES

CMX has declared the following data type names within the cxdefine.h header file.
There are a few listed here. These may possibly change depending on the processor and
C vendor that you are working with. Look at the cxdefine.h file, to see the ones
pertinent to your processor and C vendor.

typedef unsigned char byte
typedef unsigned short word16
typedef unsigned short bit_word16
or
typedef unsigned int bit_word16
typedef signed short sign_word16
typedef unsigned long word32

Symbol Hex Value Explanation

K_OK 00 Good CMX call was successful

K_TIMEOUT 01 Warning
or Error

Time out occurred

K_NOT_WAITING 02 Error Task not waiting for wake
request

K_RESOURCE_OWNED 05 Error Resource is already
"owned"

K_RESOURCE_NOT_OWNED 06 Error Resource not owned by
calling task

K_QUE_FULL 0A Warning Queue now full, slot was
added

K_QUE_EMPTY 0B Warning Queue now empty, slot was
removed

K_SEMAPHORE_NONE 0C Error Semaphore is not available

K_ERROR FF Error General error, CMX call
unsuccessful
 5

6

THE CMX MULTI-TASKING EXECUTIVE
LAYOUT OF THE FUNCTIONS
LAYOUT OF THE FUNCTIONS

Within each function, we will describe in detail the purpose of that particular function.
Explained will be the parameter declarations, if any, the functions’s return type, if any
and any other useful information. Also within each function section, will be the
following:

Called

Before entering RTOS, Tasks, Interrupts.

[Before entering RTOS] means the call may be used prior to entering the CMX
operating system. [Tasks] mean a task may use this CMX call. [Interrupts] mean
interrupts may use this CMX call INDIRECTLY.

☞ The K_OS_Init function must be called before any CMX function call may be used.

The user will then see what header files are needed that identify the function prototypes.
Also the parameters needed will be shown in an example style, with a brief commented
description, followed by the function prototype, with the respective example
parameters used within the function prototype. An example is below.

#include <cxfuncs.h> /* has function prototype */

Many of the parameters passed are of constant value, so we have used #defines to
identify them, with 3 question marks (i.e. ???), indicating the value would need to be
selected by the user. Also we have tried to use descriptive words to indicate the meaning
of the particular parameter. You may choose any text you like for the name of a
parameter, but we recommend that it be meaningful.

#define PRIORITY ???

unsigned char TASK_SLOT; /* should be global */

void TASK(void); /* prototype of task function */

#define STACK_SIZE ???

unsigned char STATUS; /* should be local */

STATUS = K_Task_Create(PRIORITY,&TASK_SLOT,TASK,STACK_SIZE);

Passed

This will identify each of the parameters that this function will be passed and what they
indicate.

PRIORITY is the priority for this task. The lower the number the higher the priority.

THE CMX MULTI-TASKING EXECUTIVE

LAYOUT OF THE FUNCTIONS
&TASK_SLOT is the address where CMX will put task slot number. Must be used for
all references to this task.

TASK is the address where the task resides in code. When task begins execution, this
is where CMX will vector to.

STACK_SIZE is the number of bytes set aside for this task stack area. You must make
sure the stack size is large enough for all the levels of nesting, and the depth of one
interrupt.

Returned

This will identify the return-type of this function and what it indicates.

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: no free task control block available.

If STATUS equals K_OK, then TASK_SLOT contains the task identification number
assigned by CMX. This identification number must be used for all CMX function calls
that deal with this task.

Example

We will then provide one or more examples of using the function and a comment on
how we are using it.

The following is an example for creating a task to the RTOS.

void task1(void); /* function prototype, show that task1 does not receive nor return
parameters */

unsigned char task1_slot; /* create storage for CMX to return task1 slot number */

void main(void)
{
unsigned char status; /* create a local status byte */
status = K_Task_Create(5,&task1_slot,task1,128);

/* call CMX function K_Task_Create with task1 having a priority
of 5, the address for storage of task1 slot number, the address
of task1, and finally a stack size of 128 bytes */

if (status != K_OK) /* check status, make sure good function
call */
{
error_handler(); /* go to error handler */
 7

8

THE CMX MULTI-TASKING EXECUTIVE
TASK MANAGER FUNCTIONS
}
}

There may or may not be an additional comment field as shown below. The comment
field is to reinforce what we are trying to do with the function.

Comments

CMX returns the status of the K_Task_Create function call indicating whether the call
was successful or not. If the status is good then the slot number returned must be used
from now on for any CMX function calls dealing with this task. Usually this slot
number will be stored in external RAM. When a task is created, CMX puts the task into
the IDLE state. This means that the task is loaded but will never RUN until started.

TASK MANAGER FUNCTIONS

The task manager is part of the CMX library and provides the necessary functions for
controlling your tasks. The task manager functions are listed below along with their
reference pages.

K_Task_Create (Page 8)
K_Task_Create_Stack (Page 11)
K_Task_Start (Page 14)
K_Task_Priority (Page 16)
K_Task_Wait (Page 17)
K_Task_Wake (Page 19)
K_Task_Wake_Force (Page 21)
K_Task_Lock (Page 22)
K_Task_Unlock (Page 23)
K_Task_Coop_Sched (Page 24)
K_Task_End (Page 25)
K_Task_Delete (Page 27)
K_Task_Name (Page 28)

The K_Task_Create function

The CMX K_Task_Create function is used to create a task. You can create a task
before entering the CMX operating system or dynamically while running under the
CMX operating system. For maximum speed and because you may know ahead of time
what tasks will be needed, it is highly recommended that the tasks be created before
entering RTOS. The creation tells CMX where the task's execution code resides in
ROM, the stack size for this task (each task may have a different size stack), the priority
of this task, and the address of the slot number CMX assigns for this task.

The parameters you need to send are the following.

THE CMX MULTI-TASKING EXECUTIVE

TASK MANAGER FUNCTIONS
The priority for this task. Priority numbers may range from zero to 254. The priority
tells CMX the order in which to run tasks when they become READY. The lower the
number, the higher the priority. At rescheduling the highest priority task (lowest
priority number) that is READY to run becomes the RUNNING task. If tasks have the
same priority then it is determined by the order of creation, the first task created with
the same priority as another task created later is given the first option to run, then the
later one. The priority also is used by the CMX time slicing mechanism. Tasks will be
time sliced, starting with tasks with the same or lower priority as the current task, if time
slicing is enabled by calling the K_OS_Slice_On function. See the chapter about time
slicing for more detailed information on time sliced tasks and how they work.

Another parameter is the address of an unsigned character to put the slot number CMX
will assign to this task. The task slot number is used for ALL CMX function calls that
require the task number. It is up to the user to make sure that they do not destroy or
corrupt this slot number. If the task is removed, then the slot number is no longer valid.
If another task is created after a task is removed, then the newly created task may have
the "old" slot number, which the previously removed task had.

The next parameter is the address where the task's code will begin execution. This
address is where CMX will start the task's code when the task switches from the
READY state to the RUNNING state.

The last parameter supplied is the size of the stack for this task. Since insufficient stack
size is one of the most common causes of system crashes and corrupt memory, it is
recommended you double the estimated size. As you become more knowledgeable and
actually test your code, then the size may be reduced. See the chapter on stacks for
more information on how to calculate the size of the stack for a particular task.

This is an example of the K_Task_Create function:

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Create(byte, byte *, K_FP, word16); /* this is the function prototype */

#define PRIORITY ???

unsigned char TASK_SLOT; /* should be global */

void TASK(void); /* prototype of task function */

#define STACK_SIZE ???

unsigned char STATUS; /* should be local */

STATUS = K_Task_Create(PRIORITY,&TASK_SLOT,TASK,STACK_SIZE);
 9

10

THE CMX MULTI-TASKING EXECUTIVE
TASK MANAGER FUNCTIONS
Passed

PRIORITY is the priority for this task. The lower the number the higher the priority.

&TASK_SLOT is the address where CMX will put task slot number. Must be used for
all references to this task.

TASK is the address where the task resides in code. When task begins execution, this
is where CMX will vector to.

STACK_SIZE is the number of bytes set aside for this task stack area. You must make
sure the stack size is large enough for all the levels of nesting, and the depth of one
interrupt.

void task1(void); /* function prototype, show that task1 does not receive nor return
parameters */

unsigned char task1_slot; /* create storage for CMX to return task1 slot number */

void main(void)
{
unsigned char status; /* create a local status byte */

status = K_Task_Create(5,&task1_slot,task1,128);

/* call CMX function K_Task_Create with task1 having a priority
of 5, the address for storage of task1 slot number, the address
of task1, and finally a stack size of 128 bytes */

if (status != K_OK) /* check status, make sure good function
call */
{
error_handler(); /* go to error handler */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: no free task control block available.

If STATUS equals K_OK, then TASK_SLOT contains the task identification number
assigned by CMX. This identification number must be used for all CMX function calls
that deal with this task.

THE CMX MULTI-TASKING EXECUTIVE

TASK MANAGER FUNCTIONS
CMX returns the status of the K_Task_Create function call indicating whether the call
was successful or not. If the status is good then the slot number returned must be used
from now on for any CMX function calls dealing with this task. Usually this slot
number will be stored in external RAM. When a task is created, CMX puts the task into
the IDLE state. This means that the task is loaded but will never RUN until started.

The K_Task_Create_Stack function

The CMX K_Task_Create_Stack function is used to create a task. The main difference
between this create task function and the K_Task_Create function, is that you pass the
address of the task’s stack address to the K_Task_Create_Stack function versus the size
of the how much stack space is required when you use K_Task_Create function. When
you use the K_Task_Create function and ’kill’ a task, the stack space does not get
reclaimed. Thus if you created and killed a fair number of tasks, then you would most
likely run out of stack space. The new K_Task_Create_Stack function avoids this, for
now you can use memory allocation functions to gain and then free stack space needed
for many tasks. This function is very useful for embedded systems that may run a TCP/
IP stack, where multiple clients may need servicing. This way you can allocate stack
space when needed when creating a new task and when that task is no longer needed,
you can then kill it and reclaim that stack space. You can create a task before entering
the CMX operating system or dynamically while running under the CMX operating
system. The creation tells CMX where the task's execution code resides in ROM, the
stack starting address, the priority of this task, and the address of the slot number CMX
assigns for this task.

The parameters you need to send are the following.

The priority for this task. Priority numbers may range from zero to 254. The priority
tells CMX the order in which to run tasks when they become READY. The lower the
number, the higher the priority. At rescheduling the highest priority task (lowest
priority number) that is READY to run becomes the RUNNING task. If tasks have the
same priority then it is determined by the order of creation, the first task created with
the same priority as another task created later is given the first option to run, then the
later one. The priority also is used by the CMX time slicing mechanism. Tasks will be
time sliced, starting with tasks with the same or lower priority as the current task, if time
slicing is enabled by calling the K_OS_Slice_On function. See the chapter about time
slicing for more detailed information on time sliced tasks and how they work.

Another parameter is the address of an unsigned character to put the slot number CMX
will assign to this task. The task slot number is used for ALL CMX function calls that
require the task number. It is up to the user to make sure that they do not destroy or
corrupt this slot number. If the task is removed, then the slot number is no longer valid.
If another task is created after a task is removed, then the newly created task may have
the "old" slot number, which the previously removed task had.
 11

12

THE CMX MULTI-TASKING EXECUTIVE
TASK MANAGER FUNCTIONS
The next parameter is the address where the task's code will begin execution. This
address is where CMX will start the task's code when the task switches from the
READY state to the RUNNING state.

The last parameter supplied is the stack address for this task. Note that it is up to you to
pass the address of memory, that will be large enough to be used by this task and to
handle the number of nested function calls, locals, saving of registers, etc. Also on most
processors the stack walks downward, so the user must ensure that they pass the stack
address pointing to the ’top’ of the stack space that they have freed up and not the
bottom. Of course if you are using a processor where the stack grows upward, then you
would pass the base address of the stack space. Since insufficient stack size is one of
the most common causes of system crashes and corrupt memory, it is recommended
you double the estimated size. As you become more knowledgeable and actually test
your code, then the size may be reduced. See the chapter on stacks for more
information on how to calculate the size of the stack for a particular task.

This is an example of the K_Task_Create_Stack function:

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Create_Stack(byte, byte *, K_FP, word16); /* this is the function
prototype */

#define PRIORITY ???

unsigned char TASK_SLOT; /* should be global */

void TASK(void); /* prototype of task function */

unsigned ??? STACK_ADDRESS; /* The beginning stack address for this task, must
be aligned to match the stack pointer alignment criteria. */

unsigned char STATUS; /* should be local */

STATUS =
K_Task_Create_Stack(PRIORITY,&TASK_SLOT,TASK,&STACK_ADDRESS);

Passed

PRIORITY is the priority for this task. The lower the number the higher the priority.

&TASK_SLOT is the address where CMX will put task slot number. Must be used for
all references to this task.

THE CMX MULTI-TASKING EXECUTIVE

TASK MANAGER FUNCTIONS
TASK is the address where the task resides in code. When task begins execution, this
is where CMX will vector to.

&STACK_ADDRESS is the task stack. You must make sure the stack memory size
that you have allocated is large enough for all the levels of nesting, and the depth of one
interrupt.

void task1(void); /* function prototype, show that task1 does not receive nor return
parameters */

unsigned char task1_slot; /* create storage for CMX to return task1 slot number */

There are many ways to create a stack for a task, we will show you a few ways. Please
ensure that you pass the top of the memory allocated to the task stack, if the stack
pointer grows downward.

struct {
unsigned int task1_stk[1000];
unsigned int dummy;

} task1_stack;

void main(void)
{
unsigned char status; /* create a local status byte */

status =
K_Task_Create_Stack(5,&task1_slot,task1,task1_stack.dummy);

/* call CMX function K_Task_Create_Stack with task1 having a
priority of 5, the address for storage of task1 slot number,
the address of task1, and finally a stack size of 128 bytes */
if (status != K_OK) /* check status, make sure good function
call */
{
error_handler(); /* go to error handler */
}

}

Another way.

void *alloc;

void main(void)
{
unsigned char status; /* create a local status byte */

if ((alloc = malloc(1000)) != NULL)
{

 13

14

THE CMX MULTI-TASKING EXECUTIVE
TASK MANAGER FUNCTIONS
status = K_Task_Create_Stack(5,&task1_slot,task1,((alloc) +
998));
/* call CMX function K_Task_Create_Stack with task1 having a
priority of 5, the address for storage of task1 slot number,
the address of task1, and finally a stack size of 128 bytes */

if (status != K_OK) /* check status, make sure good function
call */
{
error_handler(); /* go to error handler */
}

}
else
{
Handle memory allocation error
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: no free task control block available.

If STATUS equals K_OK, then TASK_SLOT contains the task identification number
assigned by CMX. This identification number must be used for all CMX function calls
that deal with this task.

CMX returns the status of the K_Task_Create_Stack function call indicating whether
the call was successful or not. If the status is good then the slot number returned must
be used from now on for any CMX function calls dealing with this task. Usually this
slot number will be stored in external RAM. When a task is created, CMX puts the task
into the IDLE state. This means that the task is loaded but will never RUN until started.

The K_Task_Start function

Since the K_Task_Create function puts a task into the IDLE state when created, this
function allows a task to be started. This function may be called anytime. The
K_Task_Start function really puts the task into the READY state allowing it to become
the RUNNING task when it is the highest priority task ready to run. If the task was
IDLE, then the task becomes READY, however not necessarily the RUNNING task.
Once a task is out of the IDLE state any additional K_Task_Start calls to this task are
queued up to a maximum of 255.

THE CMX MULTI-TASKING EXECUTIVE

TASK MANAGER FUNCTIONS
When the task normally ends its code and puts itself back into the IDLE state, if there
are any outstanding start requests then the task will automatically put itself back into
the READY state. The task's slot number is passed to this function indicating which
task to start. This function can be called before entering the CMX operating system,
while in the operating system, and by interrupts. The maximum number of
K_Task_Start calls that any one task will queue up is 255.

This is an example of the K_Task_Start function:

Called

Before entering RTOS, tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Start(byte); /* this is the function prototype */

unsigned char TASK_SLOT; /* global, declared earlier */

unsigned char STATUS; /* should be local */

STATUS = K_Task_Start(TASK_SLOT);

Passed

TASK_SLOT is the name where the particular task's slot number (I.D. number) resides.

unsigned char task1_slot; /* defined earlier, contains task 1 slot number */

void task2(void)
{
unsigned char status;
status = K_Task_Start(task1_slot); /* start task 1, put into
READY state if this is the first trigger */
if (status != K_OK) /* check status, make sure good function
call */
{
error_handler(); /* go to error handler */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.
 15

16

THE CMX MULTI-TASKING EXECUTIVE
TASK MANAGER FUNCTIONS
K_ERROR = Error: the task identification number does not exist.

If STATUS equals K_OK, then the task is put into the READY state. If it is in the
READY state already, then the trigger will be put into the task's trigger queue.

Again the status is passed back indicating whether the CMX K_Task_Start call was
successful or not. If the task being started has a higher priority (lower priority number)
than the task that is currently RUNNING, then an immediate task switch will occur,
bypassing the normal rescheduling caused by the system tick.

The K_Task_Priority function

The K_Task_Priority function changes a task’s priority. This function may be called
any time. You will send two parameters: the slot number of the task you want to change
and the new priority for this task. The task must have been created or an error will be
returned.

This is a useful function if the task has a low priority in contrast to other tasks, yet when
it becomes the RUNNING task, its priority must become higher. Also you may
dynamically change priorities of tasks according to conditions created by task processes
and outside variables processed. In a well-designed system, this function will be called
very little or not at all.

If the new priority is the greater than the priority of the current task and time slicing is
enabled, then the task will become a time sliced task and time slicing will continue
starting with the new priority. See the Time Slice Chapter for more details on time
slicing and how it is incorporated and used by the CMX operating system.

This is an example of the K_Task_Priority function:

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Priority(byte,byte); /* this is the function prototype */

unsigned char TASK_SLOT; /* global, declared earlier */

#define NEW_PRIORITY ???

unsigned char STATUS; /* should be local */

STATUS = K_Task_Priority(TASK_SLOT,NEW_PRIORITY);

Passed

TASK_SLOT is the name where the particular task's slot number resides.

THE CMX MULTI-TASKING EXECUTIVE

TASK MANAGER FUNCTIONS
NEW_PRIORITY is the new priority for the task. The lower the number, the higher
the priority The value may range from zero to 254.

unsigned char task1_slot; /* defined earlier, contains task 1 slot number */

void task2(void)
{
unsigned char status;

status = K_Task_Priority(task1_slot,3); /* change task1
priority from 5 to 3 */

if (status != K_OK) /* check status, make sure good function
call */
{
error_handler(); /* go to error handler */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task I.D. number does not exist.

If STATUS equals K_OK, then the task has the new priority for its priority. Note that
the new priority will become effective immediately but will not cause a rescheduling.

The K_Task_Wait function

The K_Task_Wait function enables a task to suspend itself for a specified amount of
time or indefinitely. This function allows a task to become synchronized with another
task, interrupts, or the system tick. Letting the task suspend itself for a specified period,
knowing that the task will RESUME when the time expires, can be very useful. This
function also allows a task to wait with or without a time period for an interrupt to wake
it, notifying the task that an event has happened. (The event manager handles multiple
events per task. This is described fully later). Only tasks may call this function.

The amount of time, which is a multiple of system ticks, is passed to this function. This
value is the number of system ticks you want the task suspended for. The amount of
time may be from zero to 65535 (zero to FFFF hex). A time period of zero will result
in the task waiting indefinitely until the K_Task_Wake or K_Task_Wake_Force
function is used to wake this task.
 17

18

THE CMX MULTI-TASKING EXECUTIVE
TASK MANAGER FUNCTIONS
The task will automatically suspend itself for a specified time period (if non zero) and
then become READY to RESUME execution at the end of this time. The
K_Task_Wake or K_Task_Wake_Force function may be called to wake this task earlier
than the time specified. This will be reported by a returned status byte. If the
K_Task_Wake function was used, the task that had been waiting will be returned a
K_OK status, since the ’time-out’ did not occur. If the K_Task_Wake_Force function
was used, the task that had been waiting will be returned a K_ERROR status, since the
task was forcefully woken. Remember that other tasks and interrupts may use the
K_Task_Wake or K_Task_Wake_Force function to wake this task.

The accuracy of this call is a derivative of the system tick specified. For example, say
you have created a 20 millisecond system tick. If the task requests 10 system ticks, and
calls K_Task_Wait, the following will happen. The time period is decremented at every
system tick. When the time becomes zero, then the task is automatically put into the
READY to RESUME execution state. You can see, depending on when the task calls
K_Task_Wait in relation to the system tick, the task will wait anywhere from 180
milliseconds to 200 milliseconds.

This is an example of the K_Task_Wait function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Wait(word16); /* this is the function prototype /*

#define TIME_CNT ???

unsigned char STATUS; /* should be local */

STATUS = K_Task_Wait(TIME_CNT);

Passed

TIME_CNT is number of system ticks that this task will suspend itself. If the value is
zero then the task will be suspended indefinitely until the K_Task_Wake function is
used. If the value is non-zero, then the task will be suspended for that number of system
ticks. The K_Task_Wake function may be used prior to the time period expiring, to
wake this function and put it back into the READY state. The maximum value that
TIME_CNT may be is 65535.

void task2(void)
{
unsigned char status;

status = K_Task_Wait(100); /* set task2 to wait for 100 system
ticks */

THE CMX MULTI-TASKING EXECUTIVE

TASK MANAGER FUNCTIONS
if (status != K_OK) /* check status, make sure task was woken
up before time elapsing */
{
/* maybe take corrective action if the time period expired,
unless the task wanted to be synchronous with the system tick
*/
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task identification number does not exist.

K_TIMEOUT = Warning: the time specified has elapsed or the K_Task_Wake_Force
function was used to wake this task.

If STATUS equals K_OK, then the task has RESUMED execution because the
K_Task_Wake function was used to wake this task. If STATUS equals K_TIMEOUT,
then the time period specified has expired or K_Task_Wake_Force and this is why the
task was awakened.

The status returned by this function will indicate that either the time period specified (if
non zero) has elapsed, or that the task was awakened before the time period specified
by the K_Task_Wake or K_Task_Wake_Force functions.

The K_Task_Wake function

The K_Task_Wake function wakes a task that had put itself into the suspended state.
Tasks and interrupts may call this function. The caller sends the task's slot number to
the K_Task_Wake function. This function then takes the task and places it into the
READY to RESUME execution state.

Note that the awakened task might not immediately become the RUNNING task
because of its priority. If the task's priority is higher than the current RUNNING task,
then an immediate task switch will occur regardless of the system tick.

This is an example of the K_Task_Wake function:

Called

Tasks and interrupts.

✗ WARNING: This function does not test to see if the caller is
a task or not, so make sure that only tasks call this function.
 19

20

THE CMX MULTI-TASKING EXECUTIVE
TASK MANAGER FUNCTIONS
☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Wake(byte); /* this is the function prototype */

unsigned char TASK_SLOT; /* global, declared earlier */

unsigned char STATUS; /* should be local */

STATUS = K_Task_Wake(TASK_SLOT);

Passed

TASK_SLOT is the name where the particular task's slot number resides.

unsigned char task1_slot; /* defined earlier, contains task 1 slot number */

void task2(void)
{
unsigned char status;

status = K_Task_Wake(task1_slot); /* wake task 1 up */

if (status != K_OK) /* check status, make sure task was waiting
*/
{
/* maybe take corrective action if task 1 wasn't waiting */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task identification number does not exist.

K_NOT_WAITING = Error: the task specified was not waiting.

If STATUS equals K_OK, then the task specified has been "awakened" and put into the
READY state. If STATUS equals K_NOT_WAITING, then the task specified was not
waiting for this function call.

THE CMX MULTI-TASKING EXECUTIVE

TASK MANAGER FUNCTIONS
The K_Task_Wake_Force function

The K_Task_Wake_Force function closely resembles the K_Task_Wake function. It is
used to forcefully wake a task that is suspended in the wait state. If you want a task to
terminate its wait earlier than indicated by the function call, then you can use this
function. The K_Task_Wake_Force function can be called by tasks and interrupts and
should never be used except in certain circumstances and emergencies.

The difference between the K_Task_Wake and K_Task_Wake_Force functions is that
the K_Task_Wake function will only wake a task if it is waiting on time or indefinitely.
The K_Task_Wake_Force will wake a task regardless of what it is waiting for.

A task that had called the K_Task_Wait, K_Event_Wait, K_Mesg_Wait,
K_Resource_Wait, or K_Mesg_Send_Wait functions will be put into the wait state if the
entity it is ’waiting’ for, is not present. This means the task is suspended and will not
run again until the required action for the particular function call takes place or a time
out occurs.

This is an example of the K_Task_Wake_Force function:

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Wake_Force(byte); /* this is the function prototype */

unsigned char TASK_SLOT; /* global, declared earlier */

unsigned char STATUS; /* should be local */

STATUS = K_Task_Wake_Force(TASK_SLOT);

Passed

TASK_SLOT is the name where the particular task's slot number resides.

unsigned char task1_slot; /* defined earlier, contains task 1 slot number */

void task2(void)
{
unsigned char status;

status = K_Task_Wake_Force(task1_slot); /* forcefully wake
task 1 up */
 21

22

THE CMX MULTI-TASKING EXECUTIVE
TASK MANAGER FUNCTIONS
if (status != K_OK) /* check status, make sure task was waiting
*/
{
/* maybe take corrective action if task 1 wasn't waiting */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task identification number does not exist.

K_NOT_WAITING = Error: the task specified was not waiting.

If STATUS equals K_OK, then the task specified has been "awakened" and put into the
READY state. If STATUS equals K_NOT_WAITING, then the task specified was not
waiting for this function call.

The K_Task_Lock function

The K_Task_Lock function is very powerful and great care must be used if this function
is called. This function raises the privilege flag for the task that calls it. When the
privilege flag is raised, the task owns all the CPU time; even if a higher priority task can
run, it will not.

The task that owns the privilege flag should never suspend itself for any reason, because
the system would not allow any other task to run. The task that called K_Task_Lock is
the only task that may lower the privilege flag. If the privilege flag is raised, interrupts
will still be processed and the system tick will still occur, but the CMX timer task
(which decrements the task's timers and executes timed procedures) will be delayed
until the task calls the K_Task_Unlock function which lowers the privilege flag.

Be aware that all tasks' time-outs will not be decremented and tested until the timer task
runs. The interrupts are still processed normally, but the interrupt pipe contents, if any,
will not be executed. The big difference is that when the CMX scheduler would
normally start another task of higher priority that is READY to run, this will not
happen. This function should be used very sparingly or not at all. This function may
be called only by tasks.

This is an example of the K_Task_Lock function:

✗ WARNING: This function should not be used except in
emergencies. A well designed system will very rarely need to
use this call, if at all.

THE CMX MULTI-TASKING EXECUTIVE

TASK MANAGER FUNCTIONS
Called

Tasks only.

#include <cxfuncs.h> /* has function prototype */
void K_Task_Lock(void); /* this is the function prototype */

K_Task_Lock();

Passed

Nothing is passed. Only tasks can call this function.

void task2(void)
{
K_Task_Lock(); /* task 2 will raise the privilege flag
therefore owning all the CPU time, no scheduling will take
place */

/* perform code, don't suspend task */

K_Task_Unlock(); /* lower the privilege flag*/
}

Returned

No status is returned.

☞ The CMX timer task (which executes cyclic timers and handles the tasks timers) will not
execute when the privilege flag is raised.

The K_Task_Unlock function

This function lowers the privilege flag. Only the task that called K_Task_Lock, which
raised the privilege flag, may call this function. Once the privilege flag is lowered, the
CMX scheduler acts normally again.

This is an example of the K_Task_Unlock function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Task_Unlock(void); /* this is the function prototype */

✗ WARNING: This function does not test to see if the caller
is a task or not.
 23

24

THE CMX MULTI-TASKING EXECUTIVE
TASK MANAGER FUNCTIONS
K_Task_Unlock();

Passed

Nothing is passed. Only tasks can call this function.

void task2(void)
{
K_Task_Lock(); /* raise the privilege flag*/

/* application code here */

K_Task_Unlock(); /* task 2 will lower the privilege flag
therefore allowing normal scheduling to take place */

}

Returned

No status is returned.

The K_Task_Coop_Sched function

The K_Task_Coop_Sched function does a cooperative rescheduling. Normally CMX
reschedules when a higher priority task is READY to run. If a task calls this function
then CMX schedules the next task that is READY to run despite its priority.

This allows a task to let another task of the same or lower priority become the
RUNNING task (if the task is READY). The task that calls this function will
immediately be placed into the READY to RESUME state. In most cases, this function
would not be used because the operating system is based on preemption (meaning the
highest priority task that can run is the RUNNING task). The task could call the
K_Task_Wait function specifying a time out period of one, which would let another task
with the same priority as the calling task become the RUNNING task. Only tasks
should call this function.

This is an example of the K_Task_Coop_Sched function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Task_Coop_Sched(void); /* this is the function prototype */

✗ WARNING: This function does not test to see if the caller
is a task or not, so you must ensure that only tasks call
this function.

THE CMX MULTI-TASKING EXECUTIVE

TASK MANAGER FUNCTIONS
K_Task_Coop_Sched();

Passed

Nothing is passed. Only tasks can call this function.

void task2(void)
{
/* application code here */
K_Task_Coop_Sched(); /* allow a rescheduling now, do not wait
for normal preemption to perform a normal scheduling, NOTE:
task context is saved completely and will RESUME when task is
highest priority READY to run */

}

Returned

No status is returned.

The K_Task_End function

This function allows a task to terminate itself either prematurely or at the end of its
code. The K_Task_End function MUST be called by all tasks that normally would hit
their "end brace". If a task calls this function before its end brace, then all variables,
pushes and calls on the stack will be forgotten. This function is also useful for exiting
out of a serious or nonrecoverable error. The task could first pass a message to another
task with the message saying what task and what type of error and then call
K_Task_End.

When the K_Task_End function is called, the task is automatically terminated, resetting
its stack pointer and code pointer to the task's beginning. The task is still able to execute
whenever it is started again or if there were additional starts (see K_Task_Start
function) in the start queue. Only tasks should call this function. If there are additional
starts in the task's start queue, the task will automatically be placed into the READY
state, and may again immediately be the RUNNING task, if it’s the highest priority task
READY to run.

☞ If, because of an indefinite while statement, the task never hits its end brace, then the task
does not need the K_Task_End function call at the task's end brace.

If a task about to call the K_Task_End function retrieved a message from a mailbox and
the sending task used the K_Mesg_Send_Wait function (indicating that it is waiting for
the K_Mesg_Ack_Sender call) you must remember to call the K_Mesg_Ack_Sender
function (which wakes the task that sent the message), before calling K_Task_End.

This is an example of the K_Task_End function:
 25

26

THE CMX MULTI-TASKING EXECUTIVE
TASK MANAGER FUNCTIONS
Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Task_End(void); /* this is the function prototype */

K_Task_End();

Passed

Nothing is passed. Only tasks can call this function.

void task2(void)
{
..../* application code here */

K_Task_End(); /* MUST be the last C statement before the task's
end brace */

}

OR

void task2(void)
{
..../* application code here */

if (???) /* serious error or non recoverable */
{
K_Task_End(); /* End task 2, because of serious or non-
recoverable error */
}

..../* more code here */
K_Task_End(); /* normal exit function here */

}

Or if a task is never going to hit its end brace, such as below.

void task2(void)
{
while(1)
{
..../* application code here */
}

/* K_Task_End function NOT NEEDED here */
}

Returned

No status is returned.

THE CMX MULTI-TASKING EXECUTIVE

TASK MANAGER FUNCTIONS
☞ An immediate rescheduling (with possibly this task executing from its beginning brace) will
occur when this function is called. If the task has additional trigger (K_Task_Start)
requests, then the task will be put into the READY state, otherwise the task will become
IDLE. Remember, all local variables will be lost. Other tasks may be waiting for this task
to use a CMX function call to wake it. A task that owns a resource should never call this
function before releasing the resource.

The K_Task_Delete function

This function gives you the ability to remove a task permanently from the task control
block queue. The calling task will send the slot number of the task to be removed (it
may send its own slot number if desired) to the K_Task_Delete function.

If the task requested to be removed is waiting, then no removal will take place and an
error status will be returned. If the task is not waiting, then the task will be completely
removed. This task will never run again and any further request to this task will result
in an error status being returned to caller.

If the task calling the K_Task_Delete function is trying to remove itself, then it will be
removed and an immediate task switch will occur. Please note: all tasks waiting on the
removed task will not be notified when the task is removed and may wait forever. For
example: if task 1 has sent a message to task 2 using the K_Mesg_Send_Wait function
and task 2 is removed by task 3 before task 2 calls the K_Mesg_Ack_Sender function
(waking up task 1), then task 1 will wait forever. To avoid this, you could use the
K_Task_Wake_Force function to forcefully wake task 1.

 This is an example of the K_Task_Delete function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Delete(byte); /* this is the function prototype */

unsigned char TASK_SLOT; /* global, declared earlier */

unsigned char STATUS; /* should be local */

STATUS = K_Task_Delete(TASK_SLOT);

✗ WARNING: ALL tasks must call this function prior to
executing their right-end brace. If the task will never, for
whatever reason, execute its end brace, then this function
does not have to be called. It is highly recommended that
all tasks have this function.
 27

28

THE CMX MULTI-TASKING EXECUTIVE
TASK MANAGER FUNCTIONS
Passed

TASK_SLOT is the name where the particular task's slot number resides.

unsigned char task2_slot; /* defined earlier, contains task 2 slot number */

void task2(void)
{
/* application code here */
K_Task_Delete(task2_slot); /* remove task 2, any further
reference to task 2 will be in error */

}

Returned

STATUS returned is one of the following:

☞ Only if the task is not removing itself

K_OK = Good: function call was successful.

K_ERROR = Error: the task identification number does not exist or the task was in the
WAIT state.

If STATUS equals K_OK, then the task has been removed successfully. If the task is
removing itself, then an immediate task switch will occur.

The K_Task_Name function

This function gives you the ability to name a task, thus helping the user to know the
name of the task, when working with CMX add on modules, such as CMXBug and/or
CMXTracker. The function is called with the slot number of the task to be named and
a pointer to the task’s name that the user wants to name it. Note that the tasks name can
be as long as the user would like, but only the first 12 characters of the task’s name will
be displayed by CMXBug and CMXTracker. This is an example of the K_Task_Name
function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Name(byte, char *); /* this is the function prototype */

✗ WARNING: Make sure the task about to be removed does not
own a resource. This function does not test to see if a task is
calling it so you must also ensure only tasks call this function.

THE CMX MULTI-TASKING EXECUTIVE

EVENT MANAGER FUNCTIONS
unsigned char TASK_SLOT; /* global, declared earlier */

char *TASK_NAME; /* The address of the user defined task name */

unsigned char STATUS; /* should be local */

STATUS = K_Task_Delete(TASK_SLOT,TASK_NAME);

Passed

TASK_SLOT is the name where the particular task's slot number resides.

TASK_NAME is the address of where the user defined task name resides in memory.
Note that the name may be any number of characters, but only the first 12 characters of
the task’s name will be shown by CMXBug and CMXTracker.

unsigned char task2_slot; /* defined earlier, contains task 2 slot number */

void task2(void)
{
/* application code here */
K_Task_Name(task2_slot,"TASK2"); /* Name task 2, utilized by
CMXBug and CMXTracker when displaying tasks */

}

Returned

STATUS returned is one of the following:

☞ Only if the task is not removing itself

K_OK = Good: function call was successful.

K_ERROR = Error: the task identification number does not exist or the task was in the
WAIT state.

If STATUS equals K_OK, then the task has been successfully named.

EVENT MANAGER FUNCTIONS

The event manager is part of the CMX library and provides the necessary functions for
controlling events. The event manager functions are listed below along with their page
references.

K_Event_Wait (Page 30)
K_Event_Signal (Page 34)
K_Event_Reset (Page 39)
 29

30

THE CMX MULTI-TASKING EXECUTIVE
EVENT MANAGER FUNCTIONS
The CMX event functions are very sophisticated and powerful, yet easy to use. Each
task has 16 events. Each event is considered a bit, with the bit capable of being either
set or cleared. An event, or bit, that is set, indicates the event occurred. Tasks can wait
on any combination of events. When any event the task is waiting on occurs, the task
is awakened and notified which event occurred. Also, a task can specify a time-out
period to wait for, or to wait indefinitely.

The task can specify the event it is waiting for be automatically cleared prior to waiting
for that event (which means the task will become suspended), automatically cleared
after the event occurred, and the task is awakened, or not cleared at all. Tasks also can
call a function that will reset an event at any time.

The signaling of an event is very flexible and can be done by tasks, interrupts, cyclic
timers and mailboxes. You can specify to set an event in seven different ways:

a specific task
the highest priority task
the highest priority task that is waiting for this event
all tasks
all tasks waiting on this event
all tasks with the same priority
all tasks with the same priority waiting on this event.

The K_Event_Wait function

This function allows a task to wait for specific events with a specified time out if so
desired. This function is very flexible and powerful because it allows a task to wait for
one or more events to happen. It also allows the task to specify a certain amount of time
it is willing to wait, so it can take corrective action if the events do not become set.
Also, the clear mode command offers the task the ability to be truly synchronized or not
with respect to the entities that may set an event such as other tasks, mailboxes, cyclic
timers and interrupts.

The task supplies the K_Event_Wait function with three parameters:

1.) the event(s) to wait on

2.) the command whether to automatically clear the event(s) the task wants to wait on
prior to testing, after the event(s) happen, both prior and after or not at all

3.) A time period indicating whether to wait for a certain amount of time or indefinitely
for a match. A time period of zero means that the task will wait indefinitely for the
event(s) to occur.

THE CMX MULTI-TASKING EXECUTIVE

EVENT MANAGER FUNCTIONS
The specified events are tested when this function is called. If one or more of the events
specified are set when the K_Event_Wait function is called, the task is returned to
immediately identify which of the events are a match (set). If the events are not present
when the task calls this function, then the task will wait for the events. The task will
automatically resume (wake up) when at least one of the specified events is set or the
specified time period expires. Also, the K_Task_Wake_Force function could be used
to forcefully wake this task, without the events being set or the time period expiring.

The clear mode command

The clear mode command has four different possibilities.

A clear mode value of 0 (zero) indicates not to clear the task's event flags at all when
the K_Event_Wait is called and used. This means the task's events will stay in their
present state.

A clear mode value of 1 indicates the K_Event_Wait function will automatically clear
the task's events it is waiting on. This means if the task is about to wait for events 0 and
2, then those events will be cleared prior to testing to see if there is a match. This will
result in the task becoming suspended for there will be no match.

A clear mode value of 2 will have the K_Event_Wait function automatically clear the
events the task is waiting for after there is a match. The task will still be notified what
events became set that the task was waiting for and those event states will be cleared.
Of course if the specified time out period expires or the task is awakened by the
K_Task_Wake_Force function, then the event states will be left as they were, in the
clear state.

A clear mode value of 3 instructs the K_Event_Wait function to perform clear mode
values 1 and 2. This means the events the task is about to wait on will be forced to the
clear state and when the task resumes, because at least one of the events it was waiting
on happened, then those events will be cleared. Clear mode values 1 and 2 are
explained in the above two paragraphs.

Remember, the K_Event_Wait function works and manipulates only the events the
calling task is requesting. This means all of the task's other event states, will be left in
their state. Also remember, each task has 16 events and the K_Event_Wait function will
not manipulate the other task's event states.

Only tasks may call this function. When called, the task will be suspended until the
required match takes place or the time out period expires (if time period was non zero).
When an event becomes set that the task is waiting on, the task will automatically be
put back into the RESUME state, again ready to RESUME running. The value returned
will indicate what events were set that the task was waiting for. Keep in mind that
possibly more than one event may be set and identified to the calling task when the task
resumes. This is because the task may not immediately become the RUNNING task
because of its priority.
 31

32

THE CMX MULTI-TASKING EXECUTIVE
EVENT MANAGER FUNCTIONS
If the time period expires, the task will be placed into the RESUME state and its value
returned to zero indicating a time out occurred. When a time out occurs, it allows the
task to possibly take corrective action because the events did not take place within the
amount of specified time.

If a task calls K_Event_Wait with a clear mode of 0 (zero) or 2, and the event flags are
already set to the specified criteria, then the task will not be suspended. If you want the
task to wait for only one event, then use the K_Task_Wait and the K_Task_Wake
functions. These functions are a little faster in execution time because the
K_Task_Wake function deals with one specific task where as the K_Event_Signal
function could possibly deal with several tasks.

This is an example of the K_Event_Wait function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Event_Wait(word16,word16,byte); /* this is the function prototype */

#define MATCH ???

#define TIME_CNT ???

#define MODE ???

unsigned short EVENTS; /* should be local */

EVENTS = K_Event_Wait(MATCH,TIME_CNT,MODE);

Passed

MATCH is a 16 bit wide parameter indicating the specific events that this task would
like to have set. More than 1 event bit may be specified.

TIME_CNT is the number of system ticks to wait for a match. If the value is 0 then the
task will wait indefinitely for event match. The maximum value is 65535.

MODE is the mode in which this function will clear event bits, when they are set or
become set. The values are below.

0 = do not clear the event bits.

1 = clear the event bit(s) according to the ones set within the MATCH parameter at
BEGINNING of function.

THE CMX MULTI-TASKING EXECUTIVE

EVENT MANAGER FUNCTIONS
2 = clear the event bit(s) according to the ones set within the MATCH parameter at
END of function.

3 = do both modes 1 and 2.

#define TSK2_EVENT1 0x01

#define TSK2_EVENT3 0x04

#define TSK2_EVT1AND3 TSK2_EVENT1 | TSK2_EVENT3

void task2(void)
{
unsigned short events;

/* application code here */
/* NOTE: could use any 1 of 3 ways to identify the events */
events = K_Event_Wait(TSK2_EVENT1 | TSK2_EVENT3,100,2);
events = K_Event_Wait(TSK2_EVT1AND3,100,2);
events = K_Event_Wait(0x05,100,2);
/* task 2 will wait for the events 0 and/or 2 to be set. Task
2 will wait for 100 system ticks for this match to happen. Also
task 2 is requesting that the clear mode command be of value
2, which indicates that the events 0 and 2 will be
automatically cleared when a match happens and the task RESUMES
execution. If the time period expires, then the value returned
to task 2 will be 0, indicating that the time period expired,
prior to the events 0 or 2 being set. */
if (events == 0) /* test to see if error */
{
/* events 0 or 2 did NOT become set, take corrective action,
within the specified time period or the K_Task_Wake_Force
function was used on this task. */
}

else
{
if (events & TSK2_EVENT1)
{
/* application code here for event 0 being set */
}

if (events & TSK2_EVENT3)
{
/* application code here for event 2 being set */
}

}
}

NOTE: you could set up a switch statement by doing the
following */
MASK = 0x0001;
 33

34

THE CMX MULTI-TASKING EXECUTIVE
EVENT MANAGER FUNCTIONS
for (ctr = 0; ctr < 16; ctr++)
{
switch (events & MASK)
{
case 0x0001:
.....
break;
case 0x0002:
.....
break;
case 0x0004:
.....
break;
case 0x0008:
.....
break;
etc....

case 0x8000:
.....
break;
default:
break;
}

MASK = MASK << 1;
}

}

Returned

EVENTS will either contain a zero indicating the time period specified expired before
any of the events the task is waiting on became set, or the specific events that were set
only according to the MATCH parameter.

☞ Remember only events that are selected by the MATCH parameter are worked within this
function. The MODE parameter allows powerful synchronization as to when the task's
events are cleared.

The K_Event_Signal function

The K_Event_Signal function sets a specific event. This can be done in a variety of
modes. This function may be called by tasks, cyclic timers, mailboxes or interrupts.
The caller will select which event, the mode of event set it wants, and the task slot
number or priority, depending upon the mode selected. Some cyclic timer and mailbox
functions use K_Event_Signal to signal that time expired or mail has arrived at the
mailbox, respectively.

THE CMX MULTI-TASKING EXECUTIVE

EVENT MANAGER FUNCTIONS
Only a single event should be set each time by the K_Event_Signal function.
Technically you could call the K_Event_Signal function with more than one event to be
set. CMX recommends that you do not however, because there is rarely any reason to
set more than one event.

Mode values in the K_Event_Signal function

The caller will specify either the task slot number, the priority or an unused value it
wants the K_Event_Signal function to work with, depending upon the mode command.

The caller will also specify the mode of action the K_Event_Signal function will
perform. There are seven different ways the function will work. The mode will specify
one of the following:

A mode value of 0 (zero) sets the specified event of the specified task by passing the
task's slot number. The specified task does not have to be waiting on that event. This
is the fastest, for the K_Event_Signal function does not have to test many variables or
loop. This mode can be used very effectively by interrupts, cyclic timers, and
mailboxes. Mailboxes, however, can only use this mode to notify a particular task that
there are messages (mail) in the mailbox (see Message Management chapter for more
details).

A mode value of 1 sets the highest priority task event. In this mode, the
K_Event_Signal function automatically finds the highest priority task created and sets
the specified event of that task. If two or more tasks have the highest priority, then the
first one created by the K_Task_Create function will have its event set. (Note that the
parameter that normally specifies either the task slot number or priority is not used and
may be any value.)

Mode # Acts On Task slot # or
priority

0 (zero) The Specified task Task slot #

1 Highest priority task Not used

2 Highest priority task waiting on the specified
event

Not used

3 All tasks Not used

4 All tasks waiting on the specified event Not used

5 All tasks with the specified priority Priority

6 All tasks with the specified priority waiting on
the specified event

Priority
 35

36

THE CMX MULTI-TASKING EXECUTIVE
EVENT MANAGER FUNCTIONS
A mode value of 2 indicates that the K_Event_Signal function will find the highest
priority task that is WAITING for this event to be set. This will make the function start
at the highest priority task, test to see if the task is waiting for this event (because the
task used the K_Event_Wait function) and if not will continuously go to the next highest
priority task and perform the test again. When either the task is found (because it is
waiting on the event) or ALL tasks have been tested, then the function will quit. (Again
note that the parameter that specifies the task slot number or priority may contain any
value, for it is not used in this case.)

A mode value of 3 tells the K_Event_Signal function to set the specified event in ALL
tasks. The function will loop through all tasks setting the specified event, regardless of
whether the task is waiting for this event to be set or not. Remember that this will take
a fair amount of time depending upon the number of tasks created. (The parameter that
represents the task slot number or priority is not used and may be any value.)

A mode value of 4 sets the event of all tasks WAITING on this event. The
K_Event_Signal function will loop through testing all tasks. If the task is waiting for
this event, then the task specified event will be set. When the function has tested all
tasks, then it will have finished. (Again the parameter that specifies the task's slot
number or priority is not used in this case and may be any value.)

A mode value of 5 causes the K_Event_Signal function to set the specified event of all
tasks that have the same priority as the one specified. The task slot number or priority
parameter must contain the priority of the tasks the caller would like to have their event
set. The tasks do not have to be waiting for this event to be set. The function will loop
through, testing to see if each task has the same priority as the one specified and if so,
will set that task's specified event. Note that if none of the tasks have the same priority
as the specified priority, then no task will have their event set.

A mode value of 6 indicates that any task with the same specified priority and
WAITING on a specified event, will have its event set. The K_Event_Signal function
will test each task and if it meets the criteria, the task will be put into the READY to
RESUME state.

When the K_Event_Signal function is called, if a task is waiting on the specified event,
and the mode selects this task, then the following will occur. The task that is waiting
on the event, will have its event set. This will then place the task into the READY to
RESUME state, indicating that the task is able to resume its code where it left off. Also,
if the task is just awakened because the event it was waiting on occurred and has a
higher priority than the current RUNNING task, then rescheduling will be done after
the K_Event_Signal function finishes, creating a task switch. If a task is not waiting for
the specified event and has its event set, its state will stay the same.

THE CMX MULTI-TASKING EXECUTIVE

EVENT MANAGER FUNCTIONS
Remember the tasks, cyclic timers, mailboxes or interrupts that calls the
K_Event_Signal function, do not have to know whether any task is waiting for an event
match, or that one or more tasks are waiting on this event. The K_Task_Wait and
K_Task_Wake functions can be used if only single "event" synchronization is needed.
These are slightly faster.

This is an example of the K_Event_Signal function:

Called

Tasks, interrupts, cyclic timers and mailboxes

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Event_Signal(byte, byte, word16); /* this is the function prototype */

#define MODE ???

#define EVENT_TO_SET ???

unsigned char TASK_PRI;

unsigned char STATUS; /* should be local */

STATUS = K_Event_Signal(MODE,TASK_PRI,EVENT_TO_SET);

Passed

MODE is the mode in which this function will determine which tasks to work with. The
values are as below.

Mode Tasks to Work With

0 the specified task

1 highest priority task, excluding CMX timer task

2 highest priority task, that is WAITING for the specified event.

3 all tasks, all tasks created will have this event bit set

4 all tasks WAITING on the specified event

5 all tasks with the specified priority

6 all WAITING tasks with the specified priority and specified event
 37

38

THE CMX MULTI-TASKING EXECUTIVE
EVENT MANAGER FUNCTIONS
☞ The following parameter is not always used depending on the MODE.

TASK_PRI is either the task slot number or the priority in which this function will work
with according to the MODE selected.

EVENT_TO_SET is an unsigned 16 bit wide variable or constant indicating the desired
event bit to set.

#define TSK2_EVENT1 0x01

#define Mode_0 0x00

unsigned char task2_slot

void task1(void)
{
unsigned char status;

/* application code here */
status = K_Event_Signal(Mode_0,task2_slot,TSK2_EVENT1);
/* task 1 will now set task 2's event (really bit 0), does not
care if task 2 is waiting for event or not, if task2 is waiting
on this event, then task 2 will automatically resume. */

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task does not exist if MODE = 0, or the MODE is out of range.

If STATUS equals K_OK, then the function performed as the MODE indicated it
should.

Remember that cyclic timers and mailboxes can be coded to automatically call this
function. Also interrupts may call this function.

The above two functions, K_Event_Wait and K_Event_Signal, allow a task or interrupt
to signal other tasks and interrupts without the calling task or interrupt knowing that a
task is waiting for its signal. For example, if task 1 is waiting for a pneumatic valve to
close to continue its job responsibilities, and task 2 is waiting for task 1 to receive this
signal before task 2 can go any further with its code, then task 2 would call the
K_Task_Wait function, identifying that it will wait indefinitely, until a task or interrupt
wakes it up.

THE CMX MULTI-TASKING EXECUTIVE

EVENT MANAGER FUNCTIONS
Task 1 would then call the K_Event_Wait function indicating a match of the event flag,
meaning the pneumatic valve was closed. This is sensed by an external sensor feeding
its output to an interrupt. When the sensor indicated the valve had closed and generated
an interrupt, the interrupt code could call K_Event_Signal with the proper parameters
to indicate the event had happen and to set an event in task 1.

At the time of the K_Event_Signal call, task 1 would automatically leave the suspended
state and become READY again. Task 1 then could use the K_Task_Wake function to
notify task 2 that it had received the signal and the proper global variables were set up
for task 2 to continue processing. Possibly, if the interrupt did not happen and task 1
had used the time out period of non 0, then at the end of the time period task 1 would
become READY. When the task started RUNNING again it could look at the return
value and if a time out had occurred by the return value being 0 (zero), it could take
corrective action, such as sounding an alarm.

The K_Event_Reset function

The K_Event_Reset function allows a task to clear one or more specific events of a task.
This means that a task can clear another task's specific event or its own. This gives you
the ability to clear events, if not done so with the clear mode command within the
K_Event_Wait function. Note, however, that tasks do not wait on events to become
clear, so the respective task will not know that one of its event states was cleared unless
the task is clearing its own.

This is an example of the K_Event_Reset function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Event_Reset(byte tskid,word16 event); /* this is the function prototype */

unsigned char TASK_SLOT; /* should be global, slot number of task */

unsigned short EVENTS_TO_CLEAR; /* the event bits to clear, or could be a #define

#define EVENTS_TO_CLEAR ??? instead of variable. */

unsigned char STATUS; /* should be local */

STATUS = K_Event_Reset(TASK_SLOT,EVENTS_TO_CLEAR);

Passed

TASK_SLOT is the slot number of the task for which the event bit(s) will be cleared.
 39

40

THE CMX MULTI-TASKING EXECUTIVE
QUEUE MANAGER FUNCTIONS
EVENTS_TO_CLEAR is a unsigned 16 bit wide variable or constant indicating the
desired event bits to clear within this task.

#define TSK1_EVENT1 0x0001

unsigned char task1_slot;

void task1(void)
{
unsigned char status;

status = K_Event_Reset(task1_slot,TSK1_EVENT1);
/* task 1 is requesting to clear its own event bit 0. */

.../* more task 1 code */
K_Task_End(); /* notify CMX that the task is done */

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task does not exist.

If STATUS equals K_OK, then the event bits were cleared according to the
EVENTS_TO_CLEAR parameter passed.

☞ This function clears just the event bits within the task that is being referenced. It does not
change any of the other task event bits.

QUEUE MANAGER FUNCTIONS

The queue manager is part of the CMX library and provides the necessary functions for
controlling queues. The queue manager functions are listed below along with their page
references.

K_Que_Create (Page 41)
K_Que_Reset (Page 43)
K_Que_Add_Top (Page 44)
K_Que_Add_Bottom (Page 46)
K_Que_Get_Top (Page 47)
K_Que_Get_Bottom (Page 49)

THE CMX MULTI-TASKING EXECUTIVE

QUEUE MANAGER FUNCTIONS
The K_Que_Create function

This function is use to create a circular queue. You supply the number of slots or
records for this particular queue. A maximum of 32767 slots per queue is allowed.

Another parameter is the number of bytes to allocate to each slot. You decide on the
size of each slot within this queue. The maximum size of each slot must be no more
than 255 bytes, and the size selected is the size for all the slots within this particular
queue. The K_Que_Create function may be called before entering the CMX operating
system or from within.

You supply the beginning address of external RAM where the queue will reside.

☞ On CPUs that require pointers or integers to reside on an even or odd address, the queue's
address supplied to the K_Que_Create function may have to reside on that particular
address boundary. The number of bytes per slot may also be required to be a multiple of
the alignment size.

The memory needed for a particular queue calling the K_Que_Create function is the
number of slots times the number of bytes per slot. CMX does not test to see if you
have properly allocated the correct number of bytes for this queue. If the queue size is
smaller than the proper calculation of slot size times the number of slots, then unknown
results are possible.

Memory contention is not checked in this function. The system assumes all the
memory needed for this queue is free at all times. This function allows tasks to add and
remove slots to and from the queue at any time.

The queue number, which all queue functions will use, must also be supplied. This is
a number that identifies which queue the function is going to work with, so it may
properly manipulate the CMX queue's structure. This number ranges from zero to one
less than the maximum number of queues told to CMX by your configuration file.

Understand that the queue is maintained with each slot acting as an array of unsigned
characters, allowing the storage for characters, integers, pointers, longs, etc.

If you want to pass a large number of bytes to a queue, it is recommended you pass the
pointers of the source bytes to the queue. This requires the size of the slots be only the
size of a pointer. This will make the queue very fast in execution speed, but then the
storage location of the source bytes can not be used until you have removed that pointer
and used those bytes accordingly.

The slot size may be 20 bytes in length, but not all 20 bytes need be filled each time you
add to this queue. For example, using variable length records, the maximum record
being 19 bytes, you could set up a structure where the first byte would be the number
of bytes for this record (slot) and the remaining bytes be the record bytes. Then you
could pass the address of this structure to add to the queue functions.
 41

42

THE CMX MULTI-TASKING EXECUTIVE
QUEUE MANAGER FUNCTIONS
CMX would copy all 20 bytes, regardless if some of the last few bytes may be
immaterial or belong to another data item. The task receiving the slots from the queue
would test the count byte and work with just the bytes identified. Again make note,
CMX suggests using pointers if at all possible, instead of a large slot size. But there are
times when the data should be truly copied and passed.

This is an example of the K_Que_Create function:

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Create(sign_word16,byte,byte *,byte); /* this is the function prototype */

#define NUM_SLOTS ???

#define SIZE_SLOT ???

#define QUE_NUM ???

unsigned char STATUS;

unsigned char QUE_NAME[NUM_SLOTS * SIZE_SLOT];

/* should be global */

STATUS = K_Que_Create(NUM_SLOTS,SIZE_SLOT, QUE_NAME,QUE_NUM);

Passed

NUM_SLOTS is the number of slots that this particular queue will have and the
maximum is 32767.

SIZE_SLOT is the number of bytes that each slot will hold (size of each slot) within
this queue.

QUE_NAME is the beginning address where this queue will reside in memory.

QUE_NUM is the queue identification number that all queue functions will use in
determining the queue's memory location.

#define QUE1_SLOTS 50 /* this queue will have 50 slots */

#define QUE1_SIZE 10 /* each slot will be 10 bytes in length */

#define QUE1 1 /* identifier, identifies queue number 1, needed for functions, to
identify to CMX with queue to work with. */

THE CMX MULTI-TASKING EXECUTIVE

QUEUE MANAGER FUNCTIONS
unsigned char queue1[QUE1_SLOTS * QUE1_SIZE]; /* allocate storage for queue */

void task2(void)
{
unsigned char status;

/* application code here */
status = K_Que_Create(QUE1_SLOTS,QUE1_SIZE,queue1,QUE1);

/* create a circular queue with 50 slots (records) within this
queue and each slot capable of storing 10 bytes worth of
information. Also pass down the queue beginning address. */

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful, queue created.

K_ERROR = Error: queue number out of range.

☞ Remember that it is up to you to ensure enough memory for this queue exists. No memory
contention is tested for.

The K_Que_Reset function

The K_Que_Reset function is used to reset a queue to the empty state. This function
when called will free all used slots, permanently deleting all slots that contained
information. This function may be called by a task.

The only parameter the K_Que_Reset function needs is the queue identification
number. This number ranges from zero to one less than the maximum number of
queues that CMX was told.

This is an example of the K_Que_Reset function:

Called

Before entering RTOS and by tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Reset(byte); /* this is the function prototype */

#define QUE_NUM ???

unsigned char STATUS; /* should be local */

STATUS = K_Que_Reset(QUE_NUM);
 43

44

THE CMX MULTI-TASKING EXECUTIVE
QUEUE MANAGER FUNCTIONS
Passed

QUE_NUM is the queue number, which identifies a particular queue, that was created
with the K_Que_Create function. This can be from zero to one less than the maximum
configured.

#define QUE1 1 /* queue 1 identifier */

void task2(void)
{
unsigned char status;
/* application code here */
status = K_Que_Reset(QUE1); /* reset queue1, all slots are now
free */

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: queue was empty, no slot available.

The K_Que_Add_Top function

This function is used to fill the top free slot of a particular queue. The caller sends the
K_Que_Add_Top function the queue number in which they want to add. Also passed
is the source’s beginning address byte resides regardless of what will be copied,
whether it is a byte, integer, pointer, long, etc.

Understand that if you create a queue with a slot size of two bytes, and pass the address
of the long, then just the first two bytes of the long will be copied. In the same respect,
if you pass the address of just a byte, then that byte and the next contiguous byte will
be copied.

The K_Que_Add_Top function takes the next top free slot, if one is available, in this
circular queue and copies the contents from the supplied address into the queue slot
(according to the slot size for that particular queue as supplied by the K_Que_Create
function). This frees your address bytes for other uses.

The K_Que_Add_Top function tests the validity of the queue number and also tests to
see if the queue slot size is greater than zero. If the C compiler zeros out all non-
initalized RAM, this will ensure the queue has been created. The slot used by this
function will always be from the top of the circular queue. Note that the queue will
wrap. Tasks may call this function.

This is an example of the K_Que_Add_Top function:

THE CMX MULTI-TASKING EXECUTIVE

QUEUE MANAGER FUNCTIONS
Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Add_Top(byte,void *); /* this is the function prototype */

#define QUE_NUM ???

unsigned char *SOURCE_POINTER; /* could be local or global depending upon
application and user. */

unsigned char STATUS; /* should be local */

STATUS = K_Que_Add_Top(QUE_NUM,SOURCE_POINTER);

Passed

QUE_NUM is the queue number, which identifies a particular queue, that was created
with the K_Que_Create function. This can be from zero to one less than the maximum
configured.

SOURCE_POINTER is a pointer that should contain the address of the source bytes.

#define QUE1 1 /* queue 1 identifier */

void task2(void)
{
unsigned char status;

status = K_Que_Add_Top(QUE1,"hello world"); /* add this
message to top of queue */

}

Returned

The status of this operation will return one these status codes:

K_OK: good operation, function was successful

K_QUE_FULL: the operation was good and now the queue is full

K_ERROR: an error indicating the queue was full or that the queue number was out of
range or not created.
 45

46

THE CMX MULTI-TASKING EXECUTIVE
QUEUE MANAGER FUNCTIONS
☞ Remember the pointer may point to anything. This may be done by casting, so actually
longs could be passed, other pointers, etc. Remember that it is up to you to ensure that the
queue number to this function is the queue in which they want to add this to, and that the
queue had been created.

The K_Que_Add_Bottom function

This function is used to fill the bottom free slot of a particular queue. The caller sends
to the K_Que_Add_Top function the queue number in which they want to add. Also
passed is the address where the source's beginning byte resides regardless of what will
be copied, whether it is a byte, integer, pointer, long, etc.

Understand that if you create a queue with a slot size of two bytes and pass the address
of the long, then just the first two bytes of the long will be copied. In the same respect,
if you pass the address of just a byte then that byte and the next contiguous byte will be
copied.

The K_Que_Add_Bottom function takes the next bottom free slot, if one is available, in
this circular queue and copies the contents from the supplied address into the queue slot
(according to the slot size for that particular queue as supplied by the K_Que_Create
function). This frees your address bytes for other uses.

The K_Que_Add_Bottom function tests the validity of the queue number. The slot used
by this function will always be from the bottom of the circular queue. Tasks may call
this function.

This is an example of the K_Que_Add_Bottom function:

Called

Before entering RTOS, and by tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Add_Bottom(byte,void *); /* this is the function prototype */

#define QUE_NUM ???

unsigned char *SOURCE_POINTER; /* could be local or global depending upon
application and user. */

unsigned char STATUS; /* should be local */

STATUS = K_Que_Add_Bottom(QUE_NUM,SOURCE_POINTER);

Passed

QUE_NUM is the queue number, which identifies a particular queue created with the
K_Que_Create function. Can be from zero to one less than the maximum configured.

THE CMX MULTI-TASKING EXECUTIVE

QUEUE MANAGER FUNCTIONS
SOURCE_POINTER is a pointer that should contain the address of the source bytes.

#define QUE1 1 /* queue 1 identifier */

void task2(void)
{
unsigned char status;

status = K_Que_Add_Bottom(QUE1,"12345\n"); /* add this message
to bottom of queue */

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: queue was full, no slot available.

K_QUE_FULL = Warning: queue is now full, slot was filled.

If the STATUS equals K_OK, the source contents were copied into the queue slot. This
is also true if the STATUS equaled K_QUE_FULL, indicating that the queue is now
full.

The K_Que_Get_Top function

This function allows a task to remove the contents of a slot from a particular queue. The
slot that the contents will be copied from and returned to the caller is from the very last
top slot filled or used by the K_Que_Add_Top function.

The caller accesses the K_Que_Get_Top function by passing parameters indicating the
queue number and the address where the slot's contents will be copied to. This function
then copies the contents of the last top slot used to the specified address, according to
the slot size of that queue, and releases the slot so it may be used again.

No memory testing is done to insure the address supplied is truly a queue address.

This is an example of the K_Que_Get_Top function:

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Get_Top(byte,void *); /* this is the function prototype */
 47

48

THE CMX MULTI-TASKING EXECUTIVE
QUEUE MANAGER FUNCTIONS
#define QUE_NUM ???

unsigned char *DEST_POINTER; /* could be local or global depending upon
application and user. */

unsigned char STATUS; /* should be local */

STATUS = K_Que_Get_Top(QUE_NUM,DEST_POINTER);

Passed

QUE_NUM is the queue number, which identifies a particular queue, that was created
with the K_Que_Create function. This can be from zero to one less than the maximum
configured.

DEST_POINTER is a pointer that should contain the address where the slot bytes will
be copied to in memory.

#define QUE1 1

void task2(void)
{
unsigned char status;
unsigned char dest[20]; /* create area that will obtain
contents from queue */

status = K_Que_Get_Top(QUE1,dest); /* remove the contents from
last top slot filled (used) */

..../* process contents of dest */
}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: queue was empty, no slot available.

K_QUE_EMPTY = Warning: queue is now empty, the slot contents were transferred.

If the STATUS equals K_OK, the slot contents were copied to the destination's address.
This is also true if the STATUS equaled K_QUE_EMPTY, indicating that now the
queue is empty.

THE CMX MULTI-TASKING EXECUTIVE

QUEUE MANAGER FUNCTIONS
☞ Remember the slots may contain anything, bytes, integers, pointers, etc. Once the contents
from a slot are removed, you may cast those bytes into what you would like. It is up to you
to ensure that the queue number of this function is the same queue you added this to, and
that it has been created.

The K_Que_Get_Bottom function

The K_Que_Get_Bottom function acts exactly as the above K_Que_Get_Top function
with one exception. The slot the contents are copied from and returned to the caller is
the last one added to the bottom of the queue instead of the last one added to the top of
the queue as in the K_Que_Get_Top function. This function allows a task to remove
the contents of a slot from a particular queue.

The caller accesses the K_Que_Get_Bottom function by passing the parameters
indicating the queue number and the address where the slot's contents will be copied to.
This function then copies the contents of the last bottom slot used to the specified
address according to the slot size of that queue, and release the slot so it may be used
again.

☞ No memory testing is done to insure the address supplied is truly a queue address.

The queue functions allow tasks to pass parameters to other tasks. You can use a queue
in many ways such as FIFO (first in, first out), LIFO (last in, first out), or a combination.
The contents of a slot from a queue may be a variety of things: integers, pointers,
commands to the command task, error codes to the error task, the address location
where other parameters are held that need processing by a task, and so forth. You may
mix and match the K_Que_Get_Top and K_Que_Get_Bottom functions together when
dealing with a common queue.

Remember, when a slot is removed from either the top or bottom of a queue the slot is
considered empty and the queue marks it as free. No other remove functions will have
access to this slot until the slot becomes used again.

The larger the slot size for a particular queue, the longer it will take you to copy the
contents from the source to the slot, or slot to destination. It is recommended that you
keep the slot size low and use pointers for large data blocks, then just pass and remove
the pointers to the queue.

This is an example of the K_Que_Get_Bottom function:

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Get_Bottom(byte,void *); /* this is the function prototype */

#define QUE_NUM ???
 49

50

THE CMX MULTI-TASKING EXECUTIVE
QUEUE MANAGER FUNCTIONS
unsigned char *DEST_POINTER; /* could be local or global depending upon
application and user. */

unsigned char STATUS; /* should be local */

STATUS = K_Que_Get_Bottom(QUE_NUM,DEST_POINTER);

Passed

QUE_NUM is the queue number, which identifies a particular queue was created with
the K_Que_Create function. Can be from zero to one less than the maximum
configured.

DEST_POINTER is a pointer that contains the address where the slot bytes will be
copied to in memory.

#define QUE1 1

void task2(void)
{
unsigned char status;
unsigned char dest[20]; /* create area that will obtain
contents from queue */

status = K_Que_Get_Bottom(QUE1,dest); /* remove the contents
from last bottom slot filled (used) */

..../* process contents of dest */
}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: queue was empty, no slot available.

K_QUE_EMPTY = Warning: queue is now empty, the slot contents were transferred.

If the STATUS equals K_OK, the slot contents were copied to the destination's address.
This is also true if the STATUS equaled K_QUE_EMPTY, indicating that now the
queue is empty.

☞ Remember the slots may contain anything, bytes, integers, pointers, etc. Once the contents
from a slot are removed, you may cast those bytes into what you would like. It is up to you
to ensure the queue number of this function is the same queue you added this to, and that it
has been created.

THE CMX MULTI-TASKING EXECUTIVE

MEMORY MANAGER FUNCTIONS
MEMORY MANAGER FUNCTIONS

The memory manager is part of the CMX library and allows you to create fixed block
size memory pools, get a free block from a memory pool and release that block back to
the memory pool. The functions are listed below along with their page references.

K_Mem_FB_Create (Page 51)
K_Mem_FB_Get (Page 53)
K_Mem_FB_Release (Page 55)

The K_Mem_FB_Create function

This function creates a memory pool. No memory contention is checked for by this
function. It is assumed the pool's memory is free to be used and will not be used by
code except through the memory function supplied.

When you call the K_Mem_FB_Create function, you supply the following parameters.
First is the starting address for this memory pool. Next is the size in bytes you want
each block size to be within this memory pool. The last parameter is the number of
blocks that will reside within the memory pool.

If you are dealing with a CPU that needs integers and pointers aligned on either even or
odd memory address, the memory block address should also be aligned on that address.
Also, the size of the blocks must be an even number. This is because pointers are
maintained within each memory pool as to where the next free block resides.

When a memory pool is created, an additional number of bytes are needed and that
number is determined by the size of a character pointer. For example, you identify the
size of each block at 50, the number of blocks at 10 and the size of a character pointer
is two bytes. Then 502 bytes are needed for this memory pool. Declare an array of
unsigned characters with the size of the array dictated as above so the array's starting
address will be the address of the memory pool. You may create as many memory
pools as you like, provided the memory is not used for anything else.

You must align the memory pool to the CPU's requirements, so that the list starts at the
proper memory alignment boundary for integers. This is because the address passed to
the pointers when you call the K_Mem_FB_Get function must follow the CPU's
memory requirements. Also, the block size must follow the CPU's memory alignment
requirements as well.

For example, Intel's 80196 processor dictates that integers reside on EVEN address,
indicating that the memory begins on an EVEN address and that the block size be a
multiple of two. Some other processors may require the block size to be a multiple of 4.

It is assumed the memory buffer pool can be no larger than 64K bytes. You are free to
set up a structure to ensure the memory pool partition begins on the proper CPU
boundary.
 51

52

THE CMX MULTI-TASKING EXECUTIVE
MEMORY MANAGER FUNCTIONS
The parameters supplied are assumed to be correct and are not tested in any way. Once
a pool is created you may retrieve and release blocks from that memory pool.

This is an example of the K_Mem_FB_Create function:

Called

Before entering RTOS, tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Mem_FB_Create(void *,word16,word16); /* this is the function prototype */

#define BLK_SIZE ??? /* size of each memory block */

#define NUM_BLOCKS ??? /* number of memory blocks */

struct {

unsigned char *dummy_ptr; /* will allocated space for CMX */
unsigned char pool_bytes[BLK_SIZE * NUM_BLOCKS]; /* allocate enough
memory for this memory pool. */

} MEM_POOL1; /* this is memory pool 1 */

void K_Mem_FB_Create(&MEM_POOL1,BLK_SIZE,NUM_BLOCKS);

Passed

&MEM_POOL1 is the beginning address where this memory pool will reside in
memory.

BLK_SIZE is the size in bytes, that each block within this memory pool will have.
Maximum of 255 bytes

NUM_BLOCKS is the number of fixed blocks within this memory pool. Maximum is
65535.

#define BSIZE 10 /* should be a multiple of the alignment size if CPU cares about
pointer alignment */

#define NBLOCKS 20 /* The number of blocks within memory pool */

struct {
unsigned char *head_ptr;
unsigned char body[BSIZE * NBLOCKS];
} MEM_POOL1;

void task2(void)
{

THE CMX MULTI-TASKING EXECUTIVE

MEMORY MANAGER FUNCTIONS
K_Mem_FB_Create(MEM_POOL1,BSIZE,NBLOCKS); /* create a fixed
block memory pool with 20 fixed blocks of size 10 bytes each */

}

Returned

No status is returned.

☞ Remember you must ensure enough memory for this memory pool to exist, and no memory
contention is tested for. Also, if the processor must have pointers residing on specific
boundaries, like an even address, then the size of a block must be even. This is because
CMX places pointers within the unused memory blocks, for internal use.

The K_Mem_FB_Get function

The K_Mem_FB_Get function gets a fixed block of free memory from a memory pool,
if one is free. Two parameters are passed to this function. The beginning address of
the memory pool you would like to obtain a block from is the first parameter. It is up
to you to send the same beginning address of the particular memory pool as was sent to
the K_Mem_FB_Create function. The second parameter is the address of the pointer
that will receive the address of the block.

The K_Mem_FB_Get function determines if a block is free and available from the
specified memory pool and if so, returns the beginning address for that block to the
pointer. When the block address is returned, you are guaranteed that the size, and only
the size of the block as specified when the memory pool was created with the
K_Mem_FB_Create function, is available for use.

Make sure you do not exceed the block size of that particular memory pool. This results
in memory corruption. If all the blocks of a particular memory pool are in use, then no
block will be released. The status will notify you that no memory block was free from
the memory pool and the address sent to the pointer is invalid.

The block's memory, if one was available, is contiguous and not fragmented, but may
contain garbage from when the block was previously in use. When you determine you
are done with a particular block from a memory pool, you may release it back to the
memory pool. This is described below.

This is an example of the K_Mem_FB_Get function:

Called

By tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Mem_FB_Get(void *,byte **); /* this is the function prototype */
 53

54

THE CMX MULTI-TASKING EXECUTIVE
MEMORY MANAGER FUNCTIONS
struct {/* previous created by K_Mem_FB_Create function */
unsigned char *dummy_ptr;
unsigned char pool_bytes[BLK_SIZE * NUM_BLOCKS];
} MEM_POOL1; /* this is memory pool1 */

unsigned char *BLOCK_ADDR; /* block pointer could be local or global */

unsigned char STATUS; /* should be local */

STATUS = K_Mem_FB_Get(&MEM_POOL1,&BLOCK_ADDR);

Passed

&MEM_POOL1 is the beginning address where this particular memory pool will reside
in memory.

&BLOCK_ADDR is the address of the unsigned char pointer, in which the address of
the fixed block will be placed.

#define BSIZE 10 /* should be a multiple of the alignment size if CPU cares about
pointer alignment */

#define NBLOCKS 20 /* The number of blocks within memory pool */

struct {
unsigned char *head_ptr;
unsigned char body[BSIZE * NBLOCKS];
} MEM_POOL1;

void task2(void)
{
unsigned char status;
unsigned char *block_user_ptr; /* create a pointer to use as
user wishes */
unsigned char *block_ptr; /* create another pointer to keep
memory address passed back to block_ptr, for use with
K_Mem_FB_Release function */

status = K_Mem_FB_Get(&MEM_POOL1,&block_ptr); /* load block
pointer with memory address location of free block */
if (status == K_OK)
{
block_user_ptr = block_ptr; /* save memory address of block
because block_ptr probably will corrupt this address */
}

else
{
/* error, do what ever */

THE CMX MULTI-TASKING EXECUTIVE

MEMORY MANAGER FUNCTIONS
}
}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: no free block within this memory pool.

If STATUS equals K_OK, then BLOCK_ADDR contains the block's address. Copy
this address to another pointer, because when releasing this block, you will have to pass
this address back.

The K_Mem_FB_Release function

The K_Mem_FB_Release function releases a fixed block of memory back to a
particular memory pool. You supply the address of the memory pool the block was
retrieved from and the address the block was given when the K_Mem_FB_Get function
was called. This address must be the same as the address received for this block.

When you release a block, it becomes free and added back into the free memory blocks
of the particular memory pool from which it was taken. When a block is released, the
block's memory may be released again as another block and the contents are destroyed.

The addresses supplied to the above functions are not tested and are assumed to be
correct. If not, the memory could be corrupted, resulting in serious consequences.

This is an example of the K_Mem_FB_Release function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Mem_FB_Release(void *,byte *); /* this is the function prototype */

struct {/* previously created by K_Mem_FB_Create function */
unsigned char *dummy_ptr;
unsigned char pool_bytes[BLK_SIZE * NUM_BLOCKS];
} MEM_POOL1; /* this is memory pool 1 */

unsigned char *BLOCK_ADDR; /* previously declared, block pointer could be local
or global */

void K_Mem_FB_Release(&MEM_POOL1,BLOCK_ADDR);
 55

56

THE CMX MULTI-TASKING EXECUTIVE
MESSAGE MANAGER FUNCTIONS
Passed

&MEM_POOL1 is the beginning address where this particular memory pool will reside
in memory.

BLOCK_ADDR is the contents of the BLOCK_ADDR address, which contains the
address of the block that was retrieved by the K_Mem_FB_Get function.

#define BSIZE 10 /* should be a multiple of the alignment size if CPU cares about
pointer alignment */

#define NBLOCKS 20 /* The number of blocks within memory pool */

struct {
unsigned char *head_ptr;
unsigned char body[BSIZE * NBLOCKS];
} MEM_POOL1;

void task2(void)
{
unsigned char *block_user_ptr; /* create a pointer to use as
user wishes */
unsigned char *block_ptr; /* create another pointer to keep
memory address passed back to block_ptr, for use with
K_Mem_FB_Release function */

/* user code here dealing with block_ptr */

K_Mem_FB_Release(&MEM_POOL1,block_ptr); /* finished with this
block of memory, release it back to memory pool */

}

Returned

No status is returned.

☞ Ensure that the block address passed to this function is the same address received by the
K_Mem_FB_Get function. No testing is performed to check the validity of this address.

MESSAGE MANAGER FUNCTIONS

The message manager is part of the CMX library and allows messages to pass from task
to task. The message manager functions are listed below along with their reference
pages.

K_Mesg_Send (Page 57)
K_Mesg_Send_Wait (Page 59)
K_Mesg_Get (Page 61)

THE CMX MULTI-TASKING EXECUTIVE

MESSAGE MANAGER FUNCTIONS
K_Mesg_Wait (Page 63)
K_Mesg_Ack_Sender (Page 64)
K_Mbox_Event_Set (Page 66)

Just the address of the message is passed to the mailbox and not the message itself. This
makes message passing very fast for the actual message data does not have to be copied
into the mailbox when sent by the K_Mesg_Send or K_Mesg_Send_Wait functions, or
out of the mailbox when retrieved by the K_Mesg_Get or K_Mesg_Wait functions. You
tell the RTOS configuration module the total number of messages for all mailboxes.
The memory needed is set aside for storing message addresses and really does not
belong to any one mailbox.

As you send messages to mailboxes, the message memory (a message block) is given
to the intended mailbox. CMX has already created and structured all of the message
blocks at start up, which allows the message send and receive functions to quickly get
a message block to store the message address and a few other CMX data items. Also,
the messages which are passed to a particular mailbox are queued up as first in, first out.
When all message blocks have been allocated to the mailboxes, then no further
messages can be sent.

You also tell the RTOS configuration module the maximum number of mailboxes.
Only tasks may have ownership rights to a mailbox and each task may "own" more than
one. It is assumed that each mailbox will belong to only one task, as far as retrieving
mail from that mailbox. Tasks and interrupts are free to send messages to any mailbox.

When a task decides it no longer needs a particular mailbox, another task may then
assume ownership of that mailbox. This ownership theory only works when you have
used the K_Mbox_Event_Set function. This function tells the mailbox to automatically
set a particular task, an event number you define, when there is mail present in this
mailbox. If this function is not used, or changed so that the task will not have an event
set, then any task, at any time can use any mailbox as long as no other task is waiting
on this mailbox.

The K_Mesg_Send function

This function allows tasks and interrupts to send a message to a mailbox. Remember,
the message itself is not sent, just the address of the message is passed to the mailbox.
The message contents can be virtually anything as long as the sender and receiver agree
on the format. This is extremely useful, as interrupts could send a message identifying
a port's pin states for example. Also, a task may own several mailboxes, so a priority
scheme could be set up with high priority message sent to mailbox one, lower priority
messages sent to mailbox two, and lowest priority messages sent to mailbox three.

When the K_Mesg_Send function is called by a task or interrupt, the caller must supply
the mailbox number this message will go to. In addition to the mailbox number, the
caller must supply the address where the message resides in memory.
 57

58

THE CMX MULTI-TASKING EXECUTIVE
MESSAGE MANAGER FUNCTIONS
The message length may be any size since the mailbox just receives the address of the
message. If at least one message block is free at the time of the call, the mailbox will
receive the message. Each mailbox does not have a limit on the number of messages it
receives. The only limitation is that a message block must be available to give to the
mailbox. Once a message block is given to a mailbox, the message block is unusable
to all other mailboxes until the message is passed to a task.

The interrupt or task that sent the message will be returned to immediately. However
if a task is waiting for a message from this mailbox and its priority is higher than the
task sending it, the scheduler will be notified to do an immediate task switch. In this
case, the sending task or task running prior to an interrupt will become suspended and
the task waiting on the message will become the new running task.

If the K_Mbox_Event_Set function has been enabled to set the task's event that owns
this mailbox and the mailbox is empty when this message arrives, then the
K_Mesg_Send function will automatically set the specified event of the task that owns
this mailbox.

This is an example of the K_Mesg_Send function:

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Mesg_Send(byte,void *); /* this is the function prototype */

#define MBOX1 ??? /* numerical identifier that identifies the particular mailbox */

unsigned char SOURCE_BYTES[] = ??? /* could be global or local */

unsigned char STATUS; /* should be local to task */

STATUS = K_Mesg_Send(MBOX1,SOURCE_BYTES);

Passed

MBOX1 is the mailbox number to which the task would like to send messages. This
number ranges from 0 to the maximum number of mailboxes specified minus 1.

SOURCE_BYTES is the address where the message bytes reside, which will be copied
into the mailbox message's pointer.

#define MBOX1 1

THE CMX MULTI-TASKING EXECUTIVE

MESSAGE MANAGER FUNCTIONS
void task2(void)
{
unsigned char status;

status = K_Mesg_Send(MBOX1,"This message for mailbox 1\n");
/* send this message to mailbox 1 remember that the address of
the message is really passed to the mailbox and not the
contents. */
if (status != K_OK) /* test status, see if good operation */
{
/* see why, maybe take corrective action */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: there are NO more message blocks available or the mailbox
number is out of range.

If STATUS equals K_OK, then a message has been placed into the mailbox message
block. Make note that each mailbox works as a FIFO (first in, first out) queue.

The K_Mesg_Send_Wait function

This function is identical to the K_Mesg_Send function but with this addition: the task
that calls the K_Mesg_Send_Wait function will pass the amount of time it is willing to
wait for the K_Mesg_Ack_Sender function from the receiving task. The amount of time
may be zero, to wait indefinitely, or a value up to 65535. The task will be suspended
until this message is retrieved out of the mailbox by a task and the task issues the
K_Mesg_Ack_Sender function, or the specified time period expires.

This acts as an acknowledgment to the caller. The task that called K_Mesg_Send_Wait
will automatically become READY to run when the destination task that receives the
message calls the K_Mesg_Ack_Sender function. If the specified time period expires,
then the task that sent the message will be automatically awakened and READY to
resume. When this task becomes the RUNNING task, it will be notified that the time
period expired, instead of being awakened by the receiving task calling the
K_Mesg_Ack_Sender function.

Only tasks may call this function. If the receiving task for this message never runs or
issues the K_Mesg_Ack_Sender function prior to retrieving another message, then the
sender of the message will never run again unless the task specified a non zero time out
period and the time period expires. The K_Task_Wake_Force function can also be used
to forcefully wake this task.
 59

60

THE CMX MULTI-TASKING EXECUTIVE
MESSAGE MANAGER FUNCTIONS
This is an example of the K_Mesg_Send_Wait function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Mesg_Send_Wait(byte,word16,void *); /* this is the function prototype */

#define MBOX1 ??? /* numerical identifier that identifies the particular mailbox */

#define TIME_CNT ??? /* The period of time to wait or indefinitely. */

unsigned char SOURCE_BYTES[] = ??? /* could be global or local */

unsigned char STATUS; /* should be local to task */

STATUS = K_Mesg_Send_Wait(MBOX1,TIME_CNT,SOURCE_BYTES);

Passed

MBOX1 is the mailbox number which the task would like to test for messages. This
number ranges from zero to the maximum number of mailboxes specified minus one.

TIME_PERIOD is the number of system ticks this task will wait for the
K_Mesg_Ack_Sender function to wake it. A period of zero indicates to wait
indefinitely. The period may range from zero to 65535.

SOURCE_BYTES is the address where the message bytes reside, which will be copied
into the mailbox’s message pointer.

#define MBOX1 1

unsigned char mesg1[] = {"hello task 1\n"};

void task2(void)
{
unsigned char status;

status = K_Mesg_Send_Wait(MBOX1,100,mesg1);
/* send this message to mailbox 1 remember that the address of
the message is really passed to the mailbox and not the
contents. Also wait up to 100 system TICKS for the
K_Mesg_Ack_Sender function */
if (status == K_ERROR) /* test status, see if error */
{
/* see why, maybe take corrective action */
}

if (status == K_TIMEOUT)

THE CMX MULTI-TASKING EXECUTIVE

MESSAGE MANAGER FUNCTIONS
{
/* time out period specified has expired prior to
K_Mesg_Ack_Sender */
/* should we do any corrective action */
}

..../* good acknowledgment by receiving task, happened with in
time out period specified. */

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: there are no more message blocks available or the mailbox number
is out of range.

K_TIMEOUT = Warning: That the time period expired before the
K_Mesg_Ack_Sender function was used to wake this task.

If STATUS equals K_OK, then a message had been placed into the mailbox, a task then
received this message and issued the K_Mesg_Ack_Sender function to notify this task
(sender) that the message was received.

The K_Mesg_Get function

This function allows the calling task to retrieve a message from a mailbox, if the
mailbox has any messages. The K_Mesg_Get function is only called by tasks.

The only parameter passed to this function is the mailbox number. If the mailbox has
no messages in it at the time of this function, then the function will return a null pointer
value to the caller indicating no message was available. If the mailbox has at least one
message, then the first message address will be returned to the caller. Also the message
block which contained this message address will automatically be returned to the free
message blocks and marked free.

A task may own more than one mailbox and it can receive a message from any of its
mailboxes. This is useful if you want to prioritize messages to a task and its mailbox.

When a mailbox gives the message address to the task, the receiving task automatically
obtains which task sent the message (because the sending task used the
K_Mesg_Send_Wait function). The receiver may then call the K_Mesg_Ack_Sender
function to acknowledge it has received this message. The receiving task is free to call
the K_Mesg_Ack_Sender function at any time prior to retrieving another message from
any mailbox.
 61

62

THE CMX MULTI-TASKING EXECUTIVE
MESSAGE MANAGER FUNCTIONS
If a task calls the K_Mesg_Get function and specifies the same mailbox number another
task has previous used in the K_Mesg_Wait function, and that task is currently waiting
for a message from that mailbox, then an a null value is returned to this task. In other
words, no more than one task may wait on a single mailbox, at any time.

The K_Mesg_Get function returns immediately to the caller regardless of a message
being available or not. Messages are retrieved in the order they were received by the
mailbox, which is first in, first out.

This is an example of the K_Mesg_Get function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void * K_Mesg_Get(byte); /* this is the function prototype */

#define MBOX1 ??? /* numerical identifier that identifies the particular mailbox */

unsigned char *RECV_PTR; /* could be local or global */

RECV_PTR = K_Mesg_Get(MBOX1);

Passed

MBOX1 is the mailbox number in which the task would like to test for messages. This
number ranges from zero to the maximum number of mailboxes specified minus one.

#define MBOX1 1

void task1(void)
{
unsigned char *recv_ptr; /* create a pointer that will receive
the address of message */

recv_ptr = K_Mesg_Get(MBOX1); /* go get the message if one is
available */
if (recv_ptr != (unsigned char *)NULL) /* test, see if not NULL
*/
{
/* application code to deal with message */
}

}

Returned

RECV_PTR is the pointer that will be given the address where the message bytes are
located.

THE CMX MULTI-TASKING EXECUTIVE

MESSAGE MANAGER FUNCTIONS
If RECV_PTR = NULL (0), then there was NOT a message in this mailbox, when this
task called. If the RECV_PTR contains a non null value, this will be the address where
the message bytes are.

The K_Mesg_Wait function

The K_Mesg_Wait function performs just like the K_Mesg_Get function, but also gives
the task the ability to wait for a message if one is not available for a specified time or
indefinitely.

This function requires two parameters. The first is the mailbox number to check for
messages. The second indicates the time period.

The K_Mesg_Wait function also allows a task to suspend itself waiting for a message
if none were there at the time of the call, and automatically be put back into the READY
state. This can be done in two ways. First, a message is sent to the mailbox. Second,
the specified time period by the task expires.

The time period is the number of system ticks to wait for a message. This number may
range from one through 65535. A time period of zero indicates this task will wait
indefinitely for a message.

This is an example of the K_Mesg_Wait function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void * K_Mesg_Wait(byte,word16); /* this is the function prototype */

#define MBOX1 ??? /* numerical identifier that identifies the particular mailbox */

#define TIME_CNT ???

unsigned char *RECV_PTR; /* could be local or global */

RECV_PTR = K_Mesg_Wait(MBOX1,TIME_CNT);

Passed

MBOX1 is the mailbox number which the task would like to test for messages. This
number ranges from zero to the maximum number of mailboxes specified minus one.

TIME_CNT is the number of system ticks to wait for a message. The range is zero
through 65535. If the value is zero, then the task will wait indefinitely for a message to
arrive.
 63

64

THE CMX MULTI-TASKING EXECUTIVE
MESSAGE MANAGER FUNCTIONS
#define MBOX1 1

void task1(void)
{
unsigned char *recv_ptr; /* create a pointer that will receive
the address of message */

recv_ptr = K_Mesg_Wait(MBOX1,100); /* go get a message if one
is available, if not wait for 100 TICKs for message to arrive
in mailbox */
if (recv_ptr != (unsigned char *)NULL) /* test, see if not NULL
*/
{
/* application code to deal with message */
}

}

Returned

RECV_PTR is the pointer that will be given the address where the message bytes are
located.

If RECV_PTR = NULL (0), then either the time period specified expired prior to a
message being retrieved or the mailbox number was out of range. If the RECV_PTR
contains a non null value, this will be the address of the message bytes.

A null value returned to the caller by the K_Mesg_Wait function indicates the
following: no messages were in the mailbox, the mailbox number is out of range or
another task is waiting on this mailbox for a message to come in.

The K_Mesg_Ack_Sender function

After using either the K_Mesg_Get or K_Mesg_Wait function to retrieve a message, the
K_Mesg_Ack_Sender function should be used to acknowledge the sender and wake up
the sending task. Only tasks may call this function.

If the sender used the K_Mesg_Send function and the task that received the message
was unaware an acknowledgment was not necessary, the task may still call this
function. The K_Mesg_Ack_Sender function knows the sender of the message is not
waiting for a reply.

The task receiving the message must call this function to wake the suspended task
(which used the K_Mesg_Send_Wait function) before retrieving another message or
terminating its code. If not done, the sending task will be suspended until either the
time out period expires (if the time period specified was non zero) or you use the
K_Task_Wake_Force function, which forcefully wakes the sending task.

THE CMX MULTI-TASKING EXECUTIVE

MESSAGE MANAGER FUNCTIONS
Any time a message is received, the receiving task should call the K_Mesg_Ack_Sender
function to ensure the sending task is not suspended forever. If you know the sender
did not use the K_Mesg_Send_Wait function, then the K_Mesg_Ack_Sender function
need not be called.

This is an example of the K_Mesg_Ack_Sender function:

Called

Tasks

#include <cxfuncs.h> /* has function prototype */
byte K_Mesg_Ack_Sender(void); /* this is the function prototype */

unsigned char STATUS; /* should be local */

STATUS = K_Mesg_Ack_Sender();

Passed

Nothing.

#define MBOX1 1

void task1(void)
{
unsigned char *recv_ptr; /* create a pointer that will receive
the address of message */

recv_ptr = K_Mesg_Get(MBOX1); /* go get the message if one is
available */
if (recv_ptr != (unsigned char *)NULL) /* test, see if not NULL
*/
{
/* application code to deal with message */
K_Mesg_Ack_Sender(); /* go wake the task that sent this
message, because the task that sent message used the
K_Mesg_Send_Wait function. */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_NOT_WAITING = Warning: The task that sent the received message was not
waiting.
 65

66

THE CMX MULTI-TASKING EXECUTIVE
MESSAGE MANAGER FUNCTIONS
If STATUS equals K_OK, then the task that sent the message had used the
K_Mesg_Send_Wait function and the task was suspended is now placed into the
READY state.

☞ An immediate rescheduling will occur if the awakened task has a higher priority than the
current running task.

The K_Mbox_Event_Set function

This function will signal the specified task when message(s) are present in the selected
mailbox. When the mailbox contains or receives a message, it will automatically use
the K_Event_Signal function, setting a specific event bit of a particular task. This
allows a task to wait on the events. When a message arrives in a mailbox, the mailbox
will set the event, notifying the task that there are messages in the mailbox.

When you set up this function, you will pass three parameters to this function. The first
parameter is the mailbox number. This number can range from zero to one less than the
maximum number of mailboxes declared in the configuration file.

The next parameter is a particular task's slot number which may be any valid task
created with the K_Task_Create function and not removed by the K_Task_Delete
function. If the task slot number is zero, then no task will have its event set by this
mailbox.

The third parameter is the event (bit) that will be set in the declared task when messages
are available and present in this mailbox. The K_Mbox_Event_Set function works as
follows. If the mailbox is empty when a message comes in, the mailbox will
automatically call the K_Event_Signal function. The K_Event_Signal function will use
the parameters set up in the K_Mbox_Event_Set function. Also the mode byte,
declaring which mode the K_Event_Signal function will use, will be forced to zero.
This identifies that only the specific task will have its event set.

When the task retrieves the message using the K_Mesg_Get or K_Mesg_Wait function,
then the task’s event will be set by this mailbox if any messages are still present.

This allows tasks to wait on a variety of events and mailboxes. When a task is waiting
on one or more mailboxes, the task will be notified that a message has arrived or there
are more messages available at the mailbox. You would most likely set up the
K_Event_Wait function so as the events occur, they will automatically be reset. When
the task resumes running, the task would then retrieve the message. When the task
retrieves the message, the mailbox automatically sets the task's event again if there are
more messages present in its mailbox.

Mailboxes parameters can be changed at any time. This may be useful if you want
another task to be the owner of this mailbox or change what event will be set when a
message is present. Also, you may specify a task slot number of zero, so the mailbox
will not set any task's event when a message is present.

THE CMX MULTI-TASKING EXECUTIVE

MESSAGE MANAGER FUNCTIONS
Remember, any task can retrieve a message, if one is available, from any mailbox as
long as there are no other tasks waiting on the mailbox. CMX feels only one task should
own a mailbox which is why the K_Mbox_Event_Set function will only let a single task
have its event set when there are messages present in a mailbox.

This is an example of the K_Mbox_Event_Set function:

Called

Before entering RTOS, tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Mbox_Event_Set(byte,byte,word16); /* this is the function prototype */

#define MBOX1 ??? /* numerical identifier that identifies the particular mailbox */

unsigned char TASK_SLOT; /* Should be global */

#define EVENT ??? /* which event bit to set */

unsigned char STATUS; /* receives status of function. */

STATUS = K_Mbox_Event_Set(MBOX1,TASK_SLOT,EVENT);

Passed

MBOX1 is the mailbox number which the task would like to test for messages. This
number ranges from zero to the maximum number of mailboxes specified minus one.

TASK_SLOT is the slot number of the task that will have an event bit set, when there
are messages in this mailbox.

EVENT is an unsigned 16 bit variable or constant that determines which event bit will
be set in the declared task.

unsigned char task1_slot; /* contains task 1 slot number that K_Task_Create returned
*/

#define MBOX1 1

#define MBOX2 2

#define TSK1_MB1_FLAG 0x0080 /* this is the event (bit) that the
K_Mbox_Event_Set function will set when messages are present in its box. */

#define TSK1_MB2_FLAG 0x0040 /* this is the event (bit) that the
K_Mbox_Event_Set function will set when messages are present in its box. */
 67

68

THE CMX MULTI-TASKING EXECUTIVE
MESSAGE MANAGER FUNCTIONS
void task1(void)
{
unsigned char status;
unsigned short event_bits; /* will indicate to task, which
events are set by the K_Event_Wait function */

unsigned char *recv_ptr; /* create a pointer that will receive
the address of message */

status = K_Mbox_Event_Set(MBOX1,task1_slot,TSK1_MB1_FLAG);
/* this will tell mailbox 1 to set task1 event (bit 7) when a
message is present */
status = K_Mbox_Event_Set(MBOX2,task1_slot,TSK1_MB2_FLAG);
/* this will tell mailbox 2 to set task1 event (bit 6) when a
message is present */
while(1)
{
event_bits = K_Event_Wait((TSK1_MB1_FLAG ||
TSK1_MB2_FLAG),0,2);
/* this will force task 1 to wait indefinitely for either
mailbox 1 or mailbox 2 to signal that they have a message.
Also when the task resumes because a message is present, the
K_Event_Wait function will automatically clear the event bit
that was set. This way the mailbox will again set the event
when the task retrieves the message, if any messages are still
in its mailbox or when a message arrives. */
if (event_bits & TSK1_MB1_FLAG)
{
recv_ptr = K_Mesg_Get(MBOX1); /* go get the message */
/* remember that the mailbox will automatically set the
event (TSK1_MB1_FLAG) if and when another message is
present in its mailbox. */
.../* process message */
/* do the following if message sender used the
K_Mesg_Send_Wait function. */
K_Mesg_Ack_Sender(); /* go wake the task that sent this
message, because the task that sent message used the
K_Mesg_Send_Wait function. */
}

if (event_bits & TSK1_MB2_FLAG)
{
recv_ptr = K_Mesg_Get(MBOX2); /* go get the message */
/* remember that the mailbox will automatically set the
event (TSK1_MB2_FLAG) if and when another message is
present in its mailbox. */
.../* process message */
/* do the following if message sender used the
K_Mesg_Send_Wait function. */
K_Mesg_Ack_Sender();
/* go wake the task that sent this message, because the task
that sent message used the K_Mesg_Send_Wait function. */

THE CMX MULTI-TASKING EXECUTIVE

RESOURCE MANAGER FUNCTIONS
}
}/* will stay in while loop, processing messages from mailbox
1 and mailbox 2. */

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the mailbox number is out of range.

☞ Remember the mailbox will set the event the first time a message arrives and will also set
the event each time the task retrieves a message, if more messages are in this mailbox. This
function may be called more than once to specify a different event and/or task.

RESOURCE MANAGER FUNCTIONS

The resource manager is part of the CMX library and contains the functions listed
below along with their reference pages. These functions allow only one task to have
access to a particular resource at any one time. You may elect to have the task be put
into a suspended state, to wait for this resource for a specified amount of time or
indefinitely, if the resource is owned by another task. You can also not suspend the task
if the resource is busy.

CMX has priority inheritance on resources. The highest priority task waiting for a
resource will become the owner of the resource when the resource is released by the
current owner. This is described in the next 2 paragraphs. Please keep these 2 items in
mind, when writing and debugging your application code.

Priority inheritance is where the current task that owns a resource will be temporally
bumped up to the priority level of the highest priority task waiting for the same
resource. When the task releases the resource, then its priority will be restored to its
original priority that it was prior to owning the resource.

When a resource is released by the current owner of the resource, the highest priority
task waiting for this resource will become the new current owner. This is regardless of
when it requested this resource in relationship to other task requesting this resource as
well, if any. This means that resources do not work based on a first in, first out request
like some RTOSs, but that they determine who will become the owner based on the
priority of a particular task waiting for the resource.

K_Resource_Get (Page 70)
K_Resource_Wait (Page 71)
K_Resource_Release (Page 73)
 69

70

THE CMX MULTI-TASKING EXECUTIVE
RESOURCE MANAGER FUNCTIONS
The K_Resource_Get function

The K_Resource_Get function is used only by tasks to request the use of a particular
resource group. The task will supply the resource number. This number ranges from
zero to one less than the maximum number of resources declared in the configuration
module.

If the resource is free and not owned by any other task, then the task is given that
resource and now owns it. If the resource is owned, the task that called this function
will not be placed into the suspended state and will be notified that the resource is
already owned.

The task that calls K_Resource_Get will not be suspended if the resource is owned, nor
will it be placed into the suspended state while waiting for this resource to be free. Also
if the task becomes the owner of this resource by this call, then the task must use the
K_Resource_Release function when finished with the resource so other tasks may
obtain ownership.

This is an example of the K_Resource_Get function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Resource_Get(byte); /* this is the function prototype */

#define RESOURCE_NUM ??? /* identifies resource number */

unsigned char STATUS; /* should be local */

STATUS = K_Resource_Get(RESOURCE_NUM);

Passed

RESOURCE_NUM is the number of the particular resource that this task would like to
own.

#define RESOURCE1 1

void task2(void)
{
unsigned char status;

status = K_Resource_Get(RESOURCE1);

THE CMX MULTI-TASKING EXECUTIVE

RESOURCE MANAGER FUNCTIONS
/* pass resource 1 number to function, task 2 would like to
become the owner of resource 1. If resource 1 is not "owned"
by another task, then task 2 will become the "owner" indicated
by the value returned. Task 2 will NOT be suspended if the
resource is busy ("owned"), and the status returned will
identify that the resource is busy. */
if (status == K_OK) /* see if good operation */
{
/* task 2 now OWNS resource 1, when done with resource, must
call the K_Resource_Release function to release it */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_RESOURCE_OWNED = Error: the resource is owned by another task.

K_ERROR = Error: the resource number was out of range.

If STATUS equals K_OK, then the task will own the resource. If STATUS equals
K_RESOURCE_OWNED, or K_ERROR then the task does not own the resource.

☞ It is up to you to ensure the task checks the return status to see if it owns the resource or
not. If so, then the task may access this particular resource. If not, then the task should not
access this resource, because another task is already using this resource. Contention
(possibly corruption) could exist if both tasks try to manipulate this resource.

The K_Resource_Wait function

This function works like the K_Resource_Get function. The difference is that if the
resource is owned at the time a task calls the K_Resource_Wait function, then the task
is suspended until the resource becomes free.

The resource wait queue works in the manner that when a resource is released by the
current owner of the resource, the highest priority task waiting for this resource will
become the new current owner. This is regardless of when it requested this resource in
relationship to other task requesting this resource as well, if any. This means that
resources do not work based on a first in, first out.

If the task was suspended and put into the queue, when the resource becomes free and
ownership is passed to this task, the task will automatically be put into the READY to
RESUME state.
 71

72

THE CMX MULTI-TASKING EXECUTIVE
RESOURCE MANAGER FUNCTIONS
Also, if the specified time period expires before the resource becomes free for this task,
then the task will automatically be awakened and able to resume its code. It will also
be notified that the time period expired and that this task does not own this resource.

When a task becomes the owner of this resource by this call, then the task must also use
the K_Resource_Release function when finished to release this resource so other tasks
may obtain ownership.

This is an example of the K_Resource_Wait function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Resource_Wait(byte,word16); /* this is the function prototype */

#define RESOURCE_NUM ??? /* identifies resource number */

#define TIME_PERIOD ??? /* The time period to wait for */

unsigned char STATUS; /* should be local */

STATUS = K_Resource_Wait(RESOURCE_NUM,TIME_PERIOD);

Passed

RESOURCE_NUM is the number of the particular resource this task would like to own.

TIME_PERIOD is the number of system ticks to wait for this resource, ranging from
zero to 65535. If the value equals zero, then the task will wait indefinitely for this
resource.

#define RESOURCE1 1

void task2(void)
{
unsigned char status;

status = K_Resource_Wait(RESOURCE1,100);
/* pass resource 1 number to function, task 2 would like to
become the owner of resource 1. If resource 1 is not "owned"
by another task and is free, then task 2 will become the "owner"
indicated by value returned. Task 2 will be suspended for 100
TICKs if the resource is busy ("owned"). If the resource
becomes free before the time period expires and this task is
the next one in line (based on priority) to receive ownership,

THE CMX MULTI-TASKING EXECUTIVE

RESOURCE MANAGER FUNCTIONS
then this task will automatically become the "owner" of this
resource. If the time period expires, then the task will be
removed from the resource wait queue and be returned
identifying that the time period expired and this task does NOT
"own" the resource. */

if (status == K_OK) /* see if good operation */
{
/* task 2 now OWNS resource 1, when done with resource, must
call the K_Resource_Release function to release it */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_TIMEOUT = Error: the time period expired.

K_ERROR = Error: the resource number out of range.

If STATUS equals K_OK, then the task now owns the resource. If any other value is
returned to STATUS, then the task does not own the resource.

☞ Make sure the STATUS byte is tested to see if the task owns the resource or not. If the task
owns the resource, it may now use this resource knowing this task is the only one that has
access to this resource. The tasks must also make sure they release the resource when
done, using the K_Resource_Release function.

The K_Resource_Release function

The K_Resource_Release function is used by the task to give up ownership of a
resource. Only the task that has ownership of a resource is able to release that resource.
The task will call this function specifying which resource number to release since a task
may own more than one resource group.

It is your responsibility to ensure a task does not end without first releasing all the
resources owned. Also, exercise caution when calling other functions that will suspend
this task for a long period of time since other tasks may want access to this resource.

This is an example of the K_Resource_Release function:

Called

Tasks.
 73

74

THE CMX MULTI-TASKING EXECUTIVE
RESOURCE MANAGER FUNCTIONS
#include <cxfuncs.h> /* has function prototype */
byte K_Resource_Release(byte); /* this is the function prototype */

#define RESOURCE_NUM ??? /* identifies resource number */

unsigned char STATUS; /* should be local */

STATUS = K_Resource_Release(RESOURCE_NUM);

Passed

RESOURCE_NUM is the number of the particular resource this task would like to
release.

#define RESOURCE1 1

void task2(void)
{
unsigned char status;
/* task 2 owns resource group 1, and is done with this resource.
task 2 will now release resource 1 */

status = K_Resource_Release(RESOURCE1); /* task 2 is releasing
resource 1 */
if (status != K_OK) /* see if error, should not be */
{
/* If there was an error, take corrective action. You should
never get an error here, unless possibly when you called
either the K_Resource_Get or K_Resource_Wait functions, they
did not test status to see if the task truly owned the
resource */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_RESOURCE_NOT_OWNED = Error: this task does NOT own this resource.

K_ERROR = Error: the resource number is out of range.

If STATUS equals K_OK, then the task now has released the particular resource.

THE CMX MULTI-TASKING EXECUTIVE

SEMAPHORE MANAGER FUNCTIONS
☞ The task that owns the resource must make sure it calls this function before finishing its
code. If the task is going to use the K_Task_Delete function, then the task must first release
the resource. If the task does not release the resource, the tasks waiting in the resource's
queue will be SUSPENDED forever or until their time period expires.

The tasks must make sure they test the STATUS byte, to see if the resource is released
or not. If the STATUS is returned with an error value, then there is a coding error
within the application code. If the task successfully releases a resource and the next
task in the waiting queue for this resource has a higher priority, then an immediate
rescheduling will occur, with that task becoming the RUNNING task.

SEMAPHORE MANAGER FUNCTIONS

The semaphore manager is part of the CMX library and contains the functions listed
below along with their reference pages. These functions allow one or more tasks to
have access to a particular semaphore at any one time.

A task or interrupt can post to a semaphore, which increments the semaphore’s counter.
If a task is waiting for the semaphore, the waiting task will be placed into the RESUME
state and the semaphore counter decremented.

A task can also pend on a semaphore. If the semaphore’s counter is zero, depending on
which semaphore pend function was used, either a status will be returned indicating that
the semaphore has not been posted to, or the calling task will be suspended, indefinitely
or for a given time period, waiting for a posting to the semaphore. If the counter is
greater than zero, the semaphore’s counter will be decremented and a status returned
indicating that the task now owns the semaphore.

Semaphores are quite useful in a couple of ways. The first way would be that a single
task would use a semaphore as a counter. Each time this semaphore was posted to, the
semaphore’s count would increase by one. A task could pend on a semaphore, waiting
for a posting. Once the semaphore was posted to, the task would be placed into the
RESUME state, identifying that a task or interrupt has posted to this semaphore. The
task could then perform some action and loop until the semaphore count reached zero.

Another possible use would be to specify the number of tasks that can use the particular
entity to which this semaphore is tied. Lets say a semaphore is initialized with a count
of two. Two tasks could successfully obtain this semaphore. If a third task tried to
obtain this semaphore, depending on which semaphore pend function was used, it
would either receive a status indicating the semaphore was not available, or the task
would be suspended until one of the other tasks posted to the semaphore, thus releasing
it, or the task would wait until the specified time period expired.

K_Semaphore_Create (Page 76)
K_Semaphore_Get (Page 77)
K_Semaphore_Wait (Page 78)
K_Semaphore_Post (Page 80)
 75

76

THE CMX MULTI-TASKING EXECUTIVE
SEMAPHORE MANAGER FUNCTIONS
K_Semaphore_Reset (Page 82)

The K_Semaphore_Create function

This function initializes a semaphore. Two parameters are needed by the
K_Semaphore_Create function.

The first parameter is the semaphore number. This number ranges from zero to one less
than the maximum number of semaphores declared in the configuration module.

The second parameter is the initial value of the counter for this semaphore. This counter
is of type unsigned short, meaning it can range from 0 to 65535.

This is an example of the K_Semaphore_Create function:

Called

Before entering RTOS, tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Semaphore_Create(byte,word16); /* this is the function prototype */

#define SEM_NUM ??? /* Identifies the semaphore. */

#define SEM_COUNT ??? /* determines the initial setting of the semaphore counter. */

unsigned char STATUS; /* should be local */

STATUS = K_Semaphore_Create(SEM_NUM,SEM_COUNT);

Passed

SEM_NUM is the number of the semaphore this function will work with. Values range
from 0 to 1 less than maximum number of semaphores declared.

SEM_COUNT is the initial numerical value of the semaphore counter. Values range
from 0 to 65535.

#define SEM1 1 /* define semaphore 1 */

#define SEM1_CNT 0 /* define initial semaphore count to be zero. */

void task1(void)
{
unsigned char status;

status = K_Semaphore_Create(SEM1,SEM1_CNT);
/* Set up semaphore 1 with an initial count of zero */
if (status != K_OK) /* see if error, should not be */

THE CMX MULTI-TASKING EXECUTIVE

SEMAPHORE MANAGER FUNCTIONS
{
/* If there was an error, take corrective action. You should
never get an error here, unless possibly you have exceeded
the maximum number of semaphores that was declared in the
configuration module */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: semaphore number out of range.

The K_Semaphore_Get function

The K_Semaphore_Get function is used by tasks to request the use of a particular
semaphore. The task will supply the semaphore number. This number ranges from
zero to one less than the maximum number of semaphores declared in the configuration
module.

If the semaphore counter is greater than zero, the task is given that semaphore. If the
semaphore counter is zero, the task that called this function will be returned to with a
status indicating the semaphore is not available. The task will not be placed into the
suspended state to wait for the semaphore.

If the task becomes the owner of this semaphore by this call, the task may need to use
the K_Semaphore_Post function to notify other tasks when it is finished with the
semaphore.

This is an example of the K_Semaphore_Get function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Semaphore_Get(byte); /* this is the function prototype */

#define SEM_NUM ??? /* identifies semaphore number */

unsigned char STATUS; /* should be local */

STATUS = K_Semaphore_Get(SEM_NUM);
 77

78

THE CMX MULTI-TASKING EXECUTIVE
SEMAPHORE MANAGER FUNCTIONS
Passed

SEM_NUM is the number of the semaphore this function will work with. Values range
from 0 to 1 less than maximum number of semaphores declared.

#define SEM1 1

void task2(void)
{
unsigned char status;

status = K_Semaphore_Get(SEM1);
/* pass semaphore 1 number to function, task 2 would like to
become the owner of semaphore 1. If semaphore 1 is not “owned”
by another task, then task 2 will become the “owner” indicated
by the value returned. Task 2 will NOT be suspended if the
semaphore is busy (“owned”), and the status returned will
identify that the semaphore is busy. */
if (status == K_OK) /* see if good operation */
{
/* task 2 now OWNS semaphore 1, when done with semaphore, must
call the K_Semaphore_Get function to release it */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_SEMAPHORE_NONE = Error: the semaphore is owned by another task.

K_ERROR = Error: the semaphore number was out of range.

If STATUS equals K_OK, then the task will own the semaphore. If STATUS equals
K_SEMAPHORE_NONE or K_ERROR then the task does not own the semaphore.

☞ It is up to you to ensure the task checks the return status to see if it owns the semaphore or
not. If so, then the task may access this particular semaphore. If not, then the task should
not access this semaphore, because another task is already using this semaphore.
Contention (possibly corruption) could exist if both tasks try to manipulate this semaphore.

The K_Semaphore_Wait function

This function works like the K_Semaphore_Get function. The difference is that the task
can specify a time period to wait for the semaphore. If the time period expires the task
will be placed into the RESUME state and notified that the time period expired and the
semaphore was not available.

THE CMX MULTI-TASKING EXECUTIVE

SEMAPHORE MANAGER FUNCTIONS
The semaphore wait queue works in the manner of first in, first out. Tasks that call this
function and find the semaphore busy are placed into the wait queue. When the
semaphore becomes free, the first task in the queue is the first task to own it.

If the task was suspended, when the semaphore becomes free and ownership is passed
to this task, the task will automatically be put into the ready to RESUME state.

If the task becomes the owner of this semaphore by this call, the task may need to use
the K_Semaphore_Post function to notify other tasks when it is finished with the
semaphore.

This is an example of the K_Semaphore_Wait function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Semaphore_Wait(byte, word16); /* this is the function prototype */

#define SEM_NUM ??? /* identifies semaphore number */

#define TIME_PERIOD ??? /* The time period to wait for */

unsigned char STATUS; /* should be local */

STATUS = K_Semaphore_Wait(SEM_NUM,TIME_PERIOD);

Passed

SEM_NUM is the number of the semaphore this function will work with. Values range
from 0 to 1 less than maximum number of semaphores declared.

TIME_PERIOD is the number of system ticks to wait for this semaphore, ranging from
zero to 65535. If the value equals zero, then the task will wait indefinitely for this
semaphore.

#define SEM1 1

void task2(void)
{
unsigned char status;

status = K_Semaphore_Wait(SEM1,100);
/* pass semaphore 1 number to function, task 2 would like to
become the owner of semaphore 1. If semaphore 1 is not “owned”
by another task and is free, then task 2 will become the “owner”
indicated by value returned. Task 2 will be suspended for 100
TICKs if the semaphore is busy (“owned”). If the semaphore
 79

80

THE CMX MULTI-TASKING EXECUTIVE
SEMAPHORE MANAGER FUNCTIONS
becomes free before the time period expires and this task is
the next one in line to receive ownership, then this task will
automatically become the “owner” of this semaphore. If the
time period expires, then the task will be removed from the
semaphore wait queue and be returned identifying that the time
period expired and this task does NOT “own” the semaphore. */

if (status == K_OK) /* see if good operation */
{
/* task 2 now OWNS semaphore 1, when done with semaphore, must
call the K_Semaphore_Post function to release it */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_TIMEOUT = Error: the time period expired.

K_ERROR = Error: the semaphore number out of range.

If STATUS equals K_OK, then the task now owns the semaphore. If any other value
is returned to STATUS, then the task does not own the semaphore.

☞ It is up to you to ensure the task checks the return status to see if it owns the semaphore or
not. If so, then the task may access this particular semaphore. If not, then the task should
not access this semaphore, because another task is already using this semaphore.
Contention (possibly corruption) could exist if both tasks try to manipulate this semaphore.

The K_Semaphore_Post function

The K_Semaphore_Post function is used by the task to give up ownership of a
semaphore. The task will call this function specifying which semaphore number to
release since a task may own more than one semaphore group.

The K_Semaphore_Post function can also be used by tasks and interrupts as a counter.
For example, an interrupt could post to a semaphore every time a data packet came in
through a serial port. A task could be pending on the semaphore and process the
packets.

It is your responsibility to ensure a task does not end without first releasing all the
semaphores owned. Also, exercise caution when calling other functions that will
suspend this task for a long period of time since other tasks may want access to this
semaphore.

This is an example of the K_Semaphore_Post function:

THE CMX MULTI-TASKING EXECUTIVE

SEMAPHORE MANAGER FUNCTIONS
Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Semaphore_Post(byte); /* this is the function prototype */

#define SEM_NUM ??? /* identifies semaphore number */

unsigned char STATUS; /* should be local */

STATUS = K_Semaphore_Post(SEM_NUM);

Passed

SEM_NUM is the number of the semaphore this function will work with. Values range
from 0 to 1 less than maximum number of semaphores declared.

#define SEM1 1

void task2(void)
{
unsigned char status;

status = K_Semaphore_Get(SEM1);/* get semaphore 1 */

/* application code here */

/* task 2 owns semaphore 1, and is done with this semaphore.
task 2 will now release semaphore 1 */

status = K_Semaphore_Post(SEM1); /* task 2 is releasing
semaphore 1 */

if (status != K_OK) /* see if error, should not be */
{
/* If there was an error, take corrective action. You should
never get an error here, unless possibly when you called the
K_Semaphore_Get or K_Semaphore_Wait functions, they did not
test status to see if the task truly owned the semaphore */
}

}

Returned

STATUS returned is one of the following:
 81

82

THE CMX MULTI-TASKING EXECUTIVE
SEMAPHORE MANAGER FUNCTIONS
K_OK = Good: function call was successful.

K_ERROR = Error: the semaphore number is out of range.

If STATUS equals K_OK, then the task now has released the particular semaphore.

☞ The task that owns the semaphore must make sure it calls this function before finishing its
code. If the task is going to use the K_Task_Delete function, then the task must first release
the semaphore. If the task does not release the semaphore, the tasks waiting in the
semaphore's queue will be SUSPENDED forever or until their time periods expire.

The tasks must make sure they test the STATUS byte, to see if the semaphore is
released or not. If the STATUS is returned with an error value, then there is a coding
error within the application. If the task successfully releases a semaphore and the next
task in the waiting queue for this semaphore has a higher priority, then an immediate
rescheduling will occur, with that task becoming the RUNNING task.

The K_Semaphore_Reset function

This function flushes out a particular semaphore. The semaphore’s wait queue is
emptied and the semaphore’s counter is reset to the value given to the
K_Semaphore_Create function when initializing the semaphore. Two parameters are
needed by the K_Semaphore_Reset function.

The first parameter is the semaphore number. This number ranges from zero to one less
than the maximum number of semaphores declared in the configuration module.

The second parameter is the flush mode. A flush mode of zero means the semaphore
will not be flushed if a task owns the semaphore. A flush mode greater than zero means
the semaphore will be flushed whether a task owns the semaphore or not.

This is an example of the K_Semaphore_Reset function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Semaphore_Reset(byte,byte); /* this is the function prototype */

#define SEM_NUM ??? /* identifies semaphore number */

#define FLUSH_MODE ??? /* specifies whether to flush if semaphore is owned */

unsigned char STATUS; /* should be local */

STATUS = K_Semaphore_Reset(SEM_NUM,FLUSH_MODE);

THE CMX MULTI-TASKING EXECUTIVE

CYCLIC TIMERS MANAGER FUNCTIONS
Passed

SEM_NUM is the number of the semaphore this function will work with. Values range
from 0 to 1 less than maximum number of semaphores declared.

FLUSH_MODE determines whether to flush the semaphore if the semaphore is
currently owned by a task or not. A value of zero will only flush the semaphore if it is
not owned by a task. Any other value will always flush the semaphore.

#define SEM1 1

void task2(void)
{
unsigned char status;

status = K_Semaphore_Reset(SEM1,0);
/* task2 requests a flush of semaphore 1 with mode zero. If
no task owns this semaphore it will be flushed and K_OK
returned. If a task owns semaphore 1 K_ERROR will be returned
and semaphore 1 will not be flushed. */

if (status == K_OK) /* see if good operation */
{
/* semaphore 1 wait queue is empty and semaphore 1 counter is
reset to the value that was passed to the K_Semaphore_Create
function. */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the semaphore number out of range, or if the flush mode was zero,
a task owns the semaphore.

If STATUS equals K_OK, then the semaphore was flushed. If any other value is
returned to STATUS, then the semaphore was not flushed.

CYCLIC TIMERS MANAGER FUNCTIONS

The cyclic timer manager is part of the CMX library and contains the functions listed
below along with their page references.

K_Timer_Create (Page 84)
K_Timer_Start (Page 86)
K_Timer_Initial (Page 88)
 83

84

THE CMX MULTI-TASKING EXECUTIVE
CYCLIC TIMERS MANAGER FUNCTIONS
K_Timer_Cyclic (Page 91)
K_Timer_Restart (Page 92)
K_Timer_Stop (Page 93)

The cyclic timers manager functions enables you to use timers to automatically execute
the event signal function at the specified number of system ticks. You can also indicate
whether the cyclic timer executes only once at the specified time or at each time period.

All cyclic timers are executed under the CMX timer task. The CMX timer task is the
highest priority task. The cyclic timers are executed in the order of zero through one
less than the maximum number of cyclic timers declared by in the configuration module
if the particular cyclic timer is running.

With the cyclic timers, you can have events signaled at specific time intervals. Tasks
can create timers by telling the timer what event to signal and what mode the
K_Event_Signal function will perform. The event and mode may be changed at any
time by a task. Also, tasks can start a cyclic timer, specifying the initial time period and
the cyclic time period. Both tasks and interrupts are able to change a cyclic timer's
initial time period, or cyclic time period, to restart a stopped cyclic time period or to
stop a cyclic time period.

The K_Timer_Create function

This function sets up a cyclic timer's event function. Four parameters are needed by the
K_Timer_Create function.

The first parameter is the cyclic timer number. This number ranges from zero to one
less than the maximum number of cyclic timers declared in the configuration module.

The second parameter is the mode that the K_Event_Signal function will operate in
when the cyclic timer time period expires and calls the K_Event_Signal function. This
number can be between zero through six, and identifies what the K_Event_Signal
function will perform when it is called by the cyclic timer.

The third parameter is the task slot number or priority that the K_Event_Signal function
will work with if needed, This is dictated by the mode number supplied. The mode
chosen for the second parameter determines if this parameter contains a task slot
number, a priority, or a value that is not used.

The fourth parameter is the event that may be set when the K_Event_Signal function is
executed by this cyclic timer, depending on the mode selected.

Carefully study the chapter on Event Management which describes the K_Event_Signal
function in full detail. Because the cyclic timer calls this function automatically when
its time period expires, you should fully understand the K_Event_Signal function, so
you properly set up the parameters of the K_Timer_Create function.

THE CMX MULTI-TASKING EXECUTIVE

CYCLIC TIMERS MANAGER FUNCTIONS
The cyclic timers are very useful. They may be used to synchronize tasks to specific
time intervals or signal a task that it should change states of the port pins. Another use
might be for an interrupt to continuously restart a cyclic timer’s initial time period. If
the interrupt did not occur within the time period, then the cyclic timer would time out,
signaling that the interrupt has not arrived within the specified time period.

This is an example of the K_Timer_Create function:

Called

Before entering RTOS, tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Timer_Create(byte,byte,byte,word16); /* this is the function prototype */

#define CYCLIC_NUM ??? /* Identifies the cyclic timer. */

#define MODE ??? /* determines the mode of the K_Event_Signal function. */

#define EVENT ??? /* determines which event to set. */

unsigned char TASK_PRI; /* works in conjunction of selected mode, specifies task or
priority or is not used. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Create(CYCLIC_NUM,MODE,TASK_PRI,EVENT);

Passed

CYCLIC_NUM is the numerical value of the cyclic timer this function will work with.
Values range from 0 to 1 less than maximum number of cyclic timers declared.

MODE is the mode in which the K_Event_Signal function will execute.

TASK_PRI is the task’s slot number, the priority, or unused that is determined by the
MODE selected.

EVENT is the event bit that will be set when the cyclic timer executes and calls the
K_Event_Signal function.

#define TMR1 1 /* define cyclic timer 1 */

#define TMR1_MODE 0 /* define what mode the K_Event_Signal function will use.
This value indicates a specific task. */

#define TSK2_TM1_EVT 0x0002 /* this is the event that will be set by the cyclic timer,
when its time period expires */
 85

86

THE CMX MULTI-TASKING EXECUTIVE
CYCLIC TIMERS MANAGER FUNCTIONS
unsigned char task2_slot; /* will contain task 2 slot number */

void task1(void)
{
unsigned char status;
status =
K_Timer_Create(TMR1,TMR1_MODE,task2_slot,TSK2_TM1_EVT);
/* Set up cyclic timer 1 to automatically set task 2 event bit
1, when its time period expires. */

if (status != K_OK) /* see if error, should not be */
{
/* If there was an error, take corrective action. User should
never get an error here, unless possibly the user has exceeded
the maximum number of cyclic timers that was declared in the
configuration module */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: cyclic number out of range.

The status returned from the K_Timer_Create function indicates K_OK: it was
successful or K_ERROR: an error occurred, because the cyclic timer number was out
of range. Make note that this function does not test the task slot number, if passed, to
see if it is valid or not. The K_Event_Signal function will test this parameter when the
cyclic timer calls it.

The K_Timer_Start function

This function is used to initially start a cyclic timer which is assumed to have been set
up by the K_Timer_Create function. Only tasks may call this function. You supply the
cyclic timer number of the cyclic timer you would like to start. This may be in the range
from zero through one less than the maximum number of cyclic timers declared in the
configuration module.

Also supplied is the initial time in system ticks required before the cyclic timer executes
for the very first time. This time period may range any where from one to 65535. If
you declare a value of zero for the initial time period, then this value is considered to
be 65536.

THE CMX MULTI-TASKING EXECUTIVE

CYCLIC TIMERS MANAGER FUNCTIONS
At each system tick, the cyclic timers with a non-zero time period are decremented.
When this time period reaches zero, the cyclic timer then calls the K_Event_Signal
function. The time supplied is used only for the first execution of this cyclic timer and
then the cyclic timer will execute automatically at the time specified by the cyclic time
period unless that value has a time of zero, indicating a "one shot".

The last parameter supplied to the K_Timer_Start function is the cyclic time period the
timer will use. This time period will automatically be loaded after the initial time period
expires. The range of this value may be from zero through 65535. If the value is
declared to be zero, then the cyclic timer will not be reloaded with the cyclic time
period, stopping this cyclic timer. This way, the cyclic timer acts as a "one-shot" timer.
If the cyclic time value is non-zero, then this value will automatically be loaded and be
decremented by the system tick. Again, when this value reaches zero, the cyclic timer
will call the K_Event_Signal function using the cyclic timer event parameters specified
by the K_Timer_Create function.

You may, at any time, use the K_Timer_Start function to override the time remaining
normally used to start the procedure. Also, the new cyclic time period that was
specified would take effect after the new initial time period expired.

This is an example of the K_Timer_Start function:

Called

Before entering RTOS, tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Timer_Start(byte,word16,word16); /* this is the function prototype */

#define CYCLIC_NUM ??? /* Identifies what cyclic timer. */

#define INITIAL_PERIOD ??? /* initial time period. */

#define CYCLIC_PERIOD ??? /* cyclic time period. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Start(CYCLIC_NUM,INITIAL_PERIOD,CYCLIC_PERIOD);

Passed

CYCLIC_NUM is the cyclic timer number the caller wants to work with. This may
range from zero to one less than the maximum number of cyclic timers declared.
 87

88

THE CMX MULTI-TASKING EXECUTIVE
CYCLIC TIMERS MANAGER FUNCTIONS
INITIAL_PERIOD is the number of system ticks the cyclic timer will use immediately
in its time counters. This time is reduced at each system tick and when it becomes zero,
the cyclic timer executes the K_Event_Signal function. This may range from one to
65535.

CYCLIC_PERIOD is the number of system ticks the cyclic timer will use at the recycle
time period. This may range from zero to 65535.

#define TIMER_0 0 /* cyclic timer 0 number */

#define T0_INIT_TIME 100 /* specify that initial time be 100 */

#define T0_CYCLE_TIME 50 /* specify cycle time of 50 */

void task2(void)
{
unsigned char status;

status = K_Timer_Start(TIMER_0,T0_INIT_TIME,T0_CYCLE_TIME);
/* start cyclic timer 0. This cyclic timer will execute in 100
system "ticks". The cycle time of 50 will then be reloaded
each time this cyclic timer executes. So it will take 100
system "ticks" to execute this cyclic timer the first time and
then only 50 ticks from then on. */
if (status != K_OK) /* see if error, should not be */
{
/* Take corrective action. */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: cyclic timer number out of range.

If STATUS equals K_OK, then the specified cyclic timer is started. The initial time
period and cyclic period are used for this cyclic timer.

This function may be called more than once for a particular cyclic timer, to change both
the cyclic timer’s initial time and cyclic time.

The K_Timer_Initial function

The K_Timer_Initial function is used to change a cyclic timer's initial time period. This
value will take effect immediately, overriding the current time value left that would be
used to execute this cyclic timer when it reaches zero.

THE CMX MULTI-TASKING EXECUTIVE

CYCLIC TIMERS MANAGER FUNCTIONS
This function may be called by tasks and interrupts. The cyclic timer's cycle time
period is not changed in any way. The caller will identify to the K_Timer_Initial
function which cyclic timer and the new initial time period that the cyclic timer should
use. Again, this value may range from one through 65535.

The initial time period specified takes effect immediately. For example, if the time left
before this cyclic timer executes is two system ticks. Then Task 1 calls this function
specifying a new initial time period of 30. This value will replace the old value of two
preventing the cyclic timer from executing for another 30 ticks instead of two.

This is a very useful feature. You could set up a software watchdog feature like a cyclic
timer in a "one-shot" mode. For example, say the initial time period set by the
K_Timer_Start function was 200. Task 1 should execute the K_Timer_Initial function
(specifying a new initial time period of 100) approximately every 80 system ticks,
identifying that it has completed some specific duty. If task 1 did not perform the
specific duty it was suppose to for whatever reason, then the cyclic timer will time out
and signal an event.

This function can also be used by interrupts to identify that a particular interrupt is not
being received. For example, say the timer is currently stopped. When the interrupt
occurs, it could use the K_Timer_Initial function to start the cyclic timer.

Another example is using the interrupt to clock in data from a pin of a port. Each time
a data bit happened, it would also generate an interrupt. The interrupt would then take
the data bit, stuff it into a circular bit buffer, update the bit pointer, call the
K_Timer_Initial function and then exit. When the data bits stopped coming in, the
cyclic timer would time out and call the K_Event_Signal function telling a task that data
is now present to be processed by setting the event the task was waiting on.

This is an example of the K_Timer_Initial function:

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
 byte K_Timer_Initial(byte,word16); /* this is the function prototype */

#define CYCLIC_NUM ??? /* Identifies what cyclic timer. */

#define NEW_INITIAL_PERIOD ??? /* new initial period. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Initial(CYCLIC_NUM,NEW_INITIAL_PERIOD);
 89

90

THE CMX MULTI-TASKING EXECUTIVE
CYCLIC TIMERS MANAGER FUNCTIONS
Passed

CYCLIC_NUM is the number of the cyclic timer that the caller wants to work with.
May range from zero to one less than maximum number of cyclic timers declared.

NEW_INITIAL_PERIOD is the number of system ticks that the cyclic timer will use a
immediately in its time counters. This time is reduced at each system tick and when it
becomes zero, the cyclic timer executes the K_Event_Signal function. May range from
one to 65535.

#define TIMER_0 0 /* cyclic timer 0 number */

#define T0_INIT_TIME 100 /* specify that initial time be 100 */

void task2(void)
{
unsigned char status;

while(1)
{
.../* wait for, then process whatever, should happen every 60
ticks or so */
status = K_Timer_Initial(TIMER_0,T0_INIT_TIME);
/* restart cyclic timer 0. This cyclic timer will execute in
100 system "ticks", unless task 2 restarts it again. If so
the cyclic timer has been programmed to set an event,
notifying the watchdog task that task 2 did not execute when
it was suppose to. */

if (status != K_OK) /* see if error, should not be */
{
/* Take corrective action. */
}

}
}

Returned

A status will be returned to caller indicating K_OK: a successful operation, the
specified cyclic timer has its initial time changed and also the cyclic timer is started if
it was stopped or K_ERROR: the cyclic timer number was out of range.

This is very useful. A cyclic timer could continuously have this function called by a
watchdog function. If the watchdog function did not execute or detected something
wrong, the cyclic timer would eventually have its time counters decrement to zero,
which could then notify a task to perform an orderly shutdown.

THE CMX MULTI-TASKING EXECUTIVE

CYCLIC TIMERS MANAGER FUNCTIONS
The K_Timer_Cyclic function

The K_Timer_Cyclic function is very similar to the K_Timer_Initial function but is
used to change a cyclic timer's cycle time period. This value will override the current
cycle time and will be the time used to reload the cyclic timer when current time
remaining for the cyclic timer reaches zero.

This function may be called by tasks and interrupts. The cyclic timer's current
remaining time period will not change in any way. The caller will identify to the
K_Timer_Cyclic function the new cycle time period that the cyclic timer should use.
This value may range from zero through 65535. If you specify the cyclic time as zero,
then the cyclic timer will act as a "one-shot", executing only once when the time
remaining expires.

If the current cyclic timer is stopped when the K_Timer_Cyclic call is made, then the
initial time out value for this cyclic timer will be 65536. After that, the cyclic time
passed to this function will be used for the time out period.

This is an example of the K_Timer_Cyclic function:

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Timer_Cyclic(byte,word16); /* this is the function prototype */

#define CYCLIC_NUM ??? /* Identifies what cyclic timer. */

#define NEW_CYCLIC_PERIOD ??? /* new cyclic period. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Cyclic(CYCLIC_NUM,NEW_CYCLIC_PERIOD);

Passed

CYCLIC_NUM is the number of the cyclic timer that the caller wants to work with.
The number of the cyclic timer may range from 0 to 1 less than the maximum number
of cyclic timers declared.

NEW_CYCLIC_PERIOD is the number of system ticks that the cyclic timer will use
at the recycle time period. May range from 0 to 65535.

#define TIMER_0 0 /* cyclic timer 0 number */
 91

92

THE CMX MULTI-TASKING EXECUTIVE
CYCLIC TIMERS MANAGER FUNCTIONS
#define T0_NEW_CYCLE_TIME 100 /* specify that new cycle time be 100 */

void task2(void)
{
unsigned char status;

status = K_Timer_Cyclic(TIMER_0,T0_NEW_CYCLE_TIME);
/* Change cyclic timer 0 cycle time. The new cycle time will
not take effect until the current cyclic timer's time
decrements to 0. */

if (status != K_OK) /* see if error, should not be */
{
/* Take corrective action. */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: cyclic timer number out of range.

If STATUS equals K_OK, the specified cyclic timer has its cyclic time changed and the
timer started, if it was stopped.

The K_Timer_Restart function

The K_Timer_Restart function restarts a cyclic timer. The current cyclic timer's
remaining time and cyclic time are untouched.

This function is very useful for restarting a cyclic timer that has been stopped by the
K_Timer_Stop function. None of the time values are touched. If the cyclic timer was
stopped because it was running in the "one-shot" mode, then when started, the initial
time period used for the first execution will be 65536 system ticks.

This is an example of the K_Timer_Restart function:

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Timer_Restart(byte); /* this is the function prototype */

THE CMX MULTI-TASKING EXECUTIVE

CYCLIC TIMERS MANAGER FUNCTIONS
#define CYCLIC_NUM ??? /* Identifies the cyclic timer. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Restart(CYCLIC_NUM);

Passed

CYCLIC_NUM is the number of the cyclic timer that the caller wants to work with.
This may range from zero to one less than maximum number of cyclic timers declared.

#define TIMER_0 0 /* cyclic timer 0 number */

void task2(void)
{
unsigned char status;
status = K_Timer_Restart(TIMER_0);
/* Restart cyclic timer 0. None of the cyclic timer's time
values will be touched. */
if (status != K_OK) /* see if error, should not be */
{
/* Take corrective action. */
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: cyclic timer number out of range.

If STATUS equals K_OK, then the specified cyclic timer is restarted if it was stopped.
If already started, this function has no effect.

The K_Timer_Stop function

The K_Timer_Stop function stops a cyclic timer once it is started. The cyclic timer
values (the remaining time period before it executes and the cyclic time period) will not
be touched by this function.

The caller only specifies the cyclic timer to stop. This parameter is in the range of zero
through one less than the maximum number of cyclic timers declared in the
configuration module.
 93

94

THE CMX MULTI-TASKING EXECUTIVE
CYCLIC TIMERS MANAGER FUNCTIONS
When this function is called, the cyclic timer will be put into the stop mode and
removed from the cyclic timer start list. The time remaining will have its value left at
the time of the K_Timer_Stop function call. Also, the cyclic time period for this timer
will not be touched so that when the cyclic timer is restarted using the K_Timer_Restart
function, the time values for this cyclic timer will be used.

This is an example of the K_Timer_Stop function:

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Timer_Stop(byte); /* this is the function prototype */

#define CYCLIC_NUM ??? /* Identifies what cyclic timer. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Stop(CYCLIC_NUM);

Passed

CYCLIC_NUM is the number of the cyclic timer that the caller wants to work with.
This may range from zero to one less than maximum number of cyclic timers declared.

#define TIMER_0 0 /* cyclic timer 0 number */

void task2(void)
{
unsigned char status;

status = K_Timer_Stop(TIMER_0);
/* Stop cyclic timer 0. Cyclic timer 0 will immediately be
stopped and removed from the cyclic timers run list. Remember
that the cyclic timer's time values, both the remaining
execution time and cyclic time values will be untouched. */

if (status != K_OK) /* see if error, should not be */
{
/* Take corrective action. */
}

}

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: cyclic timer number out of range.

If STATUS equals K_OK, then the specified cyclic timer is stopped or if already
stopped, then has no effect.

UART MANAGER FUNCTIONS

The UART manager is NOT part of the CMX library. It contains the following
functions listed here with their page references.

K_Init_Recv (Page 97)
K_Init_Xmit (Page 98)
K_Update_Recv (Page 99)
K_Update_Xmit (Page 98)
K_Put_Char (Page 99)
K_Put_Char_Wait (Page 100)
K_Put_Str (Page 102)
K_Put_Str_Wait (Page 104)
K_Get_Char (Page 106)
K_Get_Char_Wait (Page 107)
K_Get_Str (Page 109)
K_Get_Str_Wait (Page 111)
K_Get_Str_Wait_Return (Page 113)
K_Get_Str_Return (Page 116)
K_Recv_Count (Page 117)

These specialized UART (Universal Asynchronous Receiver and Transmitter)
functions give you the ability to have the onboard serial UART(s) work in a true
interrupt fashion. This way, both receiver and transmitter do not have to be polled
while waiting to receive a character or the transmitter to be empty before the next
character can be transmitted.

For each UART, there will be a receive buffer and transmit buffer. You determine the
size of the buffers for the particular application requirements. The buffer size for the
transmitter does not have to be the same size as the receiver. The following will explain
how each of the buffers work and how CMX interfaces with them.
 95

96

THE CMX MULTI-TASKING EXECUTIVE
UART MANAGER FUNCTIONS
The Receive Buffer

The receive buffer is a circular buffer with a head and tail pointer. The head pointer
indicates where the next character will be placed into the buffer. The tail pointer
indicates where to get the character from the receive buffer. The characters are
retrieved in the order they have been received, this being a FIFO (first in, first out)
structure. There is also a count byte, indicating the current number of characters
residing in the receive buffer that have not been retrieved yet. If the count byte reaches
the size of the receive buffer, then the receive buffer is marked full and no further
characters will be placed into the buffer.

The receiver will also automatically wake a task that has requested a specific number
of bytes from the receive buffer which are not there, if they become available. The
receive buffer can only be "owned" by one task at a time. You will need to use a
resource if more than one task wants to use this receiver at the same time.

The Transmit Buffer

The transmit buffer is a linear type of buffer with a head and tail pointer. The head
pointer points to the last character within the buffer that should be transmitted by the
interrupt transmit routine. The tail pointer points to the character that will be
transmitted out, when the transmitter is free to transmit. Each time the transmit buffer
is used, the buffer is reset to the beginning.

The transmit buffer can only be "owned" by one task at a time. You will want to use a
resource if more than one task wants to use this transmitter at the same time. If the
transmit buffer has had characters loaded into it, then it is considered busy while it
transmit these characters out. If this is so, any further request to load more characters
into the transmit buffer will be blocked.

The source code of the CMX UART C module will need to be edited to set up the
BAUD rate, number of data bits, parity and size of the receive and transmit buffers.
Also you may have to set up the address of the specific CPU UART's address and other
variables. You may want to add some specific functions to handle the possible receiver
errors that may occur such as overrun error, parity error, framing error, etc. Because
CMX cannot determine what you may want to do when an receiver error takes place or
how you will want to handle this error, coding for this is up to you.

It should also be stated that these C code routines will add a greater amount of interrupt
latency than normally would occur without these routines. This is because the UART
interrupts can occur at any time and are completely asynchronous to "critical regions of
code". Therefore the CMX UART functions must GLOBALLY disable and re-enable
the interrupts. Depending upon the CPU and C compiler used, this may range for a few
microseconds or more. It is up to you to determine whether the possible added interrupt
latency introduced will be satisfactory or not.

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
You also determine whether the selected BAUD rate will be allowed. This depends on
how long it takes these functions to execute and the latency that the disabling and
enabling of interrupts will place on the application code and other interrupts.

These functions should meet the requirements of the application program. However,
CMX really recommends you code the UART interrupt functions in assembly. This
will speed up the time it takes for the UART interrupts to execute and reduce the
amount of interrupt latency the above functions introduce. This can be done by setting
up flags that indicate the state of a task.

For example, the assembly coded receiver routine could receive characters and place
them into the receive buffer you create. When either a END_OF_PACKET character
was received or the specified time period elapsed (detected by a timer interrupt routine),
the receiver interrupt could call the interrupt pipe to trigger the particular task that will
process the received packet of information. The receiver could receive multiple packets
by having multiple buffers and then change the buffer pointers the receiver would use.
CMX includes some examples for how to program UART interrupt routines in
assembly.

The K_Init_Recv function

The K_Init_Recv function will initialize the receive buffer by setting its associated
pointers to the beginning of the receive buffer. Also the receive count_in variable, that
indicates the number of bytes received but not retrieved yet, will be reset to zero. The
receiver status flags will be reset indicating the receiver is fine and that no errors, full
or otherwise, exist.

You are free to call the K_Init_Recv at any time, as long as a task is not waiting for the
receiver, because the specified number of characters the task wants, are not yet present.
Remember, if there are characters in the receive buffer that have not yet been retrieved,
these characters will be lost. The receiver BAUD rate, number of data bits, parity and
number of stop bits can be set here.

This is an example of the K_Init_Recv function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Init_Recv(void); /* this is the function prototype */

K_Init_Recv();

Passed

main()
{

 97

98

THE CMX MULTI-TASKING EXECUTIVE
UART MANAGER FUNCTIONS
K_Init_Recv(); /* go initialize the UART receiver */
...

}

Returned

Nothing is returned.

The K_Init_Xmit function

The K_Init_Xmit function will initialize the transmit buffer by setting its associated
pointers to the beginning of the transmit buffer. Also the transmit count_out variable,
indicating the number of bytes which need to be transmitted, will be reset to zero. The
transmitter status flags will be reset indicating the transmitter is fine and not busy. You
should only call the K_Init_Xmit once. There is no reason to ever reinitialize the
transmit buffer. The transmitter BAUD rate, number of data bits, parity and number of
stop bits can be set here.

This is an example of the K_Init_Xmit function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Init_Xmit(void); /* this is the function prototype */

K_Init_Xmit();

Passed

main()
{
K_Init_Xmit(); /* go initialize the UART transmitter */
...

}

Returned

Nothing is returned.

The K_Update_Xmit function

The K_Update_Xmit function is called by the transmitter interrupt. First the function
will determine whether the transmitter empty flag is set. If so, then the transmit
count_out variable will be tested for zero. If the count_out variable is non-zero,
indicating that there are additional characters to transmit, the transmitter will
automatically be loaded with the next buffer character, the count_out variable

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
decremented and the tail pointer incremented so it is pointing to the next character. If
the count_out variable is zero, it will test to see if there is a task waiting to transmit more
characters. Remember, only one task should have exclusive ownership of the
transmitter (through the use of the resource functions). If the task is waiting, then the
task will automatically be put into the RESUME state, indicating it may now put more
characters into the transmit buffer when it becomes the highest priority task able to run.

The K_Update_Recv function

If the receive buffer is not full, then the received character will be placed into the
receive buffer and the receive head pointer will be incremented to point to the next
storage location. The receiver count_in variable will also be incremented, indicating
the number of bytes received. If a task is waiting on the receiver for a specified number
of characters, then the K_Update_Recv function will test to see if the required number
of characters are present now. If so, the task will automatically be put into the
RESUME state, indicating the required number of characters are present.

The K_Put_Char function

The K_Put_Char function allows the task that owns the transmitter to transmit one
character. The parameter passed to this function is the address of the character the task
wants to transmit. If the transmitter is already transmitting characters, then the
character will not be put into the transmit buffer and the function will return a status
indicating the transmitter was busy. If the transmitter is not transmitting, then the
character will be placed into the transmit buffer. Then the transmitter will
automatically be started. The task will be returned to immediately, indicating the
operation was successful. The task will not have to wait for the character to be
transmitted by the UART. The interrupt system will take care of that.

This is an example of the K_Put_Char function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Put_Char(void *); /* this is the function prototype */

unsigned char *src_PTR; /* this may be local or global, and will be the location that the
function gets the character. */

unsigned char STATUS; /* results of function. */

STATUS = K_Put_Char(src_PTR);

Passed

src_PTR = the address where the character resides in memory for this function.
 99

10

THE CMX MULTI-TASKING EXECUTIVE
UART MANAGER FUNCTIONS
unsigned char src_byte = '3'; /* This is the address to hold the character which will be
sent out. Could also be local. */

void task1(void)
{
unsigned char status;
status = K_Put_Char(&src_byte); /* go send character. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
or/* this shows another way. */
status = K_Put_Char("3"); /* go send character. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_BUSY = Error: transmitter was busy.

If STATUS equals K_OK, then the task which called this function will have the
character placed into the transmitter and the transmitter will automatically start,
sending out the character.

The K_Put_Char_Wait function

The K_Put_Char_Wait is like the above function. In addition this task will wait for the
specified time period or indefinitely if the transmitter is busy. The parameters passed
to this function are the address of the character to transmit and the amount of time it will
wait for the transmitter to be free. This function allows the task that owns the
transmitter to transmit one character.

If the transmitter is already transmitting characters, then the task will be placed into the
suspended state. The task can specify to wait indefinitely by specifying a time out
period of zero or to wait for one to 65535 system ticks. If the transmitter becomes free,
then the task will automatically awaken, allowing it to then place the character into the
transmit buffer. The task is returned to immediately indicating a successful operation.
If the specified time period expires prior to the transmitter being free, then the character
will not be placed into the transmit buffer and the task will be returned to with the status
indicating the time period expired.
0

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
This is an example of the K_Put_Char_Wait function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Put_Char_Wait(void *,word16); /* this is the function prototype */

unsigned char *src_PTR; /* this may be local or global, and will be the location that the
function gets the character. */

#define TIME_PERIOD ??? /* The time wait period. */

unsigned char STATUS; /* results of function. */

STATUS = K_Put_Char_Wait(src_PTR,TIME_PERIOD);

Passed

src_PTR = the address where the character resides in memory for this function.

TIME_PERIOD is the number of system ticks this task is willing to wait for the
transmitter to be free. Range is zero to 65535.

unsigned char src_byte = '3';

/* This is the address to hold the character, which will be sent out. Could also be local.
*/

void task1(void)
{
unsigned char status;
status = K_Put_Char_Wait(&src_byte,100); /* go send character.
Wait up to 100 system ticks for the transmitter to be free if
need be. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
or/* this shows another way. */
status = K_Put_Char_Wait("3",100); /* go send character.
Wait up to 100 system ticks for the transmitter to be free if
need be. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

 101

10

THE CMX MULTI-TASKING EXECUTIVE
UART MANAGER FUNCTIONS
...
}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_TIMEOUT = Warning/error: The time period expired, transmitter still busy.

K_BUSY = Error: transmitter was busy.

If STATUS equals K_OK, then the task which called this function will have the
character placed into the transmitter and the transmitter will automatically start,
sending out the character.

The K_Put_Str function

The K_Put_Str function allows the task that owns the transmitter to transmit one or
more characters. The parameters passed to this function are the address of the string of
characters to transmit and the count of the number of characters to send. The string of
characters do not have to be terminated by any special character and the function allows
tasks to send binary characters.

If the transmitter is already transmitting characters, then the string of characters will not
be put into the transmit buffer and the function will return a status indicating the
transmitter was busy. If the transmitter is not transmitting, then the string of characters
will be placed into the transmit buffer according to the count parameter. Then the
transmitter will automatically be started. The task will be returned to immediately
indicating the operation was successful. The task will not have to wait for the
characters to be transmitted by the UART. The interrupt system will take care of that.
It is up to you to determine the correct count of characters you want copied from the
string source to the transmit buffer.

This is an example of the K_Put_Str function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Put_Str(void *,word16); /* this is the function prototype */

unsigned char *src_PTR; /* this may be local or global, and will be the location that the
function gets the character. */

#define NUMBER ??? /* the number of characters to place into the transmit buffer. */
2

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
unsigned char STATUS; /* results of function. */

STATUS = K_Put_Str(src_PTR,NUMBER);

Passed

src_PTR = the address where the characters reside in memory for this function.

NUMBER is the number of characters to place into the transmit buffer.

unsigned char src_bytes[] = {"From task 1"};

/* This is the address to hold the string of characters, which will be sent out. Could also
be local. */

void task1(void)
{
unsigned char status;
status = K_Put_Str(src_bytes,sizeof src_bytes);
/* go send character. Remember it is the second parameter that
determines the number of characters that are actually copied
to the transmit buffer. */
if (status != K_OK) /* test status */
{
/* maybe do something if characters not sent. */
}

...
or/* this shows another way. */
status = K_Put_Str("From task 1",12);
/* go send character. Remember it is the second parameter that
determines the number of characters that are actually copied
to the transmit buffer. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_BUSY = Error: transmitter was busy.
 103

10

THE CMX MULTI-TASKING EXECUTIVE
UART MANAGER FUNCTIONS
If STATUS equals K_OK, then the task which called this function will have a
NUMBER of character(s) placed into the transmit buffer and the transmitter will
automatically start sending out the characters.

☞ The number of characters placed into the transmit buffer is determined by the NUMBER
and not by the length of the string. It is up to you to determine the proper number of
characters to transmit.

The K_Put_Str_Wait function

The K_Put_Str_Wait is like the above function. In addition, this task will wait for the
specified time period or indefinitely if the transmitter is busy. The parameters passed
to this function are the address of the string of characters to transmit, the number of
characters in the string and the amount of time it will wait for the transmitter to be free.
This function allows the task that owns the transmitter to transmit one or more
characters.

If the transmitter is already transmitting characters, then the task will be placed into the
suspended state. The task can specify to wait indefinitely by specifying a time out
period of zero or wait for one to 65535 system ticks. If the transmitter becomes free,
then the task will automatically awaken, allowing it to place the characters into the
transmit buffer according to the count parameter passed to this function. The task is
returned to immediately indicating a successful operation. If the specified time period
expires prior to the transmitter being free, then the characters will not be placed into the
transmit buffer and the task will be returned to with the status indicating the time period
expired.

This is an example of the K_Put_Str_Wait function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Put_Str_Wait(void *,word16,word16); /* this is the function prototype */

unsigned char *src_PTR; /* this may be local or global, and will be the location that the
function gets the character. */

#define NUMBER ??? /* the number of characters to place into the transmit buffer. */

#define TIME_PERIOD ??? /* The time wait period. */

unsigned char STATUS; /* results of function. */

STATUS = K_Put_Str_Wait(src_PTR,NUMBER,TIME_PERIOD);
4

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
Passed

src_PTR = the address where the character resides in memory for this function.

NUMBER is the number of characters to place into the transmit buffer.

TIME_PERIOD is the number of system ticks that this task is willing to wait for the
transmitter to be free. Range is zero to 65535.

unsigned char src_bytes[] = {"Task1 transmitting this"};

/* This is the address to hold the character, which will be sent out. could also be local.
*/

void task1(void)
{
unsigned char status;
status = K_Put_Str_Wait(src_bytes,size of src_bytes, 100);
/* go send characters. Wait up to 100 system ticks for the
transmitter to be free. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
or/* this shows another way. */
status = K_Put_Str_Wait("Task1 running",14,100);
/* go send characters. Wait up to 100 system ticks for the
transmitter to be free. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_TIMEOUT = Warning/error: The time period expired, transmitter still busy.

K_BUSY = Error: transmitter was busy.

If STATUS equals K_OK, then the task which called this function will have the
character placed into the transmitter and the transmitter will automatically start sending
out the character.
 105

10

THE CMX MULTI-TASKING EXECUTIVE
UART MANAGER FUNCTIONS
The K_Get_Char function

The K_Get_Char allows a task that owns the receiver to retrieve a character from the
receive buffer if there is one available. The parameter passed to the K_Get_Char
function is the address where the task would like the character to be copied to. If the
receive buffer has one or more characters in its buffer, then only one character will be
placed at the destination address.

If the receive buffer is empty, indicating either no characters have been received by the
UART or that all characters that have been received and retrieved, then no character
will be placed into the destination address.

The task will be returned to immediately with the value specifying the number of
characters transferred. If the return value is zero, no character was retrieved. Otherwise
the task will receive a count of one indicating one character was retrieved. Once a
character has been retrieved, the tail pointer of the receive buffer is incremented and the
receive buffer count_in variable is decremented.

This is an example of the K_Get_Char function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Char(void *); /* this is the function prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Char(DEST_PTR);

Passed

DEST_PTR = the address where this function will place the character.

unsigned char recv_array[80];

/* this will receive up to 80 characters, could be local if user wants or could just be a
depth of 1 in this case for this function only returns one character at the most. */

void task1(void)
{
unsigned short count; /* local */
unsigned char c;
6

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
unsigned char *recv_ptr; /* could be local or global. */

recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Char(recv_ptr); /* go get character. */
if (count)
{
c = *recv_ptr++; /* get character and increment pointer. */
...
}

...
or/* this shows another way. */
count = K_Get_Char(&c); /* go get character. */
if (count)
{
.../* process c here, etc. */
}

...
}

Returned

COUNT = the number of characters that were transferred from the UART receive
buffer to the destination address.

If the COUNT value is zero, there were no characters in the UART receive buffer when
this function was called. If the COUNT is non-zero, (which for this function would be
1), then one character was transferred to the destination address passed to this function.
Make note that the task would just have to pass the address of a character type variable,
instead of loading a pointer with the address and then passing the pointer (which really
passes the address that the pointer has).

The K_Get_Char_Wait function

The K_Get_Char_Wait function is like the above function. This function also has the
ability to wait for a specific amount of time for the character to arrive if the receive
buffer is empty. Also, this function allows a task that owns the receiver to retrieve a
character from the receive buffer, if there is one available. If there is not a character in
the receive buffer, then the task will wait for the specified time period. The parameters
passed to this function are the address where the character is to be copied and the
amount of time it is willing to wait if a character is not present. The time period may
be zero indicating an indefinite wait or a time period of one to 65535 system ticks.

If the receive buffer has one or more characters in its buffer, then only one character
will be placed at the destination address. The task will be returned to immediately with
the return value of one indicating a good operation.
 107

10

THE CMX MULTI-TASKING EXECUTIVE
UART MANAGER FUNCTIONS
If the receive buffer is empty, indicating either no characters have been received by the
UART or that all characters have been received and retrieved, then the task will be
placed into the suspended state waiting for either the time period to expire or the receive
buffer to receive a character. If the specified time period expires before a character is
received, then the task will be returned to with the count being zero indicating the time
period had expired and no character was transferred.

If the receiver receives a character while the task is suspended the receiver will
automatically wake the task, copy the character to the destination address, and return
with a value of one indicating a successful operation.

Once a character has been retrieved, the tail pointer of the receive buffer is incremented
and the receive buffer count_in variable is decremented.

This is an example of the K_Get_Char_Wait function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Char_Wait(void *,word16); /* this is the function prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

#define TIME_PERIOD ??? /* The time wait period. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Char_Wait(DEST_PTR,TIME_PERIOD);

Passed

DEST_PTR = the address where this function will place the character.

TIME_PERIOD is the number of system ticks that this task will wait for a character to
be received. May range from zero to 65535, with zero indicating an indefinite wait.

unsigned char recv_array[80];

/* this will receive up to 80 characters, could be local if you want or could just be a
depth of one in this case since this function only returns one character at the most. */

void task1(void)
{
unsigned short count; /* local */
8

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
unsigned char c;
unsigned char *recv_ptr; /* could be local or global. */

recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Char_Wait(recv_ptr,20);
/* go get character, if there is no character, wait for 20
system ticks for one to arrive. */
if (count)
{
c = *recv_ptr++; /* get character and increment pointer. */
...
}

...
or/* this shows another way. */
count = K_Get_Char_Wait(&c,20); /* go get character. */
if (count)
{
.../* process c here, etc. */
}

...
}

Returned

COUNT = the number of characters that were transferred from the UART receiver
buffer to the destination address.

If the COUNT value is zero, there were no characters in the UART receiver buffer when
this function was called, or the time period expired. If the COUNT is non-zero, (which
for this function would be one), then one character was transferred to the destination
address passed to this function.

The K_Get_Str function

The K_Get_Str allows a task that owns the receiver to retrieve one or more characters
from the receive buffer, if the desired number of characters is available. The parameters
passed to the K_Get_Str function are the address where the task would like the
characters to be copied to and the number of characters to retrieve from the receive
buffer.

If the receive buffer has at least the desired number of characters in its buffer, then the
characters will be copied to the destination address. If the receive buffer does not have
the desired number of characters according to the count parameter, then no characters
will be copied.
 109

11

THE CMX MULTI-TASKING EXECUTIVE
UART MANAGER FUNCTIONS
The task will be returned to immediately, with a value specifying the number of
characters transferred. If the return value is zero, no characters were retrieved. If
characters were retrieved, the return value will specify that number. Each time a
character is copied to the destination address, the tail pointer of the receive buffer is
incremented and the receive buffer count_in variable is decremented.

This is an example of the K_Get_Str function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Str(void *,word16); /* this is the function prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

#define NUMBER ??? /* number of characters to get. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Str(DEST_PTR,NUMBER);

Passed

DEST_PTR = the address where this function will place the character.

NUMBER is the number of characters to retrieve from the UART receive buffer. Only
the specified number will be transferred.

unsigned char recv_array[80];

/* this will receive up to 80 characters, could be local if you want or could just be a
depth of the maximum number that this task would ask for. */

void task1(void)
{
unsigned short count; /* local */
unsigned char c;
unsigned char *recv_ptr; /* could be local or global. */

recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Str(recv_ptr,5); /* go get 5 characters. */
while (count--)
{
c = *recv_ptr++; /* get character and increment pointer. */
0

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
...
}

...
}

Comments

This allows a task to retrieve a specific number of characters from the UART receive
buffer if that number is available. The task will not wait for that number of characters
to come in.

Returned

COUNT = the number of characters that were transferred from the UART receiver
buffer to the destination address.

If the COUNT value is zero, the required NUMBER of characters were not in the
UART receive buffer when this function was called. If the COUNT is non-zero, then
the value will represent the number of characters that were transferred to the destination
address passed to this function. The COUNT value should match the NUMBER passed
in this case.

The K_Get_Str_Wait function

The K_Get_Str_Wait function is like the above function. In addition, this function has
the ability to wait for a specific amount of time for the characters to arrive if the receive
buffer does not have the desired number of characters present.

This function allows a task that owns the receiver to retrieve a specified number of
characters from the receive buffer if they are available. If the desired number of
characters are not in the receive buffer, the task will wait for the specified time period
to receive that number.

The first parameter passed to the K_Get_Str_Wait function is the address the task would
like the characters to be copied to. The second parameter is the number of characters
the task would like to retrieve from the receive buffer. Also passed is the amount of
time it is willing to wait if the desired number of characters is not present. The time
period may be zero indicating an indefinite wait or a time period of one to 65535 system
ticks.

If the receive buffer has at least the desired number of characters in its buffer, that
number of characters will be copied to the destination address. The task will be
returned to immediately indicating the number of characters that were transferred.
 111

11

THE CMX MULTI-TASKING EXECUTIVE
UART MANAGER FUNCTIONS
If the receive buffer does not have the desired number of characters, the task will be
placed into the suspended state waiting for either the time period to expire or the receive
buffer to receive the specified number of characters. If the specified time period expires
before the specified number of characters is received, then the task will be returned to
with a value set at zero. This indicates the time period had expired and no character
was transferred. If the desired number of characters are received before the time period
expires, the receiver will automatically wake up the suspended task.

The K_Get_Str_Wait function will then copy the specified number of characters from
the receive buffer to the destination address. The task will be returned to immediately
with a count of the number of characters transferred (the same as the requested number)
indicating a good operation.

Each time a character has been retrieved, the tail pointer of the receive buffer is
incremented and the receive buffer count_in variable is decremented.

This is an example of the K_Get_Str_Wait function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Str_Wait(void *,word16,word16); /* this is the function prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

#define NUMBER ??? /* number of characters wanted. */

#define TIME_PERIOD ??? /* The time wait period. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Str_Wait(DEST_PTR,NUMBER,TIME_PERIOD);

Passed

DEST_PTR = the address where this function will place the characters.

TIME_PERIOD is the number of system ticks that this task will wait for characters to
be received. May range from zero to 65535, with zero indicating an indefinite wait.

NUMBER is the number of characters to retrieve from the UART receive buffer. Only
the specified number will be transferred.

unsigned char recv_array[80];
2

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
/* this will receive up to 80 characters, could be local if you want or could just be a
depth of the specified number that the task will want to retrieve. */

void task1(void)
{
unsigned short count; /* local */
unsigned char c;
unsigned char *recv_ptr; /* could be local or global. */

recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Str_Wait(recv_ptr,40,20);
/* go get 40 characters, if there are not 40 characters, wait
for up to 20 system ticks for 40 to arrive. */
while (count--)
{
c = *recv_ptr++; /* get character and increment pointer. */
...
}

...
}

Returned

COUNT = the number of characters that were transferred from the UART receive
buffer to the destination address.

If the COUNT value is zero, the number of characters requested was not present in the
UART receive buffer and the time period expired. If the COUNT is non-zero, then the
number of characters requested was transferred to the destination address passed to this
function.

The K_Get_Str_Wait_Return function

The K_Get_Str_Wait_Return function is like the above function. In addition, this
function retrieves the receive buffer characters that are present after the time out period
expires, even if the specified count is not present.

If the desired number of characters are not in the receive buffer, then the task will wait
for the specified time period for the receive buffer to receive that number.

The first parameter passed to the K_Get_Str_Wait_Return function is the address the
task would like the characters to be copied to. The second parameter is the number of
characters the task would like to retrieve from the receive buffer. Also passed is the
amount of time it is willing to wait if the desired number of characters are not present.
The time period may be zero, indicating an indefinite wait, or a time period of one to
65535 system ticks.
 113

11

THE CMX MULTI-TASKING EXECUTIVE
UART MANAGER FUNCTIONS
If the receive buffer has at least the desired number of characters in its buffer, then that
number of characters will be copied to the destination address. The task will be
returned to immediately indicating the number of characters that were transferred.

If the receive buffer does not have the desired number of characters, then the task will
be placed into the suspended state, waiting for either the time period to expire or the
receive buffer to receive the specified number of characters. If the specified time period
expires before the characters are received, then the K_Get_Str_Wait_Return function
will still copy the actual number of characters that have been received (which will be
less than the specified number). The task will then be returned to with a value
indicating the true number of characters that were transferred.

If the desired number of characters are received before the time period expires, the
receiver will automatically wake up the suspended task. The K_Get_Str_Wait_Return
function will then copy the specified number of characters from the receive buffer to
the destination address supplied. The task will be returned to immediately with a count
of the number of characters transferred (which will be the same as the requested
number) indicating a good operation. This is a very powerful function and designed for
protocols with variable length data packets that are sent and received.

Each time a character has been retrieved, the tail pointer of the receive buffer is
incremented and the receive buffer count_in variable is decremented.

This is an example of the K_Get_Str_Wait_Return function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Str_Wait_Return(void *,word16,word16); /* this is the function
prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

#define NUMBER ??? /* number of characters wanted. */

#define TIME_PERIOD ??? /* The time wait period. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Str_Wait_Return(DEST_PTR,NUMBER,TIME_PERIOD);

Passed

DEST_PTR = the address where this function will place the characters.
4

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
TIME_PERIOD is the number of system ticks this task will wait for characters to be
received. May range from zero to 65535, with zero indicating an indefinite wait.

NUMBER is the number of characters to retrieve from the UART receive buffer.

unsigned char recv_array[80];

/* this will receive up to 80 characters, could be local if user wants or could just be a
depth of the specified number that the task will want to retrieve. */

void task1(void)
{
unsigned short count; /* local */
unsigned char c;
unsigned char *recv_ptr; /* could be local or global. */

recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Str_Wait_Return(recv_ptr,40,20);
/* go get 40 characters, if there are not 40 characters, wait
for up to 20 system ticks for 40 to arrive. Still retrieve the
number of characters in the buffer after time period expires.
*/
if (count < 40)
{
.../* maybe test to see if count requested less than count
received and possibly act on it in some way. */
while (count--)
{
c = *recv_ptr++; /* get character and increment pointer. */
...
}

}
...

}

Returned

COUNT = the number of characters that were transferred from the UART receive
buffer to the destination address.

If the COUNT value is zero, there were no characters in the UART receive buffer when
the time period expired. If the COUNT is non zero, then the number of characters
requested or present after time period expired were transferred to the destination
address passed to this function.
 115

11

THE CMX MULTI-TASKING EXECUTIVE
UART MANAGER FUNCTIONS
The K_Get_Str_Return function

The K_Get_Str_Return function allows a task to retrieve all the UART receive buffer
characters present when this function call is performed. No time out is allowed and the
task will not wait on any time period. The count returned will be the number of
characters transferred to the destination address passed to this function from the task.

The task could call the K_Recv_Count function to determine the approximate number
of characters in the receive buffer. (Approximate as the K_Recv_Count passes the true
number of characters at the time of its call, but other characters may be received prior
to the K_Get_Str_Return function executing.)

This is a very useful function. A task may call the K_Task_Wait function to wait
indefinitely. When the UART receive interrupt determines the UART had received the
proper number of characters (variable length packet), then the interrupt could use the
K_Task_Wake function to wake the task that was suspended. When the task resumes
running, it could then issue the K_Get_Str_Return function to retrieve the characters
and process them. Also note the task could just be idle and the interrupt could use the
K_Task_Start function to start the task.

This is an example of the K_Get_Str_Return function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Str_Return(void *); /* this is the function prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Str_Return(DEST_PTR);

Passed

DEST_PTR = the address where this function will place the characters.

unsigned char recv_array[80];

/* the size of the destination the characters will be transferred to, should be as large as
the receive buffer. This way the function will not transfer characters into the wrong
memory locations. */

void task1(void)
6

THE CMX MULTI-TASKING EXECUTIVE

UART MANAGER FUNCTIONS
{
unsigned short count; /* local */
unsigned char c;
unsigned char *recv_ptr; /* could be local or global. */
recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Str_Return(recv_ptr);
/* go get what ever number of characters that are present in
the UART receive buffer at the time of this call. */
while (count--)
{
c = *recv_ptr++; /* get character and increment pointer. */
...
}

...
}

☞ This is very useful when a task is either IDLE or waiting indefinitely. The receiver interrupt
could call the K_Task_Start or K_Task_Wake functions respectively, telling the task to now
get the characters in the buffer since the variable length packet had arrived.

Returned

COUNT = the number of characters that were transferred from the UART receive
buffer to the destination address.

If the COUNT value is zero, there were no characters in the UART receive buffer when
this function was called. If the COUNT is non-zero, then the number of characters
present in the receive buffer were transferred to the destination address passed to this
function.

The K_Recv_Count function

The K_Recv_Count function allows a task to obtain the number of characters that
currently reside in the UART receive buffer.

This is an example of the K_Recv_Count function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */

unsigned short COUNT; /* this will specify the number of characters in receiver buffer.
*/

COUNT = K_Recv_Count();
 117

11

THE CMX MULTI-TASKING EXECUTIVE
THE OPERATING SYSTEM FUNCTIONS
Passed

Nothing is passed.

void task1(void)
{
count = K_Recv_Count();
/* Go find out how many characters are currently in the UART
receive buffer. */
/* now possibly use a function to retrieve one or more
characters from the receive buffer. */
...

}

☞ The receiver may receive one or more characters after this function passes back the count.

Returned

COUNT = the number of characters that are present in the UART receive buffer at the
time of this function call.

If the COUNT value is zero, there were no characters in the UART receive buffer when
this function was called. If the COUNT is non-zero, it is the number of characters
currently in the receive buffer.

THE OPERATING SYSTEM FUNCTIONS

These functions are part of the CMX operating system and are described on their
respective pages, also listed.

K_OS_Init (Page 119)
K_OS_Start (Page 120)
K_OS_Disable_Interrupts (Page 121)
K_OS_Enable Interrupts (Page 122)
K_OS_Intrp_Entry (Page 123)
K_OS_Intrp_Exit (Page 124)
K_OS_Slice_On (Page 126)
K_OS_Slice_Off (Page 127)
K_OS_Tick_Update (Page 128)
K_OS_Low_Power_Func (Page 129)
K_OS_Task_Slot_Get (Page 130)
K_OS_Tick_Get_Ctr (Page 131)
8

THE CMX MULTI-TASKING EXECUTIVE

THE OPERATING SYSTEM FUNCTIONS
The K_OS_Init function

This function is called to initialize the CMX variables, parameters and configurable
system maximums. The K_OS_Init function must be called before any other CMX
functions are called. This is done in the user’s start up code. The file containing this
function should be compiled each time you change the "CXCONFIG.H" file, which
declares the application’s maximums.

This is an example of the K_OS_Init function:

Called

Before using any other CMX function calls.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Init(void); /* this is the function prototype */

K_OS_Init();

Passed

Nothing.

Returned

Nothing.

☞ Remember this function must be called before any other CMX function is called. If not,
then disastrous results will occur.

K_OS_Init Example:

void main(void)
{
/* define any locals within main */

K_OS_Init(); /* initialize CMX */
...
/* now the user can access any CMX function, that is allowed
to be accessed prior to entering the CMX operating system */
...

}

 119

12

THE CMX MULTI-TASKING EXECUTIVE
THE OPERATING SYSTEM FUNCTIONS
The K_OS_Start function

The K_OS_Start function is called to invoke the CMX operating system. Once this
function is called, the CMX operating system takes control of the CPU and determines
when tasks should run and cyclic timers should execute. It is up to you to make sure at
least one task is READY or will become READY by using the K_Task_Start function
before calling K_OS_Start.

The K_Task_Start function call may be called within the start up code or by an interrupt
after entering the CMX operating system. If none of the tasks become READY, then
the CMX operating system will own all the CPU time except to allow interrupts and
cyclic timers, if so started, to execute.

This is an example of the K_OS_Start function:

Called

When you want to enter the CMX operating system.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Start(void); /* this is the function prototype */

K_OS_Start();

Passed

Nothing.

Returned

Never returns from the CMX operating system.

K_OS_Start Example:

void main(void)
{
/* define any locals within main */

K_OS_Init(); /* initialize CMX */
...
/* now the user can access any CMX function, that is allowed
to be accessed prior to entering the CMX operating system */
...
/* Set up CMX by create tasks, cyclic timers, etc. Possibly
create queues, set up mailboxes, etc. Start at least one task.
*/
...
K_OS_Start(); /* enter into the CMX operating system */
/* NOTE: will never return to this point */
0

THE CMX MULTI-TASKING EXECUTIVE

THE OPERATING SYSTEM FUNCTIONS
}

The K_OS_Disable_Interrupts function

Purpose: This function GLOBALLY disables the interrupts. Any non-maskable
interrupt will not be immediately recognized. If the interrupt sets a latch, then this will
not be prevented. This uses the particular CPU instruction that masks out all non-
maskable interrupts from being acknowledged and processed.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Disable_Interrupts(void); /* this is the function prototype */

K_OS_Disable_Interrupts();

Passed

Nothing is passed.

Returned

Nothing is returned.

Read the particular CPU manual that further describes the action and the effect it has
on interrupts when the interrupts are GLOBALLY disabled.

K_OS_Disable_Interrupts example:

void task1(void)
{
unsigned char status; /* local */
.../* application code here */

K_OS_Disable_Interrupts(); /* do critical region of code
stuff. */
...
K_OS_Enable_Interrupts(); /* re-enable interrupts. */

.../* application code here */
}

Comments
 121

12

THE CMX MULTI-TASKING EXECUTIVE
THE OPERATING SYSTEM FUNCTIONS
Use this function sparingly, or not at all, if possible. ALL maskable interrupts will not
be recognized until the interrupts are re-enabled. This will also add latency time to the
interrupt processing its code. If used, the user must remember to re-enable interrupts
using the K_OS_Enable_Interrupts function.

Some C vendor compilers have special instructions that will allow the interrupts to be
GLOBALLY disabled and the code placed inline. This executes faster than calling the
equivalent CMX function.

The K_OS_Enable_Interrupts function

Purpose: This function GLOBALLY enables interrupts. It is used in conjunction with
the K_OS_Disable_Interrupts function. All non-maskable interrupts that were
GLOBALLY disabled, will be enabled. If any interrupt is pending, then the interrupt
will now be recognized and processed according to the CPU interrupt hardware
mechanism and priority scheme.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Enable_Interrupts(void); /* this is the function prototype */

K_OS_Enable_Interrupts();

Passed

Nothing is passed.

Returned

Nothing is returned.

Read the particular CPU manual that further describes the action and the effect on
interrupts when they are GLOBALLY enabled.

K_OS_Enable_Interrupts example:

void task1(void)
{
unsigned char status; /* local */
.../* application code here */

K_OS_Disable_Interrupts(); /* do critical region of code
items. */
...
K_OS_Enable_Interrupts(); /* re-enable interrupts. */
2

THE CMX MULTI-TASKING EXECUTIVE

THE OPERATING SYSTEM FUNCTIONS
.../* application code here */
}

Comments

This function should be called as soon as possible after the K_OS_Disable_Interrupts
function is called. Some C vendor compilers have special instructions that allow the
interrupts to be GLOBALLY enabled and the code placed inline. This executes faster
than calling the equivalent CMX function.

The K_OS_Intrp_Entry function

The K_OS_Intrp_Entry function is used by most interrupts. The interrupt's first
instruction is to call the K_OS_Intrp_Entry function. This informs CMX it should save
the context of the CPU registers and swap in the interrupt stack when a interrupt occurs.
See the chapter on Processor Specific Information for details on the particular CPU you
are working with.

An interrupt does not have to call the K_OS_Intrp_Entry function. If it does not, then
it is up to you to properly save and restore the contents of any register the interrupt will
use. Also, that interrupt cannot use any CMX function calls. The interrupt's code must
not call the K_OS_Intrp_Exit function when finished.

Please read the Processor Specific Information chapter which fully describes how an
interrupt must call this function.

This is an example of the K_OS_Intrp_Entry function:

Called

Interrupts only.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Intrp_Entry(void); /* this is the function prototype */

☞ The call must be written in assembly language to the specific CPU instruction set.

call K_OS_Intrp_Entry ;written in assembly some CPU'S

jsr K_OS_Intrp_Entry ;other CPU'S. etc.

Passed

Nothing.

Returned

Nothing.
 123

12

THE CMX MULTI-TASKING EXECUTIVE
THE OPERATING SYSTEM FUNCTIONS
☞ Interrupts are disabled when this function returns. The user may allow this interrupt to
re-enable interrupts or not. Interrupts such as the NMI cannot be disabled though. When
this function is called, the task (if one is RUNNING) contexts will be saved. If this is the
first interrupt (CMX allows nested interrupts), then the interrupt stack will be switched in.

K_OS_Intrp_Entry example:

☞ Written in assembly.

INTERRUPT_X_HANDLER: ;this is where the specific interrupt will vector to, when
;the interrupt is recognized by the CPU.

; prologue code if need be. DEPENDENT on CPU.

;

call K_OS_Intrp_Entry ;written in assembly some CPU'S

jsr K_OS_Intrp_Entry ;Hitachi H8/300 series

Now the interrupt may finish the code necessary to process this interrupt. Some CMX
calls are allowed. The interrupt code could now call the interrupt function code written
in C language. This is not recommended though, since interrupts should be as fast as
possible. Also at this point this interrupt may re-enable interrupts. If you decide to re-
enable interrupts, make sure that either this interrupt is masked out (won't be
acknowledged again) or that the CPU hardware will not vector to this interrupt again
until this interrupt has finished its code.

;interrupt's code ...

call K_OS_Intrp_Exit ;epilogue, must be called by interrupts that have used the
K_OS_Intrp_Entry call.

If the interrupt used the K_OS_Intrp_Entry call, then the CPU's instruction that
indicates return from interrupt (RETI on 8051 CPU, RTE on the Hitachi H8/300 series
CPU's) is not needed. CMX will inform the CPU that the interrupt is finished within
the K_OS_Intrp_Exit code.

The K_OS_Intrp_Exit function

The K_OS_Intrp_Exit function is called by most interrupts. This function is the last
instruction the interrupt's code will call. The interrupt that called the
K_OS_Intrp_Entry should not use the instruction that signifies RETURN FROM
INTERRUPT. When this function is called, CMX will automatically issue the
RETURN FROM INTERRUPT instruction, informing the CPU that the interrupt has
finished.
4

THE CMX MULTI-TASKING EXECUTIVE

THE OPERATING SYSTEM FUNCTIONS
Also the CMX operating system will determine whether to restore the contexts of the
task or interrupt, or to perform a rescheduling, allowing the highest priority task in the
READY state to run.

For most processors, the K_OS_Intrp_Entry and K_OS_Intrp_Exit functions MUST be
called from an assembler routine. A C function can be called to handle the bulk of the
interrupt processing, if desired, after K_OS_Intrp_Entry is called.

Please read the Processor Specific Information chapter that fully describes how an
interrupt must call this function.

This is an example of the K_OS_Intrp_Exit function:

Called

Interrupts only.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Intrp_Exit(void); /* this is the function prototype */

☞ Call must be written in assembly language to the specific CPU instruction set.

call K_OS_Intrp_Exit ;written in assembly some CPU'S

jsr K_OS_Intrp_Exit ;other CPU'S. etc.

Passed

Nothing.

Returned

Does not return.

☞ If the interrupt is nested (meaning this interrupt is at least the second interrupt) then this
call will return to the prior interrupt’s code. If this is the first interrupt, then this call will
invoke the scheduler. The scheduler will determine whether the interrupt used a CMX call
that requires a task swap, or that the task RUNNING prior to this interrupt should still be
the RUNNING task.

K_OS_Intrp_Exit example:

☞ Written in assembly.

INTERRUPT_X_HANDLER: ;this is where the specific interrupt will vector to, when
;the interrupt is recognized by the CPU.

; prologue code if need be. DEPENDENT on CPU.
 125

12

THE CMX MULTI-TASKING EXECUTIVE
THE OPERATING SYSTEM FUNCTIONS
;

;call K_OS_Intrp_Entry ;written in assembly some CPUs

;jsr K_OS_Intrp_Entry ;Hitachi H8/300 series

Now the interrupt may finish the code necessary to process this interrupt. Some CMX
calls are allowed. The interrupt code could now call the interrupt function code written
in C language. This is not recommended though, since interrupts should be as fast as
possible. Also at this point this interrupt may re-enable interrupts. If you decide to re-
enable interrupts, make sure that either this interrupt is masked-out (won't be
acknowledged again) or that the CPU hardware will not vector to this interrupt again
until this interrupt has finished its code.

;interrupt's code ...

call K_OS_Intrp_Exit ;epilogue, must be called by interrupts that have used the
K_OS_Intrp_Entry call.

If the interrupt used the K_OS_Intrp_Entry call, then the CPU instruction that indicates
return from interrupt (RETI on 8051 CPU, RTE on the Hitachi H8/300 series CPU's) is
not needed. CMX will inform the CPU that the interrupt is finished within the
K_OS_Intrp_Exit code.

The K_OS_Slice_On function

The K_OS_Slice_On function allows you to turn on time slicing. This allows tasks with
the same priority to be time sliced according to the TSLICE_SCALE value you
declared within the "CXCONFIG.H" file. No parameters are passed to this function
and only tasks may call it.

See the Time Slice Chapter on time slicing for a complete explanation on how time
slicing works in the CMX operating system.

This is an example of the K_OS_Slice_On function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Slice_On(void); /* this is the function prototype */

K_OS_Slice_On();

Passed

Nothing is passed.
6

THE CMX MULTI-TASKING EXECUTIVE

THE OPERATING SYSTEM FUNCTIONS
Returned

Nothing is returned.

Study the Time Slice Chapter to better understand how time slicing works.

K_OS_Slice_On example:

void task1(void)
{
unsigned char status; /* local */

K_OS_Slice_On(); /* enable time slicing. */

.../* application code here */

K_OS_Slice_Off();
/* disable time slicing, if user wants. */
...

}

Comments

You can freely allow tasks to enable and disable time slicing when necessary. In most
cases time slicing will not be needed.

The K_OS_Slice_Off function

The K_OS_Slice_Off function allows you to turn off time slicing. This will disable time
slicing if it was enabled by the K_OS_Slice_On function. No parameters are passed to
this function and only tasks may call it.

See the Time Slice Chapter on time slicing for a complete explanation on how time
slicing works in the CMX operating system.

This is an example of the K_OS_Slice_Off function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Slice_Off(void); /* this is the function prototype */

K_OS_Slice_Off();

Passed

Nothing is passed.
 127

12

THE CMX MULTI-TASKING EXECUTIVE
THE OPERATING SYSTEM FUNCTIONS
Returned

Nothing is returned.

Study the Time Slice Chapter to better understand how time slicing works.

K_OS_Slice_Off example:

void task1(void)
{
unsigned char status; /* local */

K_OS_Slice_On(); /* enable time slicing. */

.../* application code here */

K_OS_Slice_Off(); /* disable time slicing. */
...

}

Comments

You can freely allow tasks to enable and disable time slicing when necessary. In most
cases, time slicing will not be needed.

The K_OS_Tick_Update function

This function is usually called by a timer interrupt. CMX needs one of the timer
interrupts to use as a clock to perform scheduling for tasks which have used a function
that invokes a time period, and for cyclic timers.

The K_OS_Tick_Update function MUST be called by an interrupt. This interrupt is
selectable and should cause an interrupt at a specified time period. The interrupt's
frequency should be constant since all time related activities are based on this
frequency. The interrupt should first call the K_OS_Intrp_Entry function, then call the
K_OS_Tick_Update function. The K_OS_Tick_Update function will decrement a
counter that has been pre-loaded with the number of times the interrupt must call this
function, before the scheduler flag is set. This counter is loaded with a value you select
in the "CXCONFIG.H" file and the C define CMX_RTC_SCALE, as described in the
RTOS Configuration File chapter.
8

THE CMX MULTI-TASKING EXECUTIVE

THE OPERATING SYSTEM FUNCTIONS
When the count specified by the CMX_RTC_SCALE reaches zero, then the counter
will be reloaded with the CMX_RTC_SCALE value, and the CMX time flag will be set
if any task timers or cyclic timers need servicing. When the interrupt leaves the
K_OS_Intrp_Exit function, the scheduler will determine whether to let the CMX timer
task execute or to resume execution of the current running task. If the scheduler
determines the CMX timer task should execute, then the task that was running prior to
this interrupt will be put into the ready to RESUME state, saving its context. The
scheduler will then let the CMX timer task execute. (See the Scheduler chapter for a
more detailed description on how the scheduler works.)

If the current task prior to the interrupt used the CMX K_Task_Lock function, then the
CMX time flag would be set and the counter reloaded according to the
CMX_RTC_SCALE value. This would not invoke the scheduler when the interrupt
leaves. This is because the privilege flag has been set by the K_Task_Lock function.
The privilege flag will not allow any task switch until the privilege flag has been
lowered (cleared), which must be done by the task that raised it. To lower the privilege
flag, the task must call the CMX K_Task_Unlock function.

The K_OS_Low_Power_Func function

The K_OS_Low_Power_Func function is called by the CMX scheduler module written
in assembly. It is up to you to code this function to invoke the CPU power down mode.

You will most likely use the processor’s instruction that reduces power, yet allows
interrupts to wake the processor up. This is because the interrupt used to call the
K_OS_Tick_Update function should be allowed to happen. This allows the interrupt to
wake the processor up and the CMX timer task to execute and decrement any cyclic
timers’ time count and/or suspend tasks to decrement their time count also.

Be careful when coding this. Depending on the CPU and the power down mode
selected, this function may do different things. The CMX assembly module assumes
the function will return to the instruction that called it. You must ensure the power
down mode exits properly and returns to the next instruction with all registers and the
stack in the state they were prior to the K_OS_Low_Power_Func function being called.

You may write this function in assembly language and manipulate the registers and/or
stack to ensure the processor returns to the instruction following the instruction that
called the K_OS_Low_Power_Func function.

CMX provides an empty K_OS_Low_Power_Func function so no power down state is
entered unless you code one. It is highly recommended this function be written after
the application code has been fully written, debugged and tested.

This is an example of the K_OS_Low_Power_Func function:
 129

13

THE CMX MULTI-TASKING EXECUTIVE
THE OPERATING SYSTEM FUNCTIONS
Called

By the CMX scheduler.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Low_Power_Func(void); /* this is the function prototype */

...

"in assembly coded scheduler module"

call K_OS_Low_Power_Func

Passed

Nothing.

Returned

Nothing.

☞ Remember, you should code this function for the power down state you would like and to
ensure the processor returns to the instruction following the call to
K_OS_Low_Power_Func.

K_OS_Low_Power_Func Example:

The scheduler will determine when NO tasks are able to run, because the tasks are either
IDLE or SUSPENDED.

call K_OS_Low_Power_Func ;proper assembly code instruction by CMX within the
scheduler assembly code.

void K_OS_Low_Power_Func(void)
{
.../* user written routine here. */
/* NOTE: may be coded in assembly if need be for the particular
CPU and / or C vendor tools. */

}

The K_OS_Task_Slot_Get function

This function returns the task slot number of the currently RUNNING task. The slot
number was assigned by the CMX K_Task_Create function when the task was created.

This is an example of the K_OS_Task_Slot_Get function:
0

THE CMX MULTI-TASKING EXECUTIVE

THE OPERATING SYSTEM FUNCTIONS
Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_OS_Task_Slot_Get(void); /* this is the function prototype */

unsigned char TASK_SLOT; /* could be global or local */

TASK_SLOT = K_OS_Task_Slot_Get();

Passed

Nothing.

void task2(void)
{
unsigned char task_slot;

task_slot = K_OS_Task_Slot_Get();
/* returns the task slot number of the task that is currently
in the RUNNING state */

}

Returned

TASK_SLOT is the task slot number of the currently RUNNING task.

The K_OS_Tick_Get_Ctr function

Every time the CMX K_OS_Tick_Update function is called by the timer interrupt, a
global variable called K_tick_count is incremented. This variable contains the running
total of the "true" system ticks. The current value of K_tick_count is returned by the
K_OS_Tick_Get_Ctr function.

See the K_OS_Tick_Update section for a complete explanation on how the
K_OS_Tick_Update function works in the CMX operating system.

This is an example of the K_OS_Tick_Get_Ctr function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word32 K_OS_Tick_Get_Ctr(void); /* this is the function prototype */

unsigned long TICK_COUNT; /* could be global or local */
 131

13

THE CMX MULTI-TASKING EXECUTIVE
THE CMX TIMER TASK
TICK_COUNT = K_OS_Tick_Get_Ctr();

Passed

Nothing.

void task2(void)
{
unsigned long tick_count;

tick_count = K_OS_Tick_Get_Ctr();
/* returns the total number of system ticks (updated by one
each time K_OS_Tick_Update was called) that have occurred since
the RTOS has started */

}

Returned

TICK_COUNT is the current total number of CMX system ticks. This value will be
the total number of times the K_OS_Tick_Update function was called.

THE CMX TIMER TASK

The CMX timer task is created by CMX. It must be created first and is done
automatically by the CMX K_OS_Init function. (You should never use zero for any
CMX function that requires a task slot number. If you do, an error will be returned and
the CMX function called will not perform its code.)

The timer task is called by the scheduler when the do_timer_tsk flag is set. The
do_timer_tsk flag is set by the K_OS_Tick_Update function when there is a need for
the timer task to execute. This need arises when there are tasks waiting on a time out
period and/or cyclic timers are running.

The timer task determines if a particular task timer (the task has used a CMX function
to wait for a specific time period) needs to be reduced, and if so, will decrement the task
timer. When and if the task timer reaches zero, (specifically reduced by the timer task),
the timer task will automatically take the suspended task, wait at least the specified time
period, and put the task into the READY state. The timer task will also notify the task
when the task becomes the RUNNING task again and that the time period had elapsed.

Another job the timer task performs is executing the cyclic timers when their time out
value decrements to zero, if there are any started. When a cyclic timer is started, and
the specified time period decrements down to zero, then the cyclic timer will
automatically execute, calling the K_Event_Signal function with its events’ parameters.
2

THE CMX MULTI-TASKING EXECUTIVE

STACKS IN GENERAL
The CMX timer task will execute, at your specified scheduling frequency. If the current
RUNNING task calls the CMX K_Task_Lock function, then the timer task will be
delayed (blocked) until the RUNNING task calls the CMX K_Task_Unlock function,
which releases the block and allows the timer task to execute.

STACKS IN GENERAL

This chapter will discuss both task and interrupt stacks. Since all C compilers place
arguments (parameters) on the stack, functions (tasks are functions) use the stack to
allocate local data space and save the return address, it is very important for you to
understand this chapter.

On most microprocessors and microcomputers the stack resides in external memory,
though some processors have an internal stack. There are slight differences among
processors. The way processors work with the stack are described later in the Processor
Specific Information chapter.

All processors have a stack pointer register (some are dedicated, others use a specific
register according to the C compiler manufacturer). Also some C manufacturers create
a frame pointer to access the locals created within a function and also to access the
parameters passed to a function. Again the frame pointer is a dedicated register, or a
register chosen by the C compiler manufacturer.

CMX lets you configure the size of external memory to set aside for all task stacks and
the size for the interrupt stack. Each task will have its own stack. This allows CMX to
save a task's context very fast. When a task's contexts are saved, just the registers have
to be pushed on to the stack. Then the stack pointer gets loaded with another memory
address. (The memory address swapped in will be the interrupt stack or another task's
stack.)

It is up to you to ensure each task stack and the interrupt stack are large enough in size.
The task's stack must be large enough to hold that particular task's local data area, all
return addresses that are pushed on to the stack as each function is called and all called
functions’ local data areas.

Each of the task's stacks must be able to hold all of the CPU's REGISTERS in case of
an interrupt. If the CPU has a "non-maskable interrupt", then the task's stack must be
capable of holding the additional number of bytes. This is so the CPU's REGISTERS
will be saved when the non-maskable interrupt occurs.

We will show how to calculate the stack size needed and provide two examples. It is
recommended you double the estimated size of all task's stacks and the interrupt stack,
at least initially. As you become more proficient and code testing indicates the stack
size may be decreased, then the stack sizes may be reduced.

Unpredictable results can occur when either a task's stack or the interrupt stack pushes
into memory that is not a part of this stack's memory.
 133

13

THE CMX MULTI-TASKING EXECUTIVE
STACKS IN GENERAL
A warning about the examples. All C compilers are not exactly the same in the way a
function is called (some use a stack frame, some do not) CMX highly recommends you
study the C compiler manual that describes stack usage, locals and parameter passing,
and the code (assembly source) produced by the C compiler to better understand the
particular C compiler stack usage.

These are examples only. CMX does not guarantee this is exactly the true number of
bytes needed for the tasks and interrupt stack. The examples below assume ints are (2)
two bytes long. On some processors ints will be (4) four bytes long.

Example 1: (a lot of locals, no nested function calls)

void Task1(void) /* tasks may not receive nor return parameters)
{
/* note that some C compilers create a stack frame which will
use some of this task stack space to save the stack frame
pointer and possibly other registers */

int a; /* 2 bytes of local space */
char b; /* 1 byte of local space *
char *ptr; /* 2 bytes of local, for processors that address up
to 65535 bytes and no bank switching. Also NO alignment
boundaries. */

☞ Some processors need integers, pointers, etc. to be aligned properly to the processor
alignment boundary. In some cases this is at an EVEN memory address, other times it at
an ODD memory address. If the local is aligned incorrectly, according to the processors
alignment rule, then an additional byte will be used in the local space. Be aware of this.

func_A(char,int); /* func_A is a function that will receive a
character and an integer. 3 bytes worth of stack space PLUS 2
bytes for the return address */
func_B(int,int); /* func_B is a function that will receive an
integer and an integer. 4 bytes worth of stack space PLUS 2
bytes for the return address */

}

void func_A(char,int)
{
char a; /* 1 byte of local really used from task 1 stack area */
int b; /* 2 bytes of local, really used from task 1 stack area
*/
..../* func_A code */

}

void func_B(int,int)
{
int a; /* 2 bytes of local really used from task 1 stack area */
int b; /* 2 bytes of local, really used from task 1 stack area
*/
4

THE CMX MULTI-TASKING EXECUTIVE

STACKS IN GENERAL
..../* func_B code */
}

In the above example, the number of bytes used from task 1 stack area would be five
bytes for task 1 locals, four bytes for func_B arguments, two bytes for func_B return
address and four bytes for func_B locals. Make note that func_A is not calculated
because func_B uses more memory than func_A.

This calculation does not include saving the stack frame pointer, if one is used, nor
ALIGNMENT if the CPU requires it.

Example 2: (a lot of locals, some nested function calls)

void Task1(void) /* tasks may not receive nor return parameters)
{
/* note that some C compilers create a stack frame which will
use some of this task stack space to save the stack frame
pointer and possibly other registers */

int a; /* 2 bytes of local space */
char b; /* 1 byte of local space *
char *ptr; /* 2 bytes of local, for processors that address up
to 65535 bytes and no bank switching. Also NO alignment
boundaries. */

☞ Some processors need integers, pointers, etc. to be aligned properly to the processor
alignment boundary. In some cases this is at an EVEN memory address, other times it at
an ODD memory address. If the local is aligned incorrectly, according to the processors
alignment rule, then an additional byte will be used in the local space. Be aware of this.

func_A(char,int); /* func_A is a function that will receive a
character and an integer. 3 bytes worth of stack space PLUS 2
bytes for the return address */

func_B(int,int); /* func_B is a function that will receive an
integer and an integer. 4 bytes worth of stack space PLUS 2
bytes for the return address */

}

void func_A(char,int)
{
char a; /* 1 byte of local really used from task 1 stack area */
int b; /* 2 bytes of local, really used from task 1 stack area
*/
..../* func_A code */

func_C(int,int); /* nested function call to func_C. Func_C is
a function that will receive 2 integers. 4 bytes worth of task
1 stack space PLUS 2 bytes for the return address */

}

 135

13

THE CMX MULTI-TASKING EXECUTIVE
THE RTOS CONFIGURATION FILE
void func_B(int,int)
{
int a; /* 2 bytes of local really used from task 1 stack area */
int b; /* 2 bytes of local, really used from task 1 stack area
*/
..../* func_B code */
}
void func_C(int,int)
{
int a; /* 2 bytes of local really used from task 1 stack area */
int b; /* 2 bytes of local, really used from task 1 stack area
*/
..../* func_C code */

}

In the above example, the number of bytes used from task 1 stack area would be five
bytes for task 1 locals, three bytes for func_A arguments, two bytes for func_A return
address, three bytes for func_A locals, four bytes for func_C arguments, two bytes for
func_C return address, four bytes for func_C locals. Make note that func_B is not
calculated because func_A that calls func_C uses more memory than func_B.

This calculation does not include saving the stack frame pointer, if one is used, nor
ALIGNMENT if the CPU requires it.

As you can see, the task 1 stack gets used for task 1 locals and all functions that are
called by task 1. This includes the functions’ locals and the return address for all the
functions that task 1 will call.

CMX suggests you enter a pattern into all the tasks’ stack area, like the value AA hex,
and then run the application code. Then you may view each particular task's stack area
and see how much of the task's stack has really been used. If the stack pushes down
pass its allocated memory, then serious negative results will occur, with the system
crashing and corrupting memory.

THE RTOS CONFIGURATION FILE

The following has been removed, as it is proprietary information.

TIME SLICE CHAPTER

CMX allows time slicing if you feel it is necessary. CMX believes most applications
will not need time slicing. However it is provided for those times it is needed and
desirable.

To enable time slicing, call the K_OS_Slice_On function. This turns on time slicing.
When you call this function the CMX_TSLICE_SCALE value will be used to
determine a task's time slice count. All tasks will use this value.
6

THE CMX MULTI-TASKING EXECUTIVE

INTERRUPTS IN GENERAL
When time slicing is enabled, the current running task's priority determines which tasks
are time sliced for the moment. All tasks, starting with the next task with the same or
lower priority than the current running task, will be time sliced. If a higher priority task
preempts, then the priority of this task will be used to determine the starting priority of
the tasks that are time sliced.

When time slicing is enabled, a task will automatically RUN for the number of TIME
SLICE ticks. At the end of its time slice, a new time sliced task will be enabled if
possible. A time sliced task has to be READY or ready to RESUME to be considered
when the scheduler determines the next slice task to run.

All capable time sliced tasks will run in a “round robin” type of execution. Each sliced
task will run for the number of slice ticks chosen. If a time slice task is blocked because
it is waiting on some entity, that task will not be considered to run when the CMX
scheduler decides what slice task to run next.

If a time slice task calls a CMX function that puts the task into the SUSPENDED state,
then this task is assumed to have its slice time expired. This task will not resume until
it comes out of the SUSPENDED state and is the next time sliced task in line to receive
control.

Also note that if a task calls the K_Task_Coop_Sched function which does a
cooperative scheduling, then the time slice period for the current running task will be
lost. Also, the next task in the linked list of tasks capable of running, regardless of its
priority, will become the new RUNNING task.

You may at any time have a task disable time slicing with the K_OS_Slice_Off function.
Remember, only a task can disable time slicing and the task must be running to be able
to call this function.

You must not assume that all tasks with the same priority or lower as the current
RUNNING task will run. This is because higher priority tasks may constantly preempt
the lower priority tasks before the SLICE TICK count expires. This would let the next
task with the same priority execute.

INTERRUPTS IN GENERAL

This chapter deals with CPU's interrupts and using the CMX "interrupt pipe". The
Processor Specific Information chapter explains specifically the interrupts and how to
use them for the particular processor you are using.

CMX allows nesting of interrupts. When an interrupt is acknowledged by the CPU
hardware many things happen. This is a general description of what takes place.
Different CPUs may do things slightly different.

The following has been removed, as it is proprietary information.
 137

13

THE CMX MULTI-TASKING EXECUTIVE
HOW INTERRUPTS INTERFACE WITH CMX FUNCTIONS
HOW INTERRUPTS INTERFACE WITH CMX FUNCTIONS

The following has been removed, as it is proprietary information.

THE CMX SCHEDULER CHAPTER

The following has been removed, as it is proprietary information.

CMX OPERATING FLAGS

The following has been removed, as it is proprietary information.
8

QUICK REFERENCE

USING CMX WITH C COMPILERS
QUICK REFERENCE

The following pages are a quick reference to all the CMX functions. The functions are
listed within their respective manager in alphabetical order so you can easily look up
the desired function for reference. These are intended to assist the user in syntax and
use of the function.

[Before entering RTOS] means the call may be used prior to entering the CMX
operating system. [Tasks] mean a task may use this CMX call. [Interrupts] mean
interrupts may use this CMX call INDIRECTLY.

☞ The K_OS_Init function must be called before any CMX function call may be used.

Each CMX call also lists what CMX parameters or arguments are needed and passed,
and a description indicating what should be loaded into these parameters or arguments.
The CMX call will show the return STATUS parameter values most CMX functions
return. If STATUS is returned, it is of unsigned character size.

An example is shown using the parameters or arguments needed for this CMX call, with
the CMX call. For a detailed description of each CMX function, please refer to the
appropriate function manager chapter at the beginning of this document.

USING CMX WITH C COMPILERS

CMX is designed to work with most C compilers from different manufacturers. As you
can see from the supplied source code, CMX does try to always follow true ANSI C
specifications. There may be exceptions, to keep the code size as small as possible.
Most C compilers will not generate an error, but will sometimes produce a warning
message.

The C vendor compiler may use keywords, #pragma's, etc., for processor specific
entities. One C vendor’s header files may not be compatible with another C vendor's
tools.

If an error does occur, it is most likely one of the following: because the C compiler has
a switch to detect incompatibilities from the ANSI standard. Most C compilers allow
you to toggle, or invoke a switch when compiling to allow less strict use of C code.

There is a possibility the C compiler does not support the data types used by CMX, such
as the void pointer or a function pointer. There is nothing CMX can do if the C compiler
does not support these types of pointers.

You will notice CMX uses void pointers very often. In many of the CMX calls,
especially the ones that move a block of data, such as message passing and receiving or
queue adding and removing, these pointers will be used.
 139

14

QUICK REFERENCE
CMX RETURN STATUS BYTE VALUES
CMX RETURN STATUS BYTE VALUES

Some functions, such as K_Mesg_Get, may return a NULL pointer if there is no
message available. This indicates a possible warning/error to the caller, for NO
message was retrieved. In some cases a return value of zero indicates the CMX
function is telling the caller the item it wanted was not there or a time out occurred.

Symbol Hex Value Explanation

K_OK 00 Good CMX call was successful

K_TIMEOUT 01 Warning
or Error

Time out occurred

K_NOT_WAITING 02 Error Task not waiting for wake
request

K_RESOURCE_OWNED 05 Error Resource is already
"owned"

K_RESOURCE_NOT_OWNED 06 Error Resource not owned by
calling task

K_QUE_FULL 0A Warning Queue now full, slot was
added

K_QUE_EMPTY 0B Warning Queue now empty, slot was
removed

K_SEMAPHORE_NONE 0C Error Semaphore is not available

K_ERROR FF Error General error, CMX call
unsuccessful
0

QUICK REFERENCE

CMX RETURN STATUS BYTE VALUES
EVENT MANAGER FUNCTION

K_Event_Reset

Purpose: This function clears (resets) one or more specific events within a task. This
does not change a task state, nor does it specify which events were set or not. In most
cases, this function is not needed. The K_Event_Wait function automatically clears the
events of a task, if so programmed.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Event_Reset(byte tskid,word16 event); /* this is the function prototype */

unsigned char TASK_SLOT; /* should be global, slot number of task */

unsigned short EVENTS_TO_CLEAR; /* the event bits to clear, or could be a #define

#define EVENTS_TO_CLEAR ??? instead of variable. */

unsigned char STATUS; /* should be local */

STATUS = K_Event_Reset(TASK_SLOT,EVENTS_TO_CLEAR);

Passed

TASK_SLOT is the slot number of the task for which the event bit(s) will be cleared.

EVENTS_TO_CLEAR is a 16 bit wide variable or constant indicating the desired event
bits to clear within this task.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task does not exist.

If STATUS equals K_OK, then the event bits were cleared according to the
EVENTS_TO_CLEAR parameter passed.

☞ This function clears just the event bits within the task that is being referenced. It does not
change any of the other task event bits.

K_Event_Reset example:
 141

14

QUICK REFERENCE
CMX RETURN STATUS BYTE VALUES
#include <cxfuncs.h> /* has function prototype */
byte K_Event_Reset(byte tskid,word16 event); /* this is the function prototype */

unsigned char task1_slot; /* should be global, slot number of task 1. */

#define EVENT1 0x0001 /* event bit location 0 */

#define EVENT16 0x8000 /* event bit location 15 */

void task1(void)
{
unsigned char status; /* local */
...
status = K_Event_Reset(task1_slot,EVENT1 | EVENT16);

/* task 1 will clear task 1's event bits 0 and 15. Does not
notify whether the bits were set or reset. */

if (status != K_OK)
{
/* maybe take corrective action. */
}

...
}

2

QUICK REFERENCE

CMX RETURN STATUS BYTE VALUES
EVENT MANAGER FUNCTION

K_Event_Signal

Purpose: The K_Event_Signal function sets a specific event. This can be done in a
variety of modes. This function may be called by tasks, cyclic timers, mailboxes or
interrupts. The caller will select which event, the mode of event set it wants, and the
task slot number or priority, depending upon the mode selected.

Called

Tasks, interrupts, cyclic timers and mailboxes

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Event_Signal(byte,byte,word16); /* this is the function prototype */

#define MODE ???

unsigned char TASK_PRI;

#define EVENT_TO_SET ???

unsigned char STATUS; /* should be local */

STATUS = K_Event_Signal(MODE,TASK_PRI,EVENT_TO_SET);

Passed

MODE is the mode in which this function will determine which tasks to work with. The
values are as below.

TASK_PRI is either the task slot number or the priority in which this function will work
with according to the MODE selected.

☞ This parameter is not always used depending on the MODE.

EVENT_TO_SET is the events to set.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task does not exist if MODE = 0, or the MODE is out of range.
 143

14

QUICK REFERENCE
CMX RETURN STATUS BYTE VALUES
If STATUS equals K_OK, then the function performed as the MODE indicated it
should.

Remember that cyclic timers and mailboxes can be coded to automatically call this
function. Interrupts may also call this function.

K_Event_Signal example:

unsigned char task2_slot; /* should be global. */

#define EVENT1 0x0001 /* define event bit 0 */

#define EVENT16 0x8000 /* define event bit 15 */

void task1(void)
{
unsigned char status; /* local */
...
status = K_Event_Signal(0,task2_slot,EVENT16);

/* task 1 will tell the K_Event_Signal function to set event
bit 15 of only task 2, whether task 2 is waiting or not for
this event. If task 2 is waiting, then task 2 will
automatically resume. */

if (status != K_OK)
{
/* take corrective action. */
}
status = K_Event_Signal(3,0,EVENT1);

/* task 1 will tell the K_Event_Signal function to set event
bit 0 of all tasks that have been created, whether the task is
waiting or not for this event. If the task is waiting, then
the task will automatically resume. Notice how TASK_PRI
parameter not used, may contain any value. */

if (status != K_OK)
{
/* take corrective action. */
}

...
}

Comments

This function is very flexible and powerful. As you can see, the caller has the ability
set an event within one or more tasks depending upon the MODE selected. Carefully
read the chapter on Event Management for a thorough understanding of how events
work.
4

QUICK REFERENCE

CMX RETURN STATUS BYTE VALUES
EVENT MANAGER FUNCTION

K_Event_Wait

Purpose: This function allows a task to wait for specific events with a specified time out
if desired. The task will also specify the mode that indicates when to automatically
clear the event bits that match. The task will be suspended until either the number of
system ticks has expired or at least one event bit it is waiting for is set or becomes set.
A time period of zero indicates the task will wait indefinitely for an event match. If
there is a match as specified when the task calls this function, the task will not be
suspended and will immediately be returned to.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Event_Wait(word16,word16,byte); /* this is the function prototype */

#define MATCH ???

#define TIME_CNT ???

#define MODE ???

unsigned short EVENTS; /* should be local */

EVENTS = K_Event_Wait(MATCH,TIME_CNT,MODE);

Passed

MATCH is a 16 bit wide parameter indicating the specific events that this task would
like to have set. More than 1 event bit may be specified.

TIME_CNT is the number of system ticks to wait for a match. If the value is 0 then the
task will wait indefinitely for event match.

MODE is the mode in which this function will clear event bits, when they are set or
become set. The values are below.

0 = do not clear the event bits.

1 = clear the event bit(s) according to the ones set within the MATCH parameter at
BEGINNING of function.

2 = clear the event bit(s) according to the ones set within the MATCH parameter at
END of function.
 145

14

QUICK REFERENCE
CMX RETURN STATUS BYTE VALUES
3 = do both modes 1 and 2.

Returned

EVENTS will either contain a zero indicating the time period specified expired before
any of the events the task is waiting on became set, or the specific events were set
according to the MATCH parameter.

☞ Remember only events that are selected by the MATCH parameter are worked within this
function. The MODE parameter allows powerful synchronization as to when the task's
events are cleared.

K_Event_Wait example:

void task1(void)
{
unsigned short events; /* local */
...
events = K_Event_Wait(0x0005,0x0010,2);

/* task 1 will wait for only its event bits 0 or 2 to be set
or to become set within 16 system ticks. It is also telling
the K_Event_Wait function to clear the task's event bits 0 and
/ or 2 if they are or become set within the time period of 16
ticks. Events variable will contain the states of only tasks
event bits 0 and 2. */

if (events)
{
if (events & 0x0001)
{
/* process code for task event bit 0 being set. */
}

if (events & 0x0004)
{
/* process code for task event bit 2 being set. */
}

}
else
{
/* maybe take corrective action, for neither event bit was
already set, nor became set. */
}

...
}

☞ There are other means to wait for an event. Please read the Event Manager Functions
chapter that explains the differences of these functions.
6

QUICK REFERENCE

CMX RETURN STATUS BYTE VALUES
UART FUNCTIONS

K_Get_Char

Purpose: This allows a task to retrieve a character from the UART receive buffer, if one
is available. If there is at least one character, then that character will be placed at the
address specified by the task and returned to immediately with the return count set to
one. If there is no character, then the task will again be returned to immediately, with
the return count set to zero indicating no character was transferred. Remember, CMX
assumes only one task may have ownership to the UART receive buffer. If more than
one task has access at the same time, a resource should be set up.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Char(void *); /* this is the function prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Char(DEST_PTR);

Passed

DEST_PTR = the address where this function will place the character.

Returned

COUNT = the number of characters that were transferred from the UART receive
buffer to the destination address.

If the COUNT value is zero, there were no characters in the UART receive buffer when
this function was called. If the COUNT is non-zero, (which for this function would be
1), then one character was transferred to the destination address passed to this function.
Make note that the task would just have to pass the address of a character type variable,
instead of loading a pointer with the address and then passing the pointer (which really
passes the address that the pointer has).

K_Get_Char example:

unsigned char recv_array[80];
 147

14

QUICK REFERENCE
CMX RETURN STATUS BYTE VALUES
/* this will receive up to 80 characters, could be local if user wants or could just be a
depth of 1 in this case for this function only returns one character at the most. */

void task1(void)
{
unsigned short count; /* local */
unsigned char c;
unsigned char *recv_ptr; /* could be local or global. */

recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Char(recv_ptr); /* go get character. */
if (count)
{
c = *recv_ptr++; /* get character and increment pointer. */
...
}

...
or/* this shows another way. */
count = K_Get_Char(&c); /* go get character. */
if (count)
{
.../* process c here, etc. */
}

...
}

8

QUICK REFERENCE

CMX RETURN STATUS BYTE VALUES
UART FUNCTIONS

K_Get_Char_Wait

Purpose: This allows a task to retrieve a character from the UART receive buffer, if one
is available. If there is at least one character, then that character will be placed at the
address specified by the task and returned to immediately with the return count set to
one. If there is no character, then the task will wait for the desired time period specified.
This time period may range from zero to 65535, with zero indicating an indefinite wait.
When either a character is received or the specified time period specified, then the task
will be returned to, identifying whether a character was retrieved or not by the count
being non-zero or zero respectively. CMX assumes only one task may have ownership
to the UART receive buffer. If more than one task has access at the same time a
resource should be set up.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Char_Wait(void *,word16); /* this is the function prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

#define TIME_PERIOD ??? /* The time wait period. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Char_Wait(DEST_PTR,TIME_PERIOD);

Passed

DEST_PTR = the address where this function will place the character.

TIME_PERIOD is the number of system ticks that this task will wait for a character to
be received. May range from zero to 65535, with zero indicating an indefinite wait.

Returned

COUNT = the number of characters that were transferred from the UART receiver
buffer to the destination address.

If the COUNT value is zero, there were no characters in the UART receiver buffer when
this function was called, or the time period expired. If the COUNT is non-zero, (which
for this function would be one), then one character was transferred to the destination
address passed to this function.
 149

15

QUICK REFERENCE
CMX RETURN STATUS BYTE VALUES
K_Get_Char_Wait example:

unsigned char recv_array[80];

/* this will receive up to 80 characters, could be local if you want or could just be a
depth of one in this case since this function only returns one character at the most. */

void task1(void)
{
unsigned short count; /* local */
unsigned char c;
unsigned char *recv_ptr; /* could be local or global. */

recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Char_Wait(recv_ptr,20);
/* go get character, if there is no character, wait for 20
system ticks for one to arrive. */
if (count)
{
c = *recv_ptr++; /* get character and increment pointer. */
...
}

...
or/* this shows another way. */
count = K_Get_Char_Wait(&c,20); /* go get character. */
if (count)
{
.../* process c here, etc. */
}

...
}

0

QUICK REFERENCE

UART FUNCTIONS -- K_Get_Str
UART FUNCTIONS

K_Get_Str

Purpose: This allows a task to retrieve a specific number of characters from the UART
receive buffer if that specified number of characters are available. If there are at least
the specified number of characters they will be placed at the address specified by the
task and returned to immediately with the return count set to the number requested. If
there is less than the requested number of characters, then the task will again be returned
to immediately, with the return count set to zero, indicating no characters were
transferred. CMX assumes that only one task has ownership to the UART receive
buffer. If more than one task has access at the same time then a resource should be set
up.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Str(void *,word16); /* this is the function prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

#define NUMBER ??? /* number of characters to get. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Str(DEST_PTR,NUMBER);

Passed

DEST_PTR = the address where this function will place the character.

NUMBER is the number of characters to retrieve from the UART receive buffer. Only
the specified number will be transferred.

Returned

COUNT = the number of characters that were transferred from the UART receiver
buffer to the destination address.

If the COUNT value is zero, the required NUMBER of characters were not in the
UART receive buffer when this function was called. If the COUNT is non-zero, then
the value will represent the number of characters that were transferred to the destination
address passed to this function. The COUNT value should match the NUMBER passed
in this case.
 151

15

QUICK REFERENCE
UART FUNCTIONS -- K_Get_Str
K_Get_Str example:

unsigned char recv_array[80];

/* this will receive up to 80 characters, could be local if you want or could just be a
depth of the maximum number that this task would ask for. */

void task1(void)
{
unsigned short count; /* local */
unsigned char c;
unsigned char *recv_ptr; /* could be local or global. */

recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Str(recv_ptr,5); /* go get 5 characters. */
while (count--)
{
c = *recv_ptr++; /* get character and increment pointer. */
...
}

...
}

Comments

This allows a task to retrieve a specific number of characters from the UART receive
buffer if that number is available. The task will not wait for that number of characters
to come in.
2

QUICK REFERENCE

UART FUNCTIONS -- K_Get_Str_Return
UART FUNCTIONS

K_Get_Str_Return

Purpose: This function allows the task to immediately receive whatever number of
characters are presently in the UART receive buffer. The task will not wait on any time
period. The count returned to the task will indicate the number of characters retrieved,
if any. It is up to the task to ensure that the count will not exceed the depth of the
destination where the characters will be placed. You can use the K_Recv_Count
function to get an idea how many characters are present in the receive buffer, though
this number could change before this function was executed.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Str_Return(void *); /* this is the function prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Str_Return(DEST_PTR);

Passed

DEST_PTR = the address where this function will place the characters.

Returned

COUNT = the number of characters that were transferred from the UART receive
buffer to the destination address.

If the COUNT value is zero, there were no characters in the UART receive buffer when
this function was called. If the COUNT is non-zero, then the number of characters
present in the receive buffer were transferred to the destination address passed to this
function.

K_Get_Str_Return example:

unsigned char recv_array[80];

/* the size of the destination the characters will be transferred to, should be as large as
the receive buffer. This way the function will not transfer characters into the wrong
memory locations. */
 153

15

QUICK REFERENCE
UART FUNCTIONS -- K_Get_Str_Return
void task1(void)
{
unsigned short count; /* local */
unsigned char c;
unsigned char *recv_ptr; /* could be local or global. */
recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Str_Return(recv_ptr);
/* go get what ever number of characters that are present in
the UART receive buffer at the time of this call. */
while (count--)
{
c = *recv_ptr++; /* get character and increment pointer. */
...
}

...
}

☞ This is very useful when a task is either IDLE or waiting indefinitely. The receiver interrupt
could call the K_Task_Start or K_Task_Wake functions respectively, telling the task to now
get the characters in the buffer since the variable length packet had arrived.
4

QUICK REFERENCE

UART FUNCTIONS -- K_Get_Str_Wait
UART FUNCTIONS

K_Get_Str_Wait

Purpose: This allows a task to retrieve a specified number of characters from the UART
receive buffer and wait for a specified amount of time if that number is not available.
If there are at least the number of characters wanted, then those characters will be
placed at the address specified by the task and returned to immediately with the return
count set to the number requested. If the number of characters are not present, then the
task will wait for the desired time period specified. This time period may range from
zero to 65535, with zero indicating an indefinite wait. When either the number of
characters is received or the time period specified expires, then the task will be returned
to identifying whether the desired number of characters were retrieved or not, by the
count being non-zero or zero respectively. CMX assumes only one task has ownership
to the UART receive buffer. If more than one task has access at the same time, a
resource should be set up.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Str_Wait(void *,word16,word16); /* this is the function prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

#define NUMBER ??? /* number of characters wanted. */

#define TIME_PERIOD ??? /* The time wait period. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Str_Wait(DEST_PTR,NUMBER,TIME_PERIOD);

Passed

DEST_PTR = the address where this function will place the characters.

TIME_PERIOD is the number of system ticks that this task will wait for characters to
be received. May range from zero to 65535, with zero indicating an indefinite wait.

NUMBER is the number of characters to retrieve from the UART receive buffer. Only
the specified number will be transferred.
 155

15

QUICK REFERENCE
UART FUNCTIONS -- K_Get_Str_Wait
Returned

COUNT = the number of characters that were transferred from the UART receive
buffer to the destination address.

If the COUNT value is zero, the number of characters requested was not present in the
UART receive buffer and the time period expired. If the COUNT is non-zero, then the
number of characters requested was transferred to the destination address passed to this
function.

K_Get_Str_Wait example:

unsigned char recv_array[80];

/* this will receive up to 80 characters, could be local if you want or could just be a
depth of the specified number that the task will want to retrieve. */

void task1(void)
{
unsigned short count; /* local */
unsigned char c;
unsigned char *recv_ptr; /* could be local or global. */

recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Str_Wait(recv_ptr,40,20);
/* go get 40 characters, if there are not 40 characters, wait
for up to 20 system ticks for 40 to arrive. */
while (count--)
{
c = *recv_ptr++; /* get character and increment pointer. */
...
}

...
}

6

QUICK REFERENCE

UART FUNCTIONS -- K_Get_Str_Wait_Return
UART FUNCTIONS

K_Get_Str_Wait_Return

Purpose: This function is like the above K_Get_Str_Wait function, with the difference
being that if the specified number of characters requested are not in the receive buffer
after the time period, then the number of characters present will still be transferred. If
there are at least the number of characters wanted, then those characters will be placed
at the address specified by the task and returned to immediately with the return count
set to the number requested. If the number of characters is not present, then the task
will wait for the desired time period specified. This time period may range from zero
to 65535, with zero indicating an indefinite wait. When either the number of characters
is received or the specified time period expires, the task will be returned to with the
number of characters received transferred.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word16 K_Get_Str_Wait_Return(void *,word16,word16); /* this is the function
prototype */

unsigned char *DEST_PTR; /* this may be local or global, and will be the location that
the function puts the character. */

#define NUMBER ??? /* number of characters wanted. */

#define TIME_PERIOD ??? /* The time wait period. */

unsigned short COUNT; /* this will specify the number of characters retrieved from
buffer. */

COUNT = K_Get_Str_Wait_Return(DEST_PTR,NUMBER,TIME_PERIOD);

Passed

DEST_PTR = the address where this function will place the characters.

TIME_PERIOD is the number of system ticks this task will wait for characters to be
received. May range from zero to 65535, with zero indicating an indefinite wait.

NUMBER is the number of characters to retrieve from the UART receive buffer.

Returned

COUNT = the number of characters that were transferred from the UART receive
buffer to the destination address.
 157

15

QUICK REFERENCE
UART FUNCTIONS -- K_Get_Str_Wait_Return
If the COUNT value is zero, there were no characters in the UART receive buffer when
the time period expired. If the COUNT is non zero, then the number of characters
requested or present after time period expired were transferred to the destination
address passed to this function.

K_Get_Str_Wait_Return example:

unsigned char recv_array[80];

/* this will receive up to 80 characters, could be local if user wants or could just be a
depth of the specified number that the task will want to retrieve. */

void task1(void)
{
unsigned short count; /* local */
unsigned char c;
unsigned char *recv_ptr; /* could be local or global. */

recv_ptr = recv_array; /* load pointer with address of
recv_array. */
count = K_Get_Str_Wait_Return(recv_ptr,40,20);
/* go get 40 characters, if there are not 40 characters, wait
for up to 20 system ticks for 40 to arrive. Still retrieve the
number of characters in the buffer after time period expires.
*/
if (count < 40)
{
.../* maybe test to see if count requested less than count
received and possibly act on it in some way. */
while (count--)
{
c = *recv_ptr++; /* get character and increment pointer. */
...
}

}
...

}

8

QUICK REFERENCE

UART FUNCTIONS -- K_Init_Recv
UART FUNCTIONS

K_Init_Recv

Purpose: The K_Init_Recv function will initialize the receive buffer by setting its
associated pointers to the beginning of the receive buffer. Also the receive count_in
variable, that indicates the number of bytes received but not retrieved yet, will be reset
to zero. The receiver status flags will be reset indicating the receiver is fine and that no
errors, full or otherwise, exist.

You are free to call the K_Init_Recv at any time, as long as a task is not waiting for the
receiver, because the specified number of characters the task wants, are not yet present.
Remember, if there are characters in the receive buffer that have not yet been retrieved,
these characters will be lost. The receiver BAUD rate, number of data bits, parity and
number of stop bits can be set here.

This is an example of the K_Init_Recv function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Init_Recv(void); /* this is the function prototype */

K_Init_Recv();

Passed

main()
{
K_Init_Recv(); /* go initialize the UART receiver */
...

}

Returned

Nothing is returned.
 159

16

QUICK REFERENCE
UART FUNCTIONS -- K_Init_Xmit
UART FUNCTIONS

K_Init_Xmit

Purpose: The K_Init_Xmit function will initialize the transmit buffer by setting its
associated pointers to the beginning of the transmit buffer. Also the transmit count_out
variable, indicating the number of bytes which need to be transmitted, will be reset to
zero. The transmitter status flags will be reset indicating the transmitter is fine and not
busy. You should only call the K_Init_Xmit once. There is no reason to ever reinitialize
the transmit buffer. The transmitter BAUD rate, number of data bits, parity and number
of stop bits can be set here.

This is an example of the K_Init_Xmit function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Init_Xmit(void); /* this is the function prototype */

K_Init_Xmit();

Passed

main()
{
K_Init_Xmit(); /* go initialize the UART transmitter */
...

}

Returned

Nothing is returned.
0

QUICK REFERENCE

MESSAGE MANAGER FUNCTION -- K_Mbox_Event_Set
MESSAGE MANAGER FUNCTION

K_Mbox_Event_Set

Purpose: This function sets up the mailbox. When the mailbox contains or receives a
message, it will automatically use the K_Event_Signal function, setting a specific event
bit of a particular task. This allows a task to wait on events. When a message arrives
in a mailbox, the mailbox will set the event, notifying the task that there are messages
in the mailbox.

Called

Before entering RTOS, tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Mbox_Event_Set(byte,byte,word16); /* this is the function prototype */

unsigned char TASK_SLOT; /* Should be global */

#define EVENT ??? /* which event bit to set */

#define MBOX1 ??? /* numerical identifier that identifies the particular mailbox */

unsigned char STATUS; /* receives status of function. */

STATUS = K_Mbox_Event_Set(MBOX1,TASK_SLOT,EVENT);

Passed

MBOX1 is the mailbox number in which the task would like to test for messages. This
number ranges from zero to the maximum number of mailboxes specified minus one.

TASK_SLOT is the slot number of the task that will have an event bit set, when there
are messages in this mailbox.

EVENT is the event identifier that determines which event bit will be set in the declared
task.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the mailbox number is out of range.
 161

16

QUICK REFERENCE
MESSAGE MANAGER FUNCTION -- K_Mbox_Event_Set
☞ Remember the mailbox will set the event the first time a message arrives and will also set
the event each time the task retrieves a message, if more messages are in this mailbox. This
function may be called more than once to specify a different event and/or task.

K_Mbox_Event_Set example:

#define MBOX1 1 /* this is mailbox 1 identifier */

#define EVENT_MBOX1 0x4000 /* identify which event to set. */

unsigned char task2_slot; /* should be global. */

void task2(void)
{
unsigned char status; /* local */
unsigned short events;
...
status = K_Mbox_Event_Set(MBOX1,task2_slot,EVENT_MBOX1);

/* Task 1 will set up mailbox 1 to set task 2 event bit 14.
When a message is placed into mailbox 1, then task 2 will have
its event set. This is very useful for tasks to wait on
multiple events, then process the specified event when it
happens. Tasks can have many mailboxes and when the mailboxes
receive a message, notify the task. */

if (status)
{
/* error, mailbox number out of range */
}

while(1)
{
events = K_Event_Wait(EVENT_MBOX1,0,2); /* now let task wait
indefinitely for an event to match. Could wait on more than
one event. When task resumed, then could test events for what
to do. Event auto cleared when match happened. */
if (events & EVENT_MBOX1)
{
/* go get message and process, etc. */
}

if (events & ???)
{
/* process this event setting, etc. */
}
... etc.

}
...

}

2

QUICK REFERENCE

MEMORY MANAGER FUNCTION -- K_Mem_FB_Create
MEMORY MANAGER FUNCTION

K_Mem_FB_Create

Purpose: This function creates a fixed block memory pool. No memory contention is
checked for by this function. It is assumed the pool's memory is free to be used and will
not be used by code except through the memory function supplied.

You specify the number of fixed blocks, and the size of each block within this memory
pool. You also pass the beginning address of memory where they would like this
memory pool to reside. It is up to you to ensure the memory allocated to this block is
large enough to support the memory requirements of this pool. The memory
requirement for a pool is the number of blocks times the size of each block, plus the size
of a character pointer. In addition, you must align this memory space to the alignment
rules for the particular processor you are using.

Called

Before entering RTOS, tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Mem_FB_Create(void *,word16,word16); /* this is the function prototype */

#define BLK_SIZE ??? /* size of each memory block */

#define NUM_BLOCKS ??? /* number of memory blocks */

struct {
unsigned char *dummy_ptr; /* will allocated space for CMX */
unsigned char pool_bytes[BLK_SIZE * NUM_BLOCKS]; /* allocate enough memory
for this memory pool. */
} MEM_POOL1; /* this is memory pool 1 */

K_Mem_FB_Create(&MEM_POOL1,BLK_SIZE,NUM_BLOCKS);

Passed

&MEM_POOL1 is the beginning address where this memory pool will reside in
memory.

BLK_SIZE is the size in bytes, that each block within this memory pool will have.
Maximum of 255 bytes

NUM_BLOCKS is the number of fixed blocks within this memory pool. Maximum is
65535.
 163

16

QUICK REFERENCE
MEMORY MANAGER FUNCTION -- K_Mem_FB_Create
Returned

No status is returned.

☞ Remember you must ensure enough memory for this memory pool to exist, and no memory
contention is tested for. Also, if the processor must have pointers residing on specific
boundaries, like an even address, then the size of a block must be even. This is because
CMX places pointers within the unused memory blocks, for internal use.

K_Mem_FB_Create Example:

#define BLK_SIZE 10 /* each memory block to be 10 bytes */

#define NUM_BLOCKS 15 /* there will be 15 memory blocks */

struct {
unsigned char *dummy_ptr; /* this will allocated space for CMX */
unsigned char pool_bytes[BLK_SIZE * NUM_BLOCKS]; /* allocate enough memory
for this memory pool. */
} MEM_POOL1; /* this is memory pool 1 */

void task2(void)
{
...
K_Mem_FB_Create(&MEM_POOL1,BLK_SIZE,NUM_BLOCKS);

/* task 2 will create a fixed block memory pool. This memory
pool will be created with each block having a size of 10, and
there will be 15 blocks within this memory pool. */
...

}

4

QUICK REFERENCE

MEMORY MANAGER FUNCTION -- K_Mem_FB_Get
MEMORY MANAGER FUNCTION

K_Mem_FB_Get

Purpose: This function retrieves a fixed block of memory, if one is available and returns
the address of this block. The fixed block memory is contiguous, but may have garbage
left in the block's bytes from past usage of this block.

Called

By tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Mem_FB_Get(void *,byte **); /* this is the function prototype */

struct {/* previous created by K_Mem_FB_Create function */
unsigned char *dummy_ptr;
unsigned char pool_bytes[BLK_SIZE * NUM_BLOCKS];
} MEM_POOL1; /* this is memory pool 1 */

unsigned char *BLOCK_ADDR; /* block pointer could be local or global */

unsigned char STATUS; /* should be local */

STATUS = K_Mem_FB_Get(&MEM_POOL1,&BLOCK_ADDR);

Passed

&MEM_POOL1 is the beginning address where this particular memory pool will reside
in memory.

&BLOCK_ADDR is the address of the unsigned char pointer, in which the address of
the fixed block will be placed.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: no free block within this memory pool.

If STATUS equals K_OK, then BLOCK_ADDR contains the block's address. Copy
this address to another pointer, because when releasing this block, you will have to pass
this address back.
 165

16

QUICK REFERENCE
MEMORY MANAGER FUNCTION -- K_Mem_FB_Get
K_Mem_FB_Get Example:

struct {/* previously created by K_Mem_FB_Create function */
unsigned char *dummy_ptr;
unsigned char pool_bytes[BLK_SIZE * NUM_BLOCKS];
} MEM_POOL1; /* this is memory pool 1 */

void task2(void)
{
unsigned char status/* local */
unsigned char *blk_addr; /* local, for remembering address of
block. */
unsigned char *blk_ptr; /* local, for using memory block */
...
status = K_Mem_FB_Get(&MEM_POOL1,&blk_addr);

/* task 2 will retrieve a free block out of memory pool 1, if
a free block exists. */

if (status == K_OK)
{
blk_ptr = blk_addr; /* copy address of block into block
pointer, now block pointer may be used freely. */
...
}

...
}

Comments

You must ensure the address is passed back, held, and left untouched since it will be
passed to the K_Mem_FB_Release function when you have finished with this block and
would like to release it. Again, no memory testing is done to see if the memory pool's
address is a valid one or not.
6

QUICK REFERENCE

MEMORY MANAGER FUNCTION -- K_Mem_FB_Release
MEMORY MANAGER FUNCTION

K_Mem_FB_Release

Purpose: This function releases the block of memory back to a particular pool, which
will then be considered free and available.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Mem_FB_Release(void *,byte *); /* this is the function prototype */

struct {/* previously created by K_Mem_FB_Create function */
unsigned char *dummy_ptr;
unsigned char pool_bytes[BLK_SIZE * NUM_BLOCKS];
} MEM_POOL1; /* this is memory pool 1 */

unsigned char *BLOCK_ADDR; /* previously declared, block pointer could be local
or global */

K_Mem_FB_Release(&MEM_POOL1,BLOCK_ADDR);

Passed

&MEM_POOL1 is the beginning address where this particular memory pool will reside
in memory.

BLOCK_ADDR is the contents of the BLOCK_ADDR address, which contains the
address of the block that was retrieved by the K_Mem_FB_Get function.

Returned

No status is returned.

☞ Ensure that the block address passed to this function is the same address received by the
K_Mem_FB_Get function. No testing is performed to check the validity of this address.

K_Mem_FB_Release Example:

struct {/* previously created by K_Mem_FB_Create function */
unsigned char *dummy_ptr;
unsigned char pool_bytes[BLK_SIZE * NUM_BLOCKS];
} MEM_POOL1; /* this is memory pool 1 */

void task2(void)
{

 167

16

QUICK REFERENCE
MEMORY MANAGER FUNCTION -- K_Mem_FB_Release
unsigned char *blk_addr; /* local, for remembering address of
block. */
unsigned char *blk_ptr; /* local, for using memory block */
...
K_Mem_FB_Release(&MEM_POOL1,blk_addr);

/* task 2 will now release this particular block back to its
particular memory pool. When this block is released, it is
then considered free, and may be again released to another
task, or even again to this task, when a block is requested out
of this memory pool. */
...

}

8

QUICK REFERENCE

MESSAGE MANAGER FUNCTION -- K_Mesg_Ack_Sender
MESSAGE MANAGER FUNCTION

K_Mesg_Ack_Sender

Purpose: This function wakes a task that sent a message using the K_Mesg_Send_Wait
function. The task that retrieves the message must issue this call prior to retrieving the
next message. The task may always call this function if it is not sure whether the
message retrieved was sent with either the K_Mesg_Send_Wait or K_Mesg_Send
functions. This function is intelligent enough to determine whether a task is waiting for
this call or not.

Called

Tasks

#include <cxfuncs.h> /* has function prototype */
byte K_Mesg_Ack_Sender(void); /* this is the function prototype */

unsigned char STATUS; /* should be local */

STATUS = K_Mesg_Ack_Sender();

Passed

Nothing.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_NOT_WAITING = Warning: The task that sent the received message was not
waiting.

If STATUS equals K_OK, then the task that had sent the message had used the
K_Mesg_Send_Wait function and the task was suspended is now placed into the
READY state.

☞ An immediate rescheduling will occur if the awakened task has a higher priority than the
current running task.

K_Mesg_Ack_Sender example:

#define MBOX1 1 /* mailbox 1 identifier. */

void task2(void)
{

 169

17

QUICK REFERENCE
MESSAGE MANAGER FUNCTION -- K_Mesg_Ack_Sender
unsigned char status; /* local */
unsigned char *recv_ptr; /* local pointer to receive address
of message. */
...
recv_ptr = K_Mesg_Get(); /* go get message if one is available
*/

if (recv_ptr) /* not NULL, must be message */
{
status = K_Mesg_Ack_Sender();

/* Task 2 will wake task 1, which is the one that sent message
with the K_Mesg_Send_Wait function. */

.../* process message. NOTE: the K_Mesg_Ack_Sender function
can be called any time prior to calling another function that
retrieves a message, such as the K_Mesg_Get or K_Mesg_Wait
functions. */
}

...
}

0

QUICK REFERENCE

MESSAGE MANAGER FUNCTION -- K_Mesg_Get
MESSAGE MANAGER FUNCTION

K_Mesg_Get

Purpose: This function allows a task to retrieve a message address from a mailbox, if
one is available. The task will not be suspended whether there is a message or not.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void * K_Mesg_Get(byte); /* this is the function prototype */

#define MBOX1 ??? /* numerical identifier that identifies the particular mailbox */

unsigned char *RECV_PTR; /* could be local or global */

RECV_PTR = K_Mesg_Get(MBOX1);

Passed

MBOX1 is the mailbox number in which the task would like to test for messages. This
number ranges from zero to the maximum number of mailboxes specified minus one.

Returned

RECV_PTR is the pointer that will be given the address where the message bytes are
located.

If RECV_PTR = NULL (0), then there was NOT a message in this mailbox when this
task called. If the RECV_PTR contains a non null value, this will be the address of the
message bytes.

K_Mesg_Get example:

#define MBOX1 1 /* this is mailbox 1 identifier */

unsigned char *recv_ptr; /* create a pointer to receive the message address, could also
be local variable to task */

void task1(void)
{
unsigned char status; /* local */
...
recv_ptr = K_Mesg_Get(MBOX1);
/* Task 1 will try to get a message from mailbox 1. If a
message is available, then the address where the message is
will be returned back to the caller. */
 171

17

QUICK REFERENCE
MESSAGE MANAGER FUNCTION -- K_Mesg_Get
if (recv_ptr) /* see if non NULL value */
{
/* process message code here */
}

...
}

2

QUICK REFERENCE

MESSAGE MANAGER FUNCTION -- K_Mesg_Send
MESSAGE MANAGER FUNCTION

K_Mesg_Send

Purpose: This function allows tasks and interrupts to send a message to a mailbox. The
calling task or interrupt will not wait for a K_Mesg_Ack_Sender request. Remember,
the message itself is not sent, just the address of the message is passed to the mailbox.
The message contents can be virtually anything as long as the sender and receiver agree
on the format. This is extremely useful, as interrupts may send a message identifying
a port's pin states for example. Also, a task may own several mailboxes, so a priority
scheme could be set up with high priority message sent to mailbox one, lower priority
messages sent to mailbox two, and lowest priority messages sent to mailbox three.

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Mesg_Send(byte,void *); /* this is the function prototype */

#define MBOX1 ??? /* numerical identifier that identifies the particular mailbox */

unsigned char SOURCE_BYTES[] = ??? /* could be global or local */

unsigned char STATUS; /* should be local to task */

STATUS = K_Mesg_Send(MBOX1,SOURCE_BYTES);

Passed

MBOX1 is the mailbox number in which the task would like to test for messages. This
number ranges from 0 to the maximum number of mailboxes specified minus 1.

SOURCE_BYTES is the address where the message bytes reside, which will be copied
into the mailbox’s message pointer.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: there are NO more message blocks available or the mailbox
number is out of range.
 173

17

QUICK REFERENCE
MESSAGE MANAGER FUNCTION -- K_Mesg_Send
If STATUS equals K_OK, then a message has been placed into the mailbox message
block. Make note that each mailbox works as a FIFO (first in, first out) queue.

K_Mesg_Send example:

unsigned char global_message[] = {"global message\n"}; /* this is a global message. */

#define MBOX1 1 /* numerical identifier that identifies the particular mailbox */

void task2(void)
{
unsigned char status; /* local */
...
status = K_Mesg_Send(MBOX1,global_mesg);

/* Task 2 will send a message to mailbox 1. Just the address
where this message resides, is placed into the mailbox message
block. */
if (status != K_OK)
{
/* an error occurred because either there were no more message
blocks available or the mailbox specified is out of range. */
...
}

status = K_Mesg_Send(MBOX1,"could pass a message like this");

/* This shows the user another way in which a message could be
passed. */

}

☞ Mailboxes do not have a predetermined depth. Mailboxes can be of any depth, for the
message blocks are the actual carrier of the message address. As long as a message block
is free, it will be given to any mailbox that needs it.
4

QUICK REFERENCE

MESSAGE MANAGER FUNCTION -- K_Mesg_Send_Wait
MESSAGE MANAGER FUNCTION

K_Mesg_Send_Wait

Purpose: This function sends a message to a mailbox. The calling task will also wait
for either the time period to expire or for the K_Mesg_Ack_Sender function to wake it.
If there is a message block free, it will be linked into the mailbox and the address of the
message bytes being sent will be placed into the message block. The task will also wait
for the task that receives this message to issue the K_Mesg_Ack_Sender function to
wake this task. The task can specify the time period it is willing to wait. This can be
indefinitely or for a number of system ticks.

 Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Mesg_Send_Wait(byte,word16,void *); /* this is the function prototype */

#define MBOX1 ??? /* numerical identifier that identifies the particular mailbox */

#define TIME_PERIOD ??? /* amount of time to wait for */

unsigned char SOURCE_BYTES[] = ???; /* could be global or local */

unsigned char STATUS; /* should be local to task */

STATUS = K_Mesg_Send(MBOX1,TIME_PERIOD,SOURCE_BYTES);

Passed

MBOX1 is the mailbox number which the task would like to test for messages. This
number ranges from zero to the maximum number of mailboxes specified minus one.

TIME_PERIOD is the number of system ticks this task will wait for the
K_Mesg_Ack_Sender function to wake it. A period of zero indicates to wait
indefinitely. The period may range from zero to 65535.

SOURCE_BYTES is the address where the message bytes reside, which will be copied
into the mailbox’s message pointer.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.
 175

17

QUICK REFERENCE
MESSAGE MANAGER FUNCTION -- K_Mesg_Send_Wait
K_ERROR = Error: there are no more message blocks available or the mailbox number
is out of range.

K_TIMEOUT = warning: That the time period expired before the K_Mesg_Ack_Sender
function was used to wake this task.

If STATUS equals K_OK, then a message had been placed into the mailbox, a task then
received this message and issued the K_Mesg_Ack_Sender function to notify this task
(sender) that the message was received.

K_Mesg_Send_Wait example:

unsigned char global_message[] = {"global message\n"}; /* this is a global message. */

#define MBOX1 1 /* numerical identifier that identifies the particular mailbox */

void task2(void)
{
unsigned char status; /* local */
...
status = K_Mesg_Send_Wait(MBOX1,0,global_mesg);

/* Task 2 will send a message to mailbox 1. Task 2 then will
be suspended indefinitely, waiting for the task that receives
this message to use the K_Mesg_Ack_Sender function, notifying
task 2 that the message was received. */
if (status != K_OK)
{
if (status == K_TIMEOUT) /* because of time out */
{
...
}

else
{
/* an error occurred because either there were no more
message blocks available or the mailbox specified is out of
range. */
}

}
...
status = K_Mesg_Send(MBOX1,30,"hello world");

/* Task 2 will now wait for only 30 system ticks for task that
receives this message to use K_Mesg_Ack_Sender function. */

}

6

QUICK REFERENCE

MESSAGE MANAGER FUNCTION -- K_Mesg_Wait
MESSAGE MANAGER FUNCTION

K_Mesg_Wait

Purpose: This function allows a task to wait for a message from a specific mailbox for
a specified period of time. The task will specify the number of system ticks to wait for
a message. A time period of zero will suspend the task indefinitely waiting for a
message. The task will remain suspended until either the specified number of ticks
expire or a message is received, at which time the task will be put into the READY state.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void * K_Mesg_Wait(byte,word16); /* this is the function prototype */

#define MBOX1 ??? /* numerical identifier that identifies the particular mailbox */

#define TIME_CNT ???

unsigned char *RECV_PTR; /* could be local or global */

RECV_PTR = K_Mesg_Wait(MBOX1,TIME_CNT);

Passed

MBOX1 is the mailbox number in which the task would like to test for messages. This
number ranges from zero to the maximum number of mailboxes specified minus one.

TIME_CNT is the number of system ticks to wait for a message. The range is zero
through 65535. If the value is zero, then the task will wait indefinitely for a message to
arrive.

Returned

RECV_PTR is the pointer that will be given the address where the message bytes are
located.

If RECV_PTR = NULL (0), then either the time period specified expired prior to a
message being retrieved or the mailbox number was out of range. If the RECV_PTR
contains a non null value, this will be the address where the message bytes are.

K_Mesg_Wait example:

#define MBOX1 1 /* this is mailbox 1 identifier */
 177

17

QUICK REFERENCE
MESSAGE MANAGER FUNCTION -- K_Mesg_Wait
unsigned char *recv_ptr; /* create a pointer to receive the message address, could also
be local variable to task */

void task1(void)
{
unsigned char status; /* local */
...
recv_ptr = K_Mesg_Wait(MBOX1,100);

/* Task 1 will wait for a message. If a message is available,
then task 1 will not be suspended and the recv_ptr will have
the message address on return. Otherwise task 1 will wait for
100 system ticks for a message to arrive. If a message arrives
within this time frame then task 1 will automatically be put
into the READY state. If the time period expires, then the
task will be put into the READY state and notified that no
message was received */

if (recv_ptr) /* see if non NULL value */
{
/* process message code here */
}

...
}

☞ If a task is waiting for a message and one comes in prior to the time period elapsing, the
task is immediately put back into the READY to resume state.
8

QUICK REFERENCE

OPERATING SYSTEM FUNCTION -- K_OS_Disable_Interrupts
OPERATING SYSTEM FUNCTION

K_OS_Disable_Interrupts

Purpose: This function GLOBALLY disables the interrupts. Any non-maskable
interrupt will not be immediately recognized. If the interrupt sets a latch, then this will
not be prevented. This uses the particular CPU instruction that masks out all non-
maskable interrupts from being acknowledged and processed.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Disable_Interrupts(void); /* this is the function prototype */

K_OS_Disable_Interrupts();

Passed

Nothing is passed.

Returned

Nothing is returned.

Read the particular CPU manual that further describes the action and the effect it has
on interrupts when the interrupts are GLOBALLY disabled.

K_OS_Disable_Interrupts example:

void task1(void)
{
unsigned char status; /* local */
.../* application code here */

K_OS_Disable_Interrupts(); /* do critical region of code
stuff. */
...
K_OS_Enable_Interrupts(); /* re-enable interrupts. */

.../* application code here */
}

 179

18

QUICK REFERENCE
OPERATING SYSTEM FUNCTION -- K_OS_Disable_Interrupts
Comments

Use this function sparingly or not at all if possible. ALL maskable interrupts will not
be recognized until the interrupts are re-enabled. This will also add latency time to the
interrupt processing its code. If used, the user must remember to re-enable interrupts
using the K_OS_Enable_Interrupts function.

Some C vendor compilers have special instructions that will allow the interrupts to be
GLOBALLY disabled and the code placed inline. This executes faster than calling the
equivalent CMX function.
0

QUICK REFERENCE

OPERATING SYSTEM FUNCTION -- K_OS_Enable_Interrupts
OPERATING SYSTEM FUNCTION

K_OS_Enable_Interrupts

Purpose: This function GLOBALLY enables interrupts. It is used in conjunction with
the K_OS_Disable_Interrupts function. All non-maskable interrupts that were
GLOBALLY disabled, will be enabled. If any interrupt is pending, then the interrupt
will now be recognized and processed according to the CPU interrupt hardware
mechanism and priority scheme.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Enable_Interrupts(void); /* this is the function prototype */

K_OS_Enable_Interrupts();

Passed

Nothing is passed.

Returned

Nothing is returned.

Read the particular CPU manual that further describes the action and the effect on
interrupts when they are GLOBALLY enabled.

K_OS_Enable_Interrupts example:

void task1(void)
{
unsigned char status; /* local */
.../* application code here */

K_OS_Disable_Interrupts(); /* do critical region of code
items. */
...
K_OS_Enable_Interrupts(); /* re-enable interrupts. */

.../* application code here */
}

 181

18

QUICK REFERENCE
OPERATING SYSTEM FUNCTION -- K_OS_Enable_Interrupts
Comments

This function should be called as soon as possible after the K_OS_Disable_Interrupts
function is called. Some C vendor compilers have special instructions that allow the
interrupts to be GLOBALLY enabled and the code placed inline. This executes faster
than calling the equivalent CMX function.
2

QUICK REFERENCE

OPERATING SYSTEM FUNCTION -- K_OS_Init
OPERATING SYSTEM FUNCTION

K_OS_Init

Purpose: This function is called to set up all the memory needed for CMX and initialize
the CMX variables, parameters and configurable system maximums. The K_OS_Init
function must be called before any other CMX functions are called. This is done in the
start up code. The file containing the function K_OS_Init should be compiled each time
you change the "CXCONFIG.H" file, which declares the application’s maximums.

Called

Before using any other CMX function calls.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Init(void); /* this is the function prototype */

K_OS_Init();

Passed

Nothing.

Returned

Nothing.

☞ Remember this function must be called before any other CMX function is called. If not,
then disastrous results will occur.

K_OS_Init Example:

void main(void)
{
/* define any locals within main */

K_OS_Init(); /* initialize CMX */
...
/* now the user can access any CMX function, that is allowed
to be accessed prior to entering the CMX operating system */
...

}

 183

18

QUICK REFERENCE
OPERATING SYSTEM FUNCTION -- K_OS_Intrp_Entry
OPERATING SYSTEM FUNCTION

K_OS_Intrp_Entry

Purpose: The K_OS_Intrp_Entry function is used by most interrupts. The interrupt's
first instruction is to call the K_OS_Intrp_Entry function. This informs CMX it should
save the context of the CPU registers and swap in the interrupt stack when a interrupt
occurs. See the chapter on Processor Specific Information for details on the particular
CPU you are working with.

Because some C compilers generate code (such as setting up the frame pointer for a
function), the interrupt handler, for most processors, should be written in assembly
language. The interrupt handler follows the guidelines for the particular CPU calling
the K_OS_Intrp_Entry routine. After this is done, the interrupt handler may call the
interrupt processing code written in C, or just continue with the assembly language
interrupt processing code.

It is recommended to write all interrupt code in assembly, since greater speed is
achieved. If the interrupt does not call this function, then the interrupt must save and
restore all registers used, and this interrupt may not use any CMX calls. Please read the
Processor Specific Information chapter on interrupts and the additional interrupt notes
supplied for the CPU you are working with.

Called

Interrupts only.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Intrp_Entry(void); /* this is the function prototype */

☞ The call must be written in assembly language to the specific CPU instruction set.

call K_OS_Intrp_Entry ;written in assembly some CPU'S

jsr K_OS_Intrp_Entry ;other CPU'S. etc.

Passed

Nothing.

Returned

Nothing.

☞ Interrupts are disabled when this function returns. The user may allow this interrupt to
re-enable interrupts or not. Interrupts such as the NMI cannot be disabled though. When
this function is called, the task (if one is RUNNING) contexts will be saved. If this is the
first interrupt (CMX allows nested interrupts), then the interrupt stack will be switched in.
4

QUICK REFERENCE

OPERATING SYSTEM FUNCTION -- K_OS_Intrp_Entry
K_OS_Intrp_Entry example:

☞ Written in assembly.

INTERRUPT_X_HANDLER: ;this is where the specific interrupt will vector to, when
;the interrupt is recognized by the CPU.

; prologue code if need be. DEPENDENT on CPU.

;

call K_OS_Intrp_Entry ;written in assembly some CPU'S

jsr K_OS_Intrp_Entry ;Hitachi H8/300 series

Now the interrupt may finish the code necessary to process this interrupt. Some CMX
calls are allowed. The interrupt code could now call the interrupt function code written
in C language. This is not recommended though, since interrupts should be as fast as
possible. Also at this point this interrupt may re-enable interrupts. If you decide to re-
enable interrupts, make sure that either this interrupt is masked out (won't be
acknowledged again) or that the CPU hardware will not vector to this interrupt again
until this interrupt has finished its code.

;interrupt's code ...

call K_OS_Intrp_Exit ;epilogue, must be called by interrupts that have used the
K_OS_Intrp_Entry call.

If the interrupt used the K_OS_Intrp_Entry call, then the CPU's instruction that
indicates return from interrupt (RETI on 8051 CPU, RTE on the Hitachi H8/300 series
CPU's) is not needed. CMX will inform the CPU that the interrupt is finished within
the K_OS_Intrp_Exit code.
 185

18

QUICK REFERENCE
OPERATING SYSTEM FUNCTION -- K_OS_Intrp_Exit
OPERATING SYSTEM FUNCTION

K_OS_Intrp_Exit

Purpose: Any interrupt that used the K_OS_Intrp_Entry call to have CMX save the
current task context and switch in the interrupt stack, must use this function when the
interrupt has finished its code. This takes the place of the normal CPU's return from
interrupt instruction. This function is the last instruction of the interrupt's code.

Please read the Processor Specific Information chapter on interrupts and the additional
interrupt notes supplied for the CPU you are working with.

Called

Interrupts only.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Intrp_Exit(void); /* this is the function prototype */

☞ Call must be written in assembly language to the specific CPU instruction set.

call K_OS_Intrp_Exit ;written in assembly some CPU'S

jsr K_OS_Intrp_Exit ;other CPU'S. etc.

Passed

Nothing.

Returned

Does not return.

☞ If the interrupt is nested (meaning this interrupt is at least the second interrupt) then this
call will return to the prior interrupt’s code. If this is the first interrupt, then this call will
invoke the scheduler. The scheduler will determine whether the interrupt used a CMX call
that requires a task swap, or that the task RUNNING prior to this interrupt should still be
the RUNNING task.

K_OS_Intrp_Exit example:

☞ Written in assembly.

INTERRUPT_X_HANDLER: ;this is where the specific interrupt will vector to, when
;the interrupt is recognized by the CPU.

; prologue code if need be. DEPENDENT on CPU.
6

QUICK REFERENCE

OPERATING SYSTEM FUNCTION -- K_OS_Intrp_Exit
;

;call K_OS_Intrp_Entry ;written in assembly some CPUs

;jsr K_OS_Intrp_Entry ;Hitachi H8/300 series

Now the interrupt may finish the code necessary to process this interrupt. Some CMX
calls are allowed. The interrupt code could now call the interrupt function code written
in C language. This is not recommended though, since interrupts should be as fast as
possible. Also at this point this interrupt may re-enable interrupts. If you decide to re-
enable interrupts, make sure that either this interrupt is masked-out (won't be
acknowledged again) or that the CPU hardware will not vector to this interrupt again
until this interrupt has finished its code.

;interrupt's code ...

call K_OS_Intrp_Exit ;epilogue, must be called by interrupts that have used the
K_OS_Intrp_Entry call.

If the interrupt used the K_OS_Intrp_Entry call, then the CPU instruction that indicates
return from interrupt (RETI on 8051 CPU, RTE on the Hitachi H8/300 series CPU's) is
not needed. CMX will inform the CPU that the interrupt is finished within the
K_OS_Intrp_Exit code.
 187

18

QUICK REFERENCE
OPERATING SYSTEM FUNCTION -- K_OS_Low_Power_Func
OPERATING SYSTEM FUNCTION

K_OS_Low_Power_Func

Purpose: Lets the processor enter reduced power state. The K_OS_Low_Power_Func
function is called by the CMX scheduler module written in assembly. It is up to you to
code this function to invoke the CPU power down mode.

In most cases, you select the state that allows the processor to resume normal activity
when the interrupt used for the "system tick" occurs. This way the tasks and cyclic
timers that need their time periods reduced and tested will be able to do so. Also it is
up to you that the processor returns properly to the next instruction within the assembly
module that called the K_OS_Low_Power_Func function. You can move this function
to the assembly module if need be. Remember, CMX assumes that when the CPU
comes out of the reduced power state it will return properly to the instruction following
the instruction that called this function.

Called

By the CMX scheduler.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Low_Power_Func(void); /* this is the function prototype */

...

"in assembly coded scheduler module"

call K_OS_Low_Power_Func

Passed

Nothing.

Returned

Nothing.

☞ Remember, you should code this function for the power down state you would like and to
ensure the processor returns to the instruction following the call to
K_OS_Low_Power_Func.

K_OS_Low_Power_Func Example:

The scheduler will determine when NO tasks are able to run, because the tasks are either
IDLE or SUSPENDED.
8

QUICK REFERENCE

OPERATING SYSTEM FUNCTION -- K_OS_Low_Power_Func
call K_OS_Low_Power_Func ;proper assembly code instruction by CMX within the
scheduler assembly code.

void K_OS_Low_Power_Func(void)
{
.../* user written routine here. */
/* NOTE: may be coded in assembly if need be for the particular
CPU and / or C vendor tools. */

}

 189

19

QUICK REFERENCE
OPERATING SYSTEM FUNCTION -- K_OS_Slice_Off
OPERATING SYSTEM FUNCTION

K_OS_Slice_Off

Purpose: This function disables time slicing if it had been previously enabled by the
K_OS_Slice_On function. Tasks will no longer be time sliced. When called, this
function takes effect immediately.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Slice_Off(void); /* this is the function prototype */

K_OS_Slice_Off();

Passed

Nothing is passed.

Returned

Nothing is returned.

Study the Time Slice Chapter to better understand how time slicing works.

K_OS_Slice_Off example:

void task1(void)
{
unsigned char status; /* local */

K_OS_Slice_On(); /* enable time slicing. */

.../* application code here */

K_OS_Slice_Off(); /* disable time slicing. */
...

}

Comments

You can freely allow tasks to enable and disable time slicing when necessary. In most
cases, time slicing will not be needed.
0

QUICK REFERENCE

OPERATING SYSTEM FUNCTION -- K_OS_Slice_On
OPERATING SYSTEM FUNCTION

K_OS_Slice_On

Purpose: This function enables time slicing. Tasks will become time sliced according
to their priority with other tasks. The CMX_TSLICE_SCALE value defined in the
"CXCONFIG.H" file will be loaded into the slice_count variable and be used to
determine when to perform a time slice task change. The change will take effect
immediately.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Slice_On(void); /* this is the function prototype */

K_OS_Slice_On();

Passed

Nothing is passed.

Returned

Nothing is returned.

Study the Time Slice Chapter to better understand how time slicing works.

K_OS_Slice_On example:

void task1(void)
{
unsigned char status; /* local */

K_OS_Slice_On(); /* enable time slicing. */

.../* application code here */

K_OS_Slice_Off();
/* disable time slicing, if user wants. */
...

}

Comments

You can freely allow tasks to enable and disable time slicing when necessary. In most
cases time slicing will not be needed.
 191

19

QUICK REFERENCE
OPERATING SYSTEM FUNCTION -- K_OS_Start
OPERATING SYSTEM FUNCTION

K_OS_Start

Purpose: The K_OS_Start function is called to invoke the CMX operating system.
Once this function is called, the CMX operating system takes control of the CPU and
determines when tasks should run and cyclic timers should execute. It is up to you to
make sure at least one task is READY or will become READY by using the
K_Task_Start function before calling K_OS_Start. Once you enter the CMX operating
system, there is no way to exit the CMX operating system.

Called

When you want to enter the CMX operating system.

#include <cxfuncs.h> /* has function prototype */
void K_OS_Start(void); /* this is the function prototype */

K_OS_Start();

Passed

Nothing.

Returned

Never returns from the CMX operating system.

K_OS_Start Example:

void main(void)
{
/* define any locals within main */

K_OS_Init(); /* initialize CMX */
...
/* now the user can access any CMX function, that is allowed
to be accessed prior to entering the CMX operating system */
...
/* Set up CMX by create tasks, cyclic timers, etc. Possibly
create queues, set up mailboxes, etc. Start at least one task.
*/
...
K_OS_Start(); /* enter into the CMX operating system */
/* NOTE: will never return to this point */

}

2

QUICK REFERENCE

OPERATING SYSTEM FUNCTION -- K_OS_Task_Slot_Get
OPERATING SYSTEM FUNCTION

K_OS_Task_Slot_Get

Purpose: This function returns the task slot number of the currently RUNNING task.
The slot number was assigned by the CMX K_Task_Create function when the task was
created.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_OS_Task_Slot_Get(void); /* this is the function prototype */

unsigned char TASK_SLOT; /* could be global or local */

TASK_SLOT = K_OS_Task_Slot_Get();

Passed

Nothing.

Returned

TASK_SLOT is the task slot number of the currently RUNNING task.

K_OS_Task_Slot_Get Example:

void task2(void)
{
unsigned char task_slot;

task_slot = K_OS_Task_Slot_Get();
/* returns the task slot number of the task that is currently
in the RUNNING state */

}

 193

19

QUICK REFERENCE
OPERATING SYSTEM FUNCTION -- K_OS_Tick_Get_Ctr
OPERATING SYSTEM FUNCTION

K_OS_Tick_Get_Ctr

Purpose: Every time the CMX K_OS_Tick_Update function is called by the timer
interrupt, a global variable called cmx_tick_count is incremented. This variable
contains the running total of the "true" system ticks. The current value of
cmx_tick_count is returned by the K_OS_Tick_Get_Ctr function.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
word32 K_OS_Tick_Get_Ctr(void); /* this is the function prototype */

unsigned long TICK_COUNT; /* could be global or local */

TICK_COUNT = K_OS_Tick_Get_Ctr();

Passed

Nothing.

Returned

TICK_COUNT is the current total number of CMX system ticks. This value will be
the total number of times the K_OS_Tick_Update function was called.

K_OS_Tick_Get_Ctr Example:

void task2(void)
{
unsigned long tick_count;

tick_count = K_OS_Tick_Get_Ctr();
/* returns the total number of system ticks (updated by one
each time K_OS_Tick_Update was called) that have occurred since
the RTOS has started */

}

4

QUICK REFERENCE

OPERATING SYSTEM FUNCTION -- K_OS_Tick_Update
OPERATING SYSTEM FUNCTION

K_OS_Tick_Update

Purpose: This function is usually called by a timer interrupt. CMX needs one of the
timer interrupts to use as a clock to perform scheduling for tasks which have used a
function that invokes a time period, and for cyclic timers.

The K_OS_Tick_Update function MUST be called by an interrupt. This interrupt is
selectable and should cause an interrupt at a specified time period. The interrupt's
frequency should be constant since all time related activities are based on this
frequency. The interrupt should first call the K_OS_Intrp_Entry function, then call the
K_OS_Tick_Update function. The K_OS_Tick_Update function will decrement a
counter that has been pre-loaded with the number of times the interrupt must call this
function, before the scheduler flag is set. This counter is loaded with a value you select
in the "CXCONFIG.H" file and the C define CMX_RTC_SCALE, as described in the
RTOS Configuration File chapter.

When the count specified by the CMX_RTC_SCALE reaches zero, then the counter
will be reloaded with the CMX_RTC_SCALE value, and the CMX time flag will be set
if any task timers or cyclic timers need servicing. When the interrupt leaves the
K_OS_Intrp_Exit function, the scheduler will determine whether to let the CMX timer
task execute or to resume execution of the current running task. If the scheduler
determines the CMX timer task should execute, then the task that was running prior to
this interrupt will be put into the ready to RESUME state, saving its context. The
scheduler will then let the CMX timer task execute. (See the Scheduler chapter for a
more detailed description on how the scheduler works.)

If the current task prior to the interrupt used the CMX K_Task_Lock function, then the
CMX time flag would be set and the counter reloaded according to the
CMX_RTC_SCALE value. This would not invoke the scheduler when the interrupt
leaves. This is because the privilege flag has been set by the K_Task_Lock function.
The privilege flag will not allow any task switch until the privilege flag has been
lowered (cleared), which must be done by the task that raised it. To lower the privilege
flag, the task must call the CMX K_Task_Unlock function.
 195

19

QUICK REFERENCE
UART FUNCTIONS -- K_Put_Char
UART FUNCTIONS

K_Put_Char

Purpose: This allows a task to put a character into the UART transmitter buffer. If the
transmitter is busy, the character will not be placed into the transmitter and the task will
be notified that the transmitter was busy. Remember, more than one task may try to use
the transmitter at the same time.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Put_Char(void *); /* this is the function prototype */

unsigned char *src_PTR; /* this may be local or global, and will be the location that the
function gets the character. */

unsigned char STATUS; /* results of function. */

STATUS = K_Put_Char(src_PTR);

Passed

src_PTR = the address where the character resides in memory for this function.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_BUSY = Error: transmitter was busy.

If STATUS equals K_OK, then the task which called this function will have the
character placed into the transmitter and the transmitter will automatically start,
sending out the character.

K_Put_Char example:

unsigned char src_byte = '3';

/* This is the address to hold the character which will be sent out. could also be local. */

void task1(void)
{
unsigned char status;
6

QUICK REFERENCE

UART FUNCTIONS -- K_Put_Char
status = K_Put_Char(&src_byte); /* go send character. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
or/* this shows another way. */
status = K_Put_Char("3"); /* go send character. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
}

 197

19

QUICK REFERENCE
UART FUNCTIONS -- K_Put_Char_Wait
UART FUNCTIONS

K_Put_Char_Wait

Purpose: This allows a task to put a character into the UART transmitter buffer. If the
transmitter is busy, then the task will wait up to a specified time period for it to become
free. The specified time period may be zero through 65535 with zero indicating an
indefinite wait. If the transmitter is busy, then the task will be suspended until the
specified time period. If the transmitter is free or becomes free within the time period,
the character will be placed into the transmit buffer and the transmitter started. If the
transmitter is busy after the time expires, then the character will not be placed into the
transmit buffer and the task will be notified that the transmitter was busy. Remember
that more than one task may try to use the transmitter at the same time.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Put_Char_Wait(void *,word16); /* this is the function prototype */

unsigned char *src_PTR; /* this may be local or global, and will be the location that the
function gets the character. */

#define TIME_PERIOD ??? /* The time wait period. */

unsigned char STATUS; /* results of function. */

STATUS = K_Put_Char_Wait(src_PTR,TIME_PERIOD);

Passed

src_PTR = the address where the character resides in memory for this function.

TIME_PERIOD is the number of system ticks this task is willing to wait for the
transmitter to be free. Range is zero to 65535.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_TIMEOUT = Warning/error: The time period expired, transmitter still busy.

K_BUSY = Error: transmitter was busy.
8

QUICK REFERENCE

UART FUNCTIONS -- K_Put_Char_Wait
If STATUS equals K_OK, then the task which called this function will have the
character placed into the transmitter and the transmitter will automatically start,
sending out the character.

K_Put_Char_Wait example:

unsigned char src_byte = '3';

/* This is the address to hold the character, which will be sent out. Could also be local.
*/

void task1(void)
{
unsigned char status;
status = K_Put_Char_Wait(&src_byte,100); /* go send character.
Wait up to 100 system ticks for the transmitter to be free if
need be. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
or/* this shows another way. */
status = K_Put_Char_Wait("3",100); /* go send character.
Wait up to 100 system ticks for the transmitter to be free if
need be. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
}

 199

20

QUICK REFERENCE
UART FUNCTIONS -- K_Put_Str
UART FUNCTIONS

K_Put_Str

Purpose: This allows a task to put a string of characters into the UART transmitter
buffer. If the transmitter is busy, the characters will not be placed into the transmitter
and the task will be notified that the transmitter is busy. Remember, more than one task
may try to use the transmitter at the same time.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Put_Str(void *,word16); /* this is the function prototype */

unsigned char *src_PTR; /* this may be local or global, and will be the location that the
function gets the character. */

#define NUMBER ??? /* the number of characters to place into the transmit buffer. */

unsigned char STATUS; /* results of function. */

STATUS = K_Put_Str(src_PTR,NUMBER);

Passed

src_PTR = the address where the characters reside in memory for this function.

NUMBER is the number of characters to place into the transmit buffer.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_BUSY = Error: transmitter was busy.

If STATUS equals K_OK, then the task which called this function will have a
NUMBER of character(s) placed into the transmit buffer and the transmitter will
automatically start sending out the characters.

☞ The number of characters placed into the transmit buffer is determined by the NUMBER
and not by the length of the string. It is up to you to determine the proper number of
characters to transmit.

K_Put_Str example:
0

QUICK REFERENCE

UART FUNCTIONS -- K_Put_Str
unsigned char src_bytes[] = {"From task 1"};

/* This is the address to hold the string of characters, which will be sent out. Could also
be local. */

void task1(void)
{
unsigned char status;
status = K_Put_Str(src_bytes,sizeof src_bytes);
/* go send character. Remember it is the second parameter that
determines the number of characters that are actually copied
to the transmit buffer. */
if (status != K_OK) /* test status */
{
/* maybe do something if characters not sent. */
}

...
or/* this shows another way. */
status = K_Put_Str("From task 1",12);
/* go send character. Remember it is the second parameter that
determines the number of characters that are actually copied
to the transmit buffer. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
}

 201

20

QUICK REFERENCE
UART FUNCTIONS -- K_Put_Str_Wait
UART FUNCTIONS

K_Put_Str_Wait

Purpose: This allows a task to put a string of characters into the UART transmitter
buffer. If the transmitter is busy, then the task will wait up to the specified time period
for it to become free. The specified time period may be zero through 65535 with zero
indicating an indefinite wait. If the transmitter is busy, the task will be suspended until
the time period specified. If the transmitter is free or becomes free within the time
period, the characters will be placed into the transmit buffer and the transmitter started.
If the transmitter is busy after time expires, then the characters will not be placed into
the transmit buffer and the task will be notified that the transmitter was busy.
Remember, more than one task may try to use the transmitter at the same time.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Put_Str_Wait(void *,word16,word16); /* this is the function prototype */

unsigned char *src_PTR; /* this may be local or global, and will be the location that the
function gets the character. */

#define NUMBER ??? /* the number of characters to place into the transmit buffer. */

#define TIME_PERIOD ??? /* The time wait period. */

unsigned char STATUS; /* results of function. */

STATUS = K_Put_Str_Wait(src_PTR,NUMBER,TIME_PERIOD);

Passed

src_PTR = the address where the character resides in memory for this function.

NUMBER is the number of characters to place into the transmit buffer.

TIME_PERIOD is the number of system ticks that this task is willing to wait for the
transmitter to be free. Range is zero to 65535.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_TIMEOUT = Warning/error: The time period expired, transmitter still busy.
2

QUICK REFERENCE

UART FUNCTIONS -- K_Put_Str_Wait
K_BUSY = Error: transmitter was busy.

If STATUS equals K_OK, then the task which called this function will have the
character placed into the transmitter and the transmitter will automatically start sending
out the character.

K_Put_Str_Wait example:

unsigned char src_bytes[] = {"Task1 transmitting this"};

/* This is the address to hold the character, which will be sent out. could also be local.
*/

void task1(void)
{
unsigned char status;
status = K_Put_Str_Wait (src_bytes,sizeof src_bytes, 100);
/* go send characters. Wait up to 100 system ticks for the
transmitter to be free. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
or/* this shows another way. */
status = K_Put_Str_Wait("Task1 running",14,100);
/* go send characters. Wait up to 100 system ticks for the
transmitter to be free. */
if (status != K_OK) /* test status */
{
/* maybe do something if character not sent. */
}

...
}

 203

20

QUICK REFERENCE
QUEUE MANAGER FUNCTION -- K_Que_Add_Bottom
QUEUE MANAGER FUNCTION

K_Que_Add_Bottom

Purpose: This function fills the bottom free slot of a queue, if one is available, and
copies the source bytes dictated by the source pointer into the slot. The number of bytes
copied is the size of the slot as indicated when this queue was created.

Called

Before entering RTOS by tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Add_Bottom(byte,void *); /* this is the function prototype */

#define QUE_NUM ???

unsigned char *SOURCE_POINTER; /* could be local or global depending upon
application and user. */

unsigned char STATUS; /* should be local */

STATUS = K_Que_Add_Bottom(QUE_NUM,SOURCE_POINTER);

Passed

QUE_NUM is the queue number, which identifies a particular queue created with the
K_Que_Create function. Can be from zero to one less than the maximum configured.

SOURCE_POINTER is a pointer that should contain the address where the source
bytes are in memory.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: queue was full, no slot available.

K_QUE_FULL = Warning: queue is now full, slot was filled.

If the STATUS equals K_OK, the source contents were copied into the queue slot. This
is also true if the STATUS equaled K_QUE_FULL, indicating that the queue is now
full.

 K_Que_Add_Bottom example:
4

QUICK REFERENCE

QUEUE MANAGER FUNCTION -- K_Que_Add_Bottom
#define QUE1 1 /* this is the numeric identifier for queue 1, which has already been
created with a each slot size being 6 bytes */

unsigned char *source_pointer = {"hello"); /* string that will be copied into slot */

void task2(void)
{
unsigned char status; /* local */
...
status = K_Que_Add_Bottom(QUE1,source_pointer);

/* task 2 will add to queue 1. The bottom slot, if available
will be the slot that receives the source bytes. The number
of bytes copied, in this case is 6. */

if (status != K_OK) /* test status */
{
/* see if status indicated queue is now full and the contents
copied or that the queue was full before this call, and that
the contents were not copied. */
}

...
}

Comments

Once the source bytes are copied into the slot you may reuse the source byte memory
locations for other uses. It is highly recommended you keep the slot size to a minimum
because of the time it takes to copy bytes from the source to the destination. You may
want to place just the pointers to the source bytes into the queue's slot. When the slot
is retrieved, the task then will actually get the source bytes. The source bytes’ memory
locations may not be used for other purposes until the slot pointer has been removed.

Also you should send messages, which just pass pointers and not the contents, if speed
is of importance and the source bytes do not have to be copied.
 205

20

QUICK REFERENCE
QUEUE MANAGER FUNCTION -- K_Que_Add_Top
QUEUE MANAGER FUNCTION

K_Que_Add_Top

Purpose: This function fills the top free slot of a queue, if one is available, and copies
the callers’ source bytes dictated by the source pointer into the slot. The number of
bytes copied is the size of the slot as indicated when this queue was created.

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Add_Top(byte,void *); /* this is the function prototype */

#define QUE_NUM ???

unsigned char *SOURCE_POINTER; /* could be local or global depending upon
application and user. */

unsigned char STATUS; /* should be local */

STATUS = K_Que_Add_Top(QUE_NUM,SOURCE_POINTER);

Passed

QUE_NUM is the queue number, which identifies a particular queue, that was created
with the K_Que_Create function. This can be from zero to one less than the maximum
configured.

SOURCE_POINTER is a pointer that should contain the address where the source
bytes are in memory.

Returned

The status of this operation will return one these status codes:

 K_OK: good operation, function was successful

 K_QUE_FULL: the operation was good and now the queue is full

 K_ERROR: an error indicting the queue was full or that the queue number was out of
range or not created.

☞ Remember the pointer may point to anything. This may be done by casting, so actually
longs could be passed, other pointers, etc. Remember that it is up to you to ensure that the
queue number to this function is the queue in which they want to add this to, and that the
queue had been created.
6

QUICK REFERENCE

QUEUE MANAGER FUNCTION -- K_Que_Add_Top
K_Que_Add_Top example:

#define QUE1 1 /* this is the numeric identifier for queue 1, which has already been
created with a each slot size being 6 bytes */

unsigned char *source_pointer = {"hello"); /* string that will be copied into slot */

void task2(void)
{
unsigned char status; /* local */
...
status = K_Que_Add_Top(QUE1,source_pointer);

/* task 2 will add to queue 1. The top slot, if available will
be the slot that receives the source bytes. The number of bytes
copied, in this case is 6. */

if (status != K_OK) /* test status */
{
/* see if status indicated queue is now full and the contents
copied or that the queue was full before this call, and that
the contents were not copied. */
}

...
}

Comments

Once the source bytes are copied into the slot, you may reuse the source byte memory
locations for other uses. It is highly recommended that the slot size be kept to a
minimum, because of the time it takes to copy bytes from the source to destination. You
may want to place just the pointers to the source bytes into the queue's slot, then when
the slot is retrieved, the task will actually get the source bytes. The source bytes’
memory locations may not be used for other purposes, until the slot pointer has been
removed.

You should send messages, which just pass pointers and not the contents, if speed is of
importance and the source bytes do not have to be copied.
 207

20

QUICK REFERENCE
QUEUE MANAGER FUNCTION -- K_Que_Create
QUEUE MANAGER FUNCTION

K_Que_Create

Purpose: This function is used to create a circular queue. This queue may contain up to
32767 slots with each slot able to hold up to 255 bytes. It is recommended that the slot
size be kept at a minimum, because the larger the slot, the longer it will take to transfer
the source bytes into the slot. You must have the memory set aside for this queue, or
use the memory functions to allocate enough memory. The queue address supplied to
this function is never tested for any type of memory contention. The memory needed
for this queue is the number of slots times the size of the slot.

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Create(sign_word16,byte,byte *,byte); /* this is the function prototype */

#define NUM_SLOTS ???

#define SIZE_SLOT ???

#define QUE_NUM ???

unsigned char QUE_NAME[NUM_SLOTS * SIZE_SLOT]; /* should be global */

unsigned char STATUS;

STATUS = K_Que_Create(NUM_SLOTS,SIZE_SLOT,QUE_NAME,QUE_NUM);

Passed

NUM_SLOTS is the number of slots that this particular queue will have and the
maximum is 32767.

SIZE_SLOT is the number of bytes that each slot will hold (size of each slot) within
this queue.

QUE_NAME is the beginning address where this queue will reside in memory.

QUE_NUM is the queue identification number that all queue functions will use in
determining the queue's memory location.

Returned

STATUS returned is one of the following:
8

QUICK REFERENCE

QUEUE MANAGER FUNCTION -- K_Que_Create
K_OK = Good: function call was successful, queue created.

K_ERROR = Error: queue number out of range.

☞ Remember that it is up to you to ensure enough memory for this queue exists. No memory
contention is tested for.

K_Que_Create example:

#define Q1_SLOTS 100 /* this queue will have 100 slots */

#define Q1_SIZE_SLOT 6 /* each slot size is 6 bytes in length */

#define QUE1 /* identifier that we want to work with queue number 1. */

unsigned char QUE1_BYTES[Q1_SLOTS * Q1_SIZE_SLOT]; /* memory */

void task2(void)
{
unsigned char status; /* local */
...
status =
K_Que_Create(Q1_SLOTS,Q1_SIZE_SLOT,QUE1_BYTES,QUE1);

/* task 2 will create a queue. This queue will have 100 slots,
and the size of each slot will be six bytes. Any further
reference to this queue will use the QUE1 identifier. */
...

}

 209

21

QUICK REFERENCE
QUEUE MANAGER FUNCTION -- K_Que_Get_Bottom
QUEUE MANAGER FUNCTION

K_Que_Get_Bottom

Purpose: This function removes the bottom most recently used slot of a queue, if one is
available, and copies the slot bytes into the callers destination memory area as dictated
by the address passed. The number of bytes copied is the size of the slot as indicated
when this queue was created. The supplied queue address is not tested to ensure that it
is a valid queue address.

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Get_Bottom(byte,void *); /* this is the function prototype */

#define QUE_NUM ???

unsigned char *DEST_POINTER; /* could be local or global depending upon
application and user. */

unsigned char STATUS; /* should be local */

STATUS = K_Que_Get_Bottom(QUE_NUM,DEST_POINTER);

Passed

QUE_NUM is the queue number, which identifies a particular queue was created with
the K_Que_Create function. Can be from zero to one less than the maximum
configured.

DEST_POINTER is a pointer that contains the address where the slot bytes will be
copied to in memory.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: queue was empty, no slot available.

K_QUE_EMPTY = Warning: queue is now empty, the slot contents were transferred.

If the STATUS equals K_OK, the slot contents were copied to the destination's address.
This is also true if the STATUS equaled K_QUE_EMPTY, indicating that now the
queue is empty.
0

QUICK REFERENCE

QUEUE MANAGER FUNCTION -- K_Que_Get_Bottom
☞ Remember the slots may contain anything, bytes, integers, pointers, etc. Once the contents
from a slot are removed, you may cast those bytes into what you would like. It is up to you
to ensure the queue number of this function is the same queue you added this to, and that it
has been created.

K_Que_Get_Bottom example:

#define QUE1 1 /* this is the numeric identifier for queue 1, which has already been
created with a each slot size being 6 bytes */

unsigned char dest_array[6]; /* create a destination area that will be loaded with
contents of the slot from a queue. Could be declared local or global */

void task2(void)
{
unsigned char status; /* local */
...
status = K_Que_Get_Bottom(QUE1,dest_array);

/* task 2 will remove the bottom slot contents from queue1.
The bottom slot, if available will have its contents
transferred to the memory locations as specified by this
function. The number of bytes copied, in this case is six. */

if (status != K_OK) /* test status */
{
/* see if status indicated queue is now empty and the contents
copied or that the queue was empty before this call, and that
the contents were not copied. */
}

...
}

Comments

Once the bottom slot contents are removed, the pointer maintaining the bottom of this
queue will be incremented to point to the new bottom slot of this queue. The queue
count that represents the number of slots used will be reduced by one.
 211

21

QUICK REFERENCE
QUEUE MANAGER FUNCTION -- K_Que_Get_Top
QUEUE MANAGER FUNCTION

K_Que_Get_Top

Purpose: This function removes the top most recently used slot of a queue, if one is
available, and copies the slot contents bytes into the caller’s destination memory area
as dictated by the address passed. The number of bytes copied is the size of the slot as
indicated when this queue was created. The supplied queue address is not tested to
ensure that it is a valid queue address.

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Get_Top(byte,void *); /* this is the function prototype */

#define QUE_NUM ???

unsigned char *DEST_POINTER; /* could be local or global depending upon
application and user. */

unsigned char STATUS; /* should be local */

STATUS = K_Que_Get_Top(QUE_NUM,DEST_POINTER);

Passed

QUE_NUM is the queue number, which identifies a particular queue, that was created
with the K_Que_Create function. This can be from zero to one less than the maximum
configured.

DEST_POINTER is a pointer that should contain the address where the slot bytes will
be copied to in memory.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: queue was empty, no slot available.

K_QUE_EMPTY = Warning: queue is now empty, the slot contents were transferred.

If the STATUS equals K_OK, the slot contents were copied to the destination's address.
This is also true if the STATUS equaled K_QUE_EMPTY, indicating that now the
queue is empty.
2

QUICK REFERENCE

QUEUE MANAGER FUNCTION -- K_Que_Get_Top
☞ Remember the slots may contain anything, bytes, integers, pointers, etc. Once the contents
from a slot are removed, you may cast those bytes into what you would like. It is up to you
to ensure the queue number of this function is the same queue you added this to, and that it
has been created.

K_Que_Get_Top example:

#define QUE1 1 /* this is the numeric identifier for queue 1, which has already been
created with a each slot size being 6 bytes */

unsigned char dest_array[6]; /* create a destination area that will be loaded with
contents of the slot from a queue. Could be declared local or global */

void task2(void)
{
unsigned char status; /* local */
...
status = K_Que_Get_Top(QUE1,dest_array);

/* task 2 will remove the top slot contents from queue1. The
top slot, if available will have its contents transferred to
the memory locations as specified by this function. The number
of bytes copied, in this case is six. */

if (status != K_OK) /* test status */
{
/* see if status indicated queue is now empty and the contents
copied or that the queue was empty before this call, and that
the contents were not copied. */
}

...
}

Comments

Once the top slot contents are removed, the pointer maintaining the top of this queue
will be incremented to point to the new top slot of this queue. The queue count that
represents the number of slots used will be reduced by one.
 213

21

QUICK REFERENCE
QUEUE MANAGER FUNCTION -- K_Que_Reset
QUEUE MANAGER FUNCTION

K_Que_Reset

Purpose: This function will free all used slots in a queue and reset all pointers
accordingly. The queue number supplied must be created by the K_Que_Create
function and is not tested to ensure this is so.

Called

Before entering RTOS and by tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Que_Reset(byte); /* this is the function prototype */

#define QUE_NUM ???

unsigned char STATUS; /* should be local */

STATUS = K_Que_Reset(QUE_NUM);

Passed

QUE_NUM is the queue number, which identifies a particular queue that was created
with the K_Que_Create function. This can be from zero to one less than the maximum
configured.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: queue was empty, no slot available.

K_Que_Reset example:

#define QUE1 1 /* this is the numeric identifier for queue 1, which has already been
created with a each slot size being 6 bytes */

void task2(void)
{
unsigned char status; /* local */
...
K_Que_Reset(QUE1);

/* task 2 will reset this queue. All used slots will now be
flushed and the queue pointers will be reset to point to the
first slot */
4

QUICK REFERENCE

QUEUE MANAGER FUNCTION -- K_Que_Reset
...
}

Comments

When a queue is reset the slot contents remain. Just the pointers that maintain this
queue are reset to point to the first slot. So the slots may or may not contain garbage
left over.
 215

21

QUICK REFERENCE
UART FUNCTIONS -- K_Recv_Count
UART FUNCTIONS

K_Recv_Count

Purpose: This function allows the task to get the count of the number of characters
presently available in the UART receive buffer. No characters will be retrieved.
Remember the receive count could change if another character was received after this
function call.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */

unsigned short COUNT; /* this will specify the number of characters in receiver buffer.
*/

COUNT = K_Recv_Count();

Passed

Nothing is passed.

Returned

COUNT = the number of characters that are present in the UART receive buffer at the
time of this function call.

If the COUNT value is zero, there were no characters in the UART receive buffer when
this function was called. If the COUNT is non-zero, it is the number of characters
currently in the receive buffer.

K_Recv_Count example:

void task1(void)
{
count = K_Recv_Count();
/* Go find out how many characters are currently in the UART
receive buffer. */

/* now possibly use a function to retrieve one or more
characters from the receive buffer. */
...

}

6

QUICK REFERENCE

RESOURCE MANAGER FUNCTION -- K_Resource_Get
RESOURCE MANAGER FUNCTION

K_Resource_Get

Purpose: This function allows a task to request a particular resource, if the resource is
free. The task will not be put into the suspended state if this resource is busy. If the
resource is free at the time of this call, the caller will now own the resource.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Resource_Get(byte); /* this is the function prototype */

#define RESOURCE_NUM ??? /* identifies resource number */

unsigned char STATUS; /* should be local */

STATUS = K_Resource_Get(RESOURCE_NUM);

Passed

RESOURCE_NUM is the resource number of the particular resource, that this task
would like to own.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_RESOURCE_OWNED = Error: the resource is owned by another task.

K_ERROR = Error: the resource number was out of range.

If STATUS equals K_OK, then the task will own the resource. If STATUS equals
K_RESOURCE_OWNED, or K_ERROR then the task does not own the resource.

☞ It is up to you to ensure the task checks the return status to see if it owns the resource or
not. If so, then the task may access this particular resource. If not, then the task should not
access this resource, because another task is already using this resource. Contention
(possibly corruption) could exist if both tasks try to manipulate this resource.

K_Resource_Get example:

#define RESOURCE2 2 /* resource 2 identification number */
 217

21

QUICK REFERENCE
RESOURCE MANAGER FUNCTION -- K_Resource_Get
void task1(void)
{
unsigned char status; /* local */
...
status = K_Resource_Get(RESOURCE2);

/* Task 1 will try to "own" resource 2. If resource was free,
then task 1 will now become the owner. If the resource was
busy, then task 1 will not be suspended (put into resource's
queue) and be notified that the resource was already "owned"
by another task */

if (status == K_OK)
{
/* task 1 "owns" this resource. Task 1 may now access this
resource, knowing that only this task may manipulate this
resource, and that no other task has access to this resource.
When the task is finished with this resource, it must call
the K_Resource_Release function to notify the resource this
task will now give up ownership of this resource so another
task may now become the owner. */
...
K_Resource_Release(RESOURCE2); /* release resource */
}

...
}

8

QUICK REFERENCE

RESOURCE MANAGER FUNCTION -- K_Resource_Release
RESOURCE MANAGER FUNCTION

K_Resource_Release

Purpose: The task that owns a resource must use this function to release ownership. The
task may own more than one resource so it must supply the resource identification
number. All the tasks in this resource wait queue are waiting, and will not run until the
resource becomes free or the respective time period expires. When this function is
called, the next task in this resource wait queue will automatically own the resource and
be put into the READY state.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Resource_Release(byte); /* this is the function prototype */

#define RESOURCE_NUM ??? /* identifies resource number */

unsigned char STATUS; /* should be local */

STATUS = K_Resource_Release(RESOURCE_NUM);

Passed

RESOURCE_NUM is the number of the particular resource this task would like to
release.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_RESOURCE_NOT_OWNED = Error: this task does NOT own this resource.

K_ERROR = Error: the resource number is out of range.

If STATUS equals K_OK, then the task now has released the particular resource.

☞ The task that owns the resource must make sure it calls this function before finishing its
code. If the task is going to use the K_Task_Delete function, then the task must first release
the resource. If the task does not release the resource, the tasks waiting in the resource's
queue will be SUSPENDED forever or until their time period expires.
 219

22

QUICK REFERENCE
RESOURCE MANAGER FUNCTION -- K_Resource_Release
The tasks must make sure they test the STATUS byte, to see if the resource is released
or not. If the STATUS is returned with an error value, then there is a coding error
within the application code. If the task successfully releases a resource and the next
task in the waiting queue for this resource has a higher priority, then an immediate
rescheduling will occur, with that task becoming the RUNNING task.

K_Resource_Release example:

#define RESOURCE2 2 /* resource 2 identification number */

void task2(void)
{
unsigned char status; /* local */
...
status = K_Resource_Release(RESOURCE2);

/* Task 1 will now release the resource 2. Task 1 should test
the status byte, to see if this function was successful. */

if (status != K_OK)
{
/* A definite application coding error */
critical_error(); /* jump to critical handler, and see what
is wrong with the application code.*/
...
}

...
}

0

QUICK REFERENCE

RESOURCE MANAGER FUNCTION -- K_Resource_Wait
RESOURCE MANAGER FUNCTION

K_Resource_Wait

Purpose: This function allows a task to obtain the requested resource if the resource is
free, and if it is not, place the task that called this function in the suspended state. The
time period will indicate to wait for so many system ticks or indefinitely. The resource
wait queue works in the manner that when a resource is released by the current owner
of the resource, the highest priority task waiting for this resource will become the new
current owner.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Resource_Wait(byte,word16); /* this is the function prototype */

#define RESOURCE_NUM ??? /* identifies resource number */

#define TIME_PERIOD ??? /* The time period to wait for */

unsigned char STATUS; /* should be local */

STATUS = K_Resource_Wait(RESOURCE_NUM,TIME_PERIOD);

Passed

RESOURCE_NUM is the number of the particular resource this task would like to
release.

TIME_PERIOD is the number of system ticks to wait for this resource, ranging from
zero to 65535. If the value equals zero, then the task will wait indefinitely for this
resource.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_TIMEOUT = Error: the time period expired.

K_ERROR = Error: the resource number out of range.

If STATUS equals K_OK, then the task now owns the resource. If any other value is
returned to STATUS, then the task does not own the resource.
 221

22

QUICK REFERENCE
RESOURCE MANAGER FUNCTION -- K_Resource_Wait
☞ Make sure the STATUS byte is tested to see if the task owns the resource or not. If the task
owns the resource, it may now use this resource knowing this task is the only one that has
access to this resource. The tasks must also make sure they release the resource when
done, using the K_Resource_Release function.

K_Resource_Wait example:

#define RESOURCE2 2 /* resource 2 identification number */

void task2(void)
{
unsigned char status;

status = K_Resource_Wait(RESOURCE1,100);
/* pass resource 1 number to function, task 2 would like to
become the owner of resource 1. If resource 1 is not "owned"
by another task and is free, then task 2 will become the "owner"
indicated by value returned. Task 2 will be suspended for 100
TICKs if the resource is busy ("owned"). If the resource
becomes free before the time period expires and this task is
the next one in line (based on its priority) to receive
ownership, then this task will automatically become the "owner"
of this resource. If the time period expires, then the task
will be removed from the resource wait queue and be returned
identifying that the time period expired and this task does NOT
"own" the resource. */

if (status == K_OK) /* see if good operation */
{
/* task 2 now OWNS resource 1, when done with resource, must
call the K_Resource_Release function to release it */
}

}

2

QUICK REFERENCE

SEMAPHORE MANAGER FUNCTION -- K_Semaphore_Create
SEMAPHORE MANAGER FUNCTION

K_Semaphore_Create

Purpose: This function sets up a semaphore’s initial count. The first parameter is the
semaphore number. This number ranges from zero to one less than the maximum
number of semaphores declared in the configuration module. The second parameter is
the initial value of the counter for this semaphore. This counter is of type unsigned
short, meaning it can range from 0 to 65535.

 Called

Before entering RTOS, tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Semaphore_Create(byte,word16); /* this is the function prototype */

#define SEM_NUM ??? /* Identifies the semaphore. */

#define SEM_COUNT ??? /* determines the initial setting of the semaphore counter. */

unsigned char STATUS; /* should be local */

STATUS =K_Semaphore_Create(SEM_NUM,SEM_COUNT);

Passed

SEM_NUM is the number of the semaphore this function will work with. Values range
from 0 to 1 less than maximum number of semaphores declared.

SEM_COUNT is the initial numerical value of the semaphore counter. Values range
from 0 65535.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: semaphore number out of range.

K_Semaphore_Create example:

#define SEM1 1 /* define semaphore 1 */

#define SEM1_CNT 0 /* define initial semaphore count to be zero. */
 223

22

QUICK REFERENCE
SEMAPHORE MANAGER FUNCTION -- K_Semaphore_Create
void task1(void)
{
unsigned char status;
status = K_Semaphore_Create(SEM1,SEM1_CNT);
/* Set up semaphore 1 with an initial count of zero */

if (status != K_OK) /* see if error, should not be */
{
/* If there was an error, take corrective action. User should
never get an error here, unless possibly the user has exceeded
the maximum number of semaphores that was declared in the
configuration module */
}

}

4

QUICK REFERENCE

SEMAPHORE MANAGER FUNCTION -- K_Semaphore_Get
SEMAPHORE MANAGER FUNCTION

K_Semaphore_Get

Purpose: The K_Semaphore_Get function is used by tasks to request the use of a
particular semaphore. The task will supply the semaphore number. This number
ranges from zero to one less than the maximum number of semaphores declared in the
configuration module. If the semaphore is not available the task will not be placed into
the SUSPENDED state to wait for it.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Semaphore_Get(byte); /* this is the function prototype */

#define SEM_NUM ??? /* identifies semaphore number */

unsigned char STATUS; /* should be local */

STATUS = K_Semaphore_Get(SEM_NUM);

Passed

SEM_NUM is the number of the semaphore this function will work with. Values range
from 0 to 1 less than maximum number of semaphores declared.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_SEMAPHORE_NONE = Error: the semaphore is owned by another task.

K_ERROR = Error: the semaphore number was out of range.

If STATUS equals K_OK, then the task will own the semaphore. If STATUS equals
K_SEMAPHORE_NONE, or K_ERROR then the task does not own the semaphore.

☞ It is up to you to ensure the task checks the return status to see if it owns the semaphore or
not. If so, then the task may access this particular semaphore. If not, then the task should
not access this semaphore, because another task is already using this semaphore.
Contention (possibly corruption) could exist if both tasks try to manipulate this semaphore.

K_Semaphore_Get example:
 225

22

QUICK REFERENCE
SEMAPHORE MANAGER FUNCTION -- K_Semaphore_Get
#define SEM1 1

void task2(void)
{
unsigned char status;

status = K_Semaphore_Get(SEM1);
/* pass semaphore 1 number to function, task 2 would like to
become the owner of semaphore 1. If semaphore 1 is not “owned”
by another task, then task 2 will become the “owner” indicated
by the value returned. Task 2 will NOT be suspended if the
semaphore is busy (“owned”), and the status returned will
identify that the semaphore is busy. */
if (status == K_OK) /* see if good operation */
{
/* task 2 now OWNS semaphore 1, when done with semaphore, must
call the K_Semaphore_Post function to release it */
}

}

6

QUICK REFERENCE

SEMAPHORE MANAGER FUNCTION -- K_Semaphore_Post
SEMAPHORE MANAGER FUNCTION

K_Semaphore_Post

Purpose: The task that owns a semaphore must use this function to release ownership.
An interrupt could also use this function as a counter. A task may own more than one
semaphore so it must supply the semaphore identification number. All the tasks in this
semaphore’s wait queue will not run until the semaphore becomes free or their
respective time periods expire. When this function is called, the next task in this
semaphore wait queue will automatically own the semaphore and be put into the
READY state.

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Semaphore_Post(byte); /* this is the function prototype */

#define SEM_NUM ??? /* identifies semaphore number */

unsigned char STATUS; /* should be local */

STATUS = K_Semaphore_Post(SEM_NUM);

Passed

SEM_NUM is the number of the semaphore this function will work with. Values range
from 0 to 1 less than maximum number of semaphores declared.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the semaphore number is out of range.

If STATUS equals K_OK, then the task now has released the particular semaphore.

☞ The task that owns the semaphore must make sure it calls this function before finishing its
code. If the task is going to use the K_Task_Delete function, then the task must first release
the semaphore. If the task does not release the semaphore, the tasks waiting in the
semaphore's queue will be SUSPENDED forever or until their time periods expire.
 227

22

QUICK REFERENCE
SEMAPHORE MANAGER FUNCTION -- K_Semaphore_Post
The tasks must make sure they test the STATUS byte to see if the semaphore is released
or not. If the STATUS is returned with an error value, then there is a coding error
within the application code. If the task successfully releases a semaphore and the next
task in the waiting queue for this semaphore has a higher priority, then an immediate
rescheduling will occur, with that task becoming the RUNNING task.

K_Semaphore_Post example:

#define SEM1 1

void task2(void)
{
unsigned char status;

status = K_Semaphore_Get(SEM1);/* get semaphore 1 */

/* application code here */

/* task 2 owns semaphore 1, and is done with this semaphore.
task 2 will now release semaphore 1 */

status = K_Semaphore_Post(SEM1); /* task 2 is releasing
semaphore 1 */

if (status != K_OK) /* see if error, should not be */
{
/* If there was an error, take corrective action. You should
never get an error here, unless possibly when you called the
K_Semaphore_Get or K_Semaphore_Wait functions, they did not
test status to see if the task truly owned the semaphore */
}

}

8

QUICK REFERENCE

SEMAPHORE MANAGER FUNCTION -- K_Semaphore_Reset
SEMAPHORE MANAGER FUNCTION

K_Semaphore_Reset

Purpose: This function flushes out a particular semaphore. The semaphore’s wait
queue is emptied and the semaphore’s counter is reset to the value given to the
K_Semaphore_Create function when initializing the semaphore. Two parameters are
needed by the K_Semaphore_Reset function.

The first parameter is the semaphore number. This number ranges from zero to one less
than the maximum number of semaphores declared in the configuration module.

The second parameter is the flush mode. A flush mode of zero means the semaphore
will not be flushed if a task owns the semaphore. A flush mode greater than zero means
the semaphore will be flushed whether a task owns the semaphore or not.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Semaphore_Reset(byte,byte); /* this is the function prototype */

#define SEM_NUM ??? /* identifies semaphore number */

#define FLUSH_MODE ??? /* specifies whether to flush if semaphore is owned */

unsigned char STATUS; /* should be local */

STATUS = K_Semaphore_Reset(SEM_NUM,FLUSH_MODE);

Passed

SEM_NUM is the number of the semaphore this function will work with. Values range
from 0 to 1 less than maximum number of semaphores declared.

FLUSH_MODE determines whether to flush the semaphore if the semaphore is
currently owned by a task or not. A value of zero will only flush the semaphore if it is
not owned by a task. Any other value will always flush the semaphore.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the semaphore number out of range, or if the flush mode was zero,
a task owns the semaphore.
 229

23

QUICK REFERENCE
SEMAPHORE MANAGER FUNCTION -- K_Semaphore_Reset
K_Semaphore_Reset example:

#define SEM1 1

void task2(void)
{
unsigned char status;

status = K_Semaphore_Reset(SEM1,0);
/* task2 requests a flush of semaphore 1 with mode zero. If
no task owns this semaphore it will be flushed and K_OK
returned. If a task owns semaphore 1 K_ERROR will be returned
and semaphore 1 will not be flushed. */

if (status == K_OK) /* see if good operation */
{
/* semaphore 1 wait queue is empty and semaphore 1 counter is
reset to the value that was passed to the K_Semaphore_Create
function. */
}

}

0

QUICK REFERENCE

SEMAPHORE MANAGER FUNCTION -- K_Semaphore_Wait
SEMAPHORE MANAGER FUNCTION

K_Semaphore_Wait

Purpose: This function allows a task to obtain the requested semaphore if the
semaphore is free, and if it is not, place the task that called this function in the
suspended state. The task specifies a time period to wait for the semaphore. If the time
period expires the task will be placed into the RESUME state and notified that the time
period expired and the semaphore is not available.

The tasks wait as first in, first out, meaning the first task waiting for the semaphore is
the task that will own it when it is free.

If the task was suspended, when the semaphore becomes free and ownership is passed
to this task, the task will automatically be put into the ready to RESUME state.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Semaphore_Wait(byte,word16); /* this is the function prototype */

#define SEM_NUM ??? /* identifies semaphore number */

#define TIME_PERIOD ??? /* The time period to wait for */

unsigned char STATUS; /* should be local */

STATUS = K_Semaphore_Wait(SEM_NUM,TIME_PERIOD);

Passed

SEM_NUM is the numerical value of the semaphore this function will work with.
Values range from 0 to 1 less than maximum number of semaphores declared.

TIME_PERIOD is the number of system ticks to wait for this semaphore, ranging from
zero to 65535. If the value equals zero, then the task will wait indefinitely for this
semaphore.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_TIMEOUT = Error: the time period expired.
 231

23

QUICK REFERENCE
SEMAPHORE MANAGER FUNCTION -- K_Semaphore_Wait
K_ERROR = Error: the semaphore number out of range.

If STATUS equals K_OK, then the task now owns the semaphore. If any other value
is returned to STATUS, then the task does not own the semaphore.

☞ It is up to you to ensure the task checks the return status to see if it owns the semaphore or
not. If so, then the task may access this particular semaphore. If not, then the task should
not access this semaphore, because another task is already using this semaphore.
Contention (possibly corruption) could exist if both tasks try to manipulate this semaphore.

K_Semaphore_Wait example:

#define SEM1 1

void task2(void)
{
unsigned char status;

status = K_Semaphore_Wait(SEM1,100);
/* pass semaphore 1 number to function, task 2 would like to
become the owner of semaphore 1. If semaphore 1 is not “owned”
by another task and is free, then task 2 will become the “owner”
indicated by value returned. Task 2 will be suspended for 100
TICKs if the semaphore is busy (“owned”). If the semaphore
becomes free before the time period expires and this task is
the next one in line to receive ownership, then this task will
automatically become the “owner” of this semaphore. If the
time period expires, then the task will be removed from the
semaphore wait queue and be returned identifying that the time
period expired and this task does NOT “own” the semaphore. */

if (status == K_OK) /* see if good operation */
{
/* task 2 now OWNS semaphore 1, when done with semaphore, must
call the K_Semaphore_Post function to release it */
}

}

2

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Coop_Sched
TASK MANAGER FUNCTION

K_Task_Coop_Sched

Purpose: This function performs cooperative rescheduling. This allows a task the
ability to let a task of the same or lower priority become the current RUNNING task.
Usually there is little need for this because of the preemptive nature of the CMX
operating system. However, there may be times you would want a lower priority task
to execute before this task would normally do so.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Task_Coop_Sched(void); /* this is the function prototype */

K_Task_Coop_Sched();

Passed

Nothing is passed. Only tasks can call this function.

Returned

No status is returned.

K_Task_Coop_Sched example:

void task2(void); /* prototype task2 */

void task2(void)
{

/* task's application code ... */
K_Task_Coop_Sched();

/* task 2 has decided to release control to the next same
priority or lower priority task able to run. */
...

}

 233

23

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Create
TASK MANAGER FUNCTION

K_Task_Create

Purpose: This function creates a task and defines it to CMX. CMX then sets up the task
control block for this task. The task is put into the IDLE state.

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Create(byte,byte *,K_FP,word16); /* this is the function prototype */

#define PRIORITY ???

unsigned char TASK_SLOT; /* should be global */

void TASK(void); /* prototype of task function */

#define STACK_SIZE ???

unsigned char STATUS; /* should be local */

STATUS = K_Task_Create(PRIORITY,&TASK_SLOT, TASK,STACK_SIZE);

Passed

PRIORITY is the priority for this task. The lower the number the higher the priority.

&TASK_SLOT is the address where CMX will put task slot number. Must be used for
all references to this task.

TASK is the task address where it resides in code. When task begins execution, this is
where CMX will vector to.

STACK_SIZE is the number of bytes set aside for this task stack area. You must make
sure stack size is large enough for all the levels of nesting, and depth of one interrupt.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: no free task control block available.
4

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Create
If STATUS equals K_OK, then TASK_SLOT contains the task identification number
assigned by CMX. This identification number must be used for all CMX function calls
that deal with this task.

K_Task_Create example:

void task1(void); /* prototype task1 */

 unsigned char task1_slot; /* global storage for task I.D. number */

void user_code(void)
{
unsigned char status; /* local */
...
status = K_Task_Create(10,&task1_slot,task1,128);

/* create task 1, will have a priority of 10, task1_slot will
contain the task's slot number for all further references to
this task and have a stack size depth of 128 bytes. */

if (status != K_OK)
{
/* take corrective action. */
}

...
}

void task1(void)
{
/* declare locals if need be */
/* task 1 code... */
K_Task_End();
/*** TASK MUST HAVE THIS FUNCTION HERE IF IT WOULD NORMALLY
TERMINATE BY HITTING ITS RIGHT END BRACE. ***/

}

 235

23

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Create_Stack
TASK MANAGER FUNCTION

K_Task_Create_Stack

Purpose: The CMX K_Task_Create_Stack function is used to create a task. The main
difference between this create task function and the K_Task_Create function, is that
you pass the address of the task’s stack address to the K_Task_Create_Stack function
versus the size of the how much stack space is required when you use K_Task_Create
function. When you use the K_Task_Create function and ’kill’ a task, the stack space
does not get reclaimed. Thus if you created and killed a fair number of tasks, then you
would most likely run out of stack space. The new K_Task_Create_Stack function
avoids this, for now you can use memory allocation functions to gain and then free stack
space needed for many tasks. This function is very useful for embedded systems that
may run a TCP/IP stack, where multiple clients may need servicing. This way you can
allocate stack space when needed when creating a new task and when that task is no
longer needed, you can then kill it and reclaim that stack space. You can create a task
before entering the CMX operating system or dynamically while running under the
CMX operating system. The creation tells CMX where the task's execution code
resides in ROM, the stack starting address, the priority of this task, and the address of
the slot number CMX assigns for this task.

The parameters you need to send are the following.

The priority for this task. Priority numbers may range from zero to 254. The priority
tells CMX the order in which to run tasks when they become READY. The lower the
number, the higher the priority. At rescheduling the highest priority task (lowest
priority number) that is READY to run becomes the RUNNING task. If tasks have the
same priority then it is determined by the order of creation, the first task created with
the same priority as another task created later is given the first option to run, then the
later one. The priority also is used by the CMX time slicing mechanism. Tasks will be
time sliced, starting with tasks with the same or lower priority as the current task, if time
slicing is enabled by calling the K_OS_Slice_On function. See the chapter about time
slicing for more detailed information on time sliced tasks and how they work.

Another parameter is the address of an unsigned character to put the slot number CMX
will assign to this task. The task slot number is used for ALL CMX function calls that
require the task number. It is up to the user to make sure that they do not destroy or
corrupt this slot number. If the task is removed, then the slot number is no longer valid.
If another task is created after a task is removed, then the newly created task may have
the "old" slot number, which the previously removed task had.

The next parameter is the address where the task's code will begin execution. This
address is where CMX will start the task's code when the task switches from the
READY state to the RUNNING state.
6

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Create_Stack
The last parameter supplied is the stack address for this task. Note that it is up to you to
pass the address of memory, that will be large enough to be used by this task and to
handle the number of nested function calls, locals, saving of registers, etc. Also on most
processors the stack walks downward, so the user must ensure that they pass the stack
address pointing to the ’top’ of the stack space that they have freed up and not the
bottom. Of course if you are using a processor where the stack grows upward, then you
would pass the base address of the stack space. Since insufficient stack size is one of
the most common causes of system crashes and corrupt memory, it is recommended
you double the estimated size. As you become more knowledgeable and actually test
your code, then the size may be reduced. See the chapter on stacks for more
information on how to calculate the size of the stack for a particular task.

This is an example of the K_Task_Create_Stack function:

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Create_Stack(byte, byte *, K_FP, word16); /* this is the function
prototype */

#define PRIORITY ???

unsigned char TASK_SLOT; /* should be global */

void TASK(void); /* prototype of task function */

unsigned ??? STACK_ADDRESS; /* The beginning stack address for this task, must
be aligned to match the stack pointer alignment criteria. */

unsigned char STATUS; /* should be local */

STATUS =
K_Task_Create_Stack(PRIORITY,&TASK_SLOT,TASK,&STACK_ADDRESS);

Passed

PRIORITY is the priority for this task. The lower the number the higher the priority.

&TASK_SLOT is the address where CMX will put task slot number. Must be used for
all references to this task.

TASK is the address where the task resides in code. When task begins execution, this
is where CMX will vector to.
 237

23

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Create_Stack
&STACK_ADDRESS is the task stack. You must make sure the stack memory size
that you have allocated is large enough for all the levels of nesting, and the depth of one
interrupt.

void task1(void); /* function prototype, show that task1 does not receive nor return
parameters */

unsigned char task1_slot; /* create storage for CMX to return task1 slot number */

There are many ways to create a stack for a task, we will show you a few ways. Please
ensure that you pass the top of the memory allocated to the task stack, if the stack
pointer grows downward.

struct {
unsigned int task_stk[1000];
unsigned int dummy;
} task1_stack;

void main(void)
{
unsigned char status; /* create a local status byte */

status =
K_Task_Create_Stack(5,&task1_slot,task1,task1_stack.dummy);

/* call CMX function K_Task_Create_Stack with task1 having a
priority of 5, the address for storage of task1 slot number,
the address of task1, and finally a stack size of 128 bytes */
if (status != K_OK) /* check status, make sure good function
call */
{
error_handler(); /* go to error handler */
}

}

Another way.

void *alloc;

void main(void)
{
unsigned char status; /* create a local status byte */

if ((alloc = malloc(1000)) != NULL)
{
status = K_Task_Create_Stack(5,&task1_slot,task1,((alloc) +
998));
8

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Create_Stack
/* call CMX function K_Task_Create_Stack with task1 having a
priority of 5, the address for storage of task1 slot number,
the address of task1, and finally a stack size of 128 bytes */

if (status != K_OK) /* check status, make sure good function
call */
{
error_handler(); /* go to error handler */
}

}
else
{
Handle memory allocation error
}

}

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: no free task control block available.

If STATUS equals K_OK, then TASK_SLOT contains the task identification number
assigned by CMX. This identification number must be used for all CMX function calls
that deal with this task.

CMX returns the status of the K_Task_Create_Stack function call indicating whether
the call was successful or not. If the status is good then the slot number returned must
be used from now on for any CMX function calls dealing with this task. Usually this
slot number will be stored in external RAM. When a task is created, CMX puts the task
into the IDLE state. This means that the task is loaded but will never RUN until started.
 239

24

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Delete
TASK MANAGER FUNCTION

K_Task_Delete

Purpose: This function deletes a task and removes its task control block. No further
reference to this task is allowed. The task must have been created prior to calling this
function.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Delete(byte); /* this is the function prototype */

unsigned char TASK_SLOT; /* global, declared earlier */

unsigned char STATUS; /* should be local */

STATUS = K_Task_Delete(TASK_SLOT);

Passed

TASK_SLOT is the name where the particular task's slot number resides.

Returned

STATUS returned is one of the following:

☞ Only if the task is not removing itself

K_OK = Good: function call was successful.

K_ERROR = Error: the task identification number does not exist or the task was in the
WAIT state.

If STATUS equals K_OK, then the task has been removed successfully. If the task is
removing itself, then an immediate task switch will occur.

K_Task_Delete example:

void task1(void); /* prototype task1 */

 unsigned char task1_slot; /* global storage for task I.D. number */

void task2(void)
{
unsigned char status; /* local */
0

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Delete
...
status = K_Task_Delete(task1_slot);

/* remove task 1 */

if (status != K_OK)
{
/* take corrective action. */
}

...
}

void task1(void)
{
/* declare locals if need be */
/* task 1 code... */

}

 241

24

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_End
TASK MANAGER FUNCTION

K_Task_End

Purpose: This function allows a task to terminate itself either prematurely or at the end
of its code. This function must be called by all tasks that would normally execute their
right-end brace. Once called, all variables on the stack will be lost. Make sure other
tasks are not waiting on this task. Never call this function if the task owns a resource.
Only the calling task can terminate itself early.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Task_End(void); /* this is the function prototype */

K_Task_End();

Passed

Nothing is passed. Only tasks can call this function.

Returned

No status is returned.

☞ An immediate rescheduling will occur when this function is called. If the task has
additional trigger (K_Task_Start) requests, then the task will be put into the READY state,
otherwise the task will become IDLE. Remember, all local variables will be lost. Other
tasks may be waiting for this task to use a CMX function call to wake it. A task that owns
a resource should never call this function before releasing the resource.

K_Task_End example:

void task2(void); /* prototype task2 */

 void task2(void)
{
/* task's application code ... */
...

}

void task2(void)
{
/* task's application code ... */
K_Task_End();
2

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_End
/* task 2 has terminated itself early. Normally this call
should not be used except in critical error situations, if at
all */
...
K_Task_End(); /* ALL TASKS MUST HAVE this function, if normally
would execute their right end brace. */

}

Comments

In example 1, task 2 has normally reached its right end brace and MUST execute the
K_Task_End function to properly terminate itself. In example 2, task 2 has terminated
itself early. All locals on stack will be lost. If a task must use this function, it is wise
to make sure that no other tasks may be waiting on this task. If a task is waiting, the
task about to terminate itself may either forcefully wake that task with the
K_Task_Wake_Force function or send a message or flag to another task, so that task
may wake the waiting task.
 243

24

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Lock
TASK MANAGER FUNCTION

K_Task_Lock

Purpose: This function raises the privilege flag for the calling task. Once this flag is
raised, the calling task owns all the CPU time and will not be preempted by any other
tasks. The task calling this function should never call any other function that would
permanently suspend this task. Only the task calling this function can lower the
privilege flag using the K_Task_Unlock function.

Called

Tasks only.

#include <cxfuncs.h> /* has function prototype */
void K_Task_Lock(void); /* this is the function prototype */

K_Task_Lock();

Passed

Nothing is passed. Only tasks can call this function.

Returned

No status is returned.

Interrupts can still execute but the CMX timer task (which executes cyclic timers and
handles the tasks timers) will not execute when the privilege flag is raised.

K_Task_Lock example:

void task2(void); /* prototype task2 */

 void task2(void)
{

/* task's application code ... */
K_Task_Lock();

/* task 2 has raised the privilege flag, task 2 must lower the
privilege flag before the task's code ends */
...
K_Task_Unlock(); /* make sure task lowers privilege flag */

}

void task1(void)
{
/* declare locals if need be */
4

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Lock
/* task 1 code... */
}

 245

24

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Name
TASK MANAGER FUNCTION

K_Task_Name

Purpose: This function gives you the ability to name a task, thus helping the user to
know the name of the task, when working with CMX add on modules, such as
CMXBug and/or CMXTracker. The function is called with the slot number of the task
to be named and a pointer to the task’s name that the user wants to name it. Note that
the tasks name can be as long as the user would like, but only the first 12 characters of
the task’s name will be displayed by CMXBug and CMXTracker. This is an example
of the K_Task_Name function:

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Name(byte, char *); /* this is the function prototype */

unsigned char TASK_SLOT; /* global, declared earlier */

char *TASK_NAME; /* The address of the user defined task name */

unsigned char STATUS; /* should be local */

STATUS = K_Task_Delete(TASK_SLOT,TASK_NAME);

Passed

TASK_SLOT is the name where the particular task's slot number resides.

TASK_NAME is the address of where the user defined task name resides in memory.
Note that the name may be any number of characters, but only the first 12 characters of
the task’s name will be shown by CMXBug and CMXTracker.

unsigned char task2_slot; /* defined earlier, contains task 2 slot number */

void task2(void)
{
/* application code here */
K_Task_Name(task2_slot,"TASK2"); /* Name task 2, utilized by
CMXBug and CMXTracker when displaying tasks */

}

Returned

STATUS returned is one of the following:
6

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Name
☞ Only if the task is not removing itself

K_OK = Good: function call was successful.

K_ERROR = Error: the task identification number does not exist or the task was in the
WAIT state.

If STATUS equals K_OK, then the task has been successfully named.
 247

24

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Priority
TASK MANAGER FUNCTION

K_Task_Priority

Purpose: This function allows any task priority to be changed. The new priority is in
effect immediately after this function call. The task must have been created prior to the
call.

Called

Before entering RTOS and tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Priority(byte,byte); /* this is the function prototype */

unsigned char TASK_SLOT; /* global, declared earlier */

#define NEW_PRIORITY ???

unsigned char STATUS; /* should be local */

STATUS = K_Task_Priority(TASK_SLOT,NEW_PRIORITY);

Passed

TASK_SLOT is the name where the particular task's slot number resides.

NEW_PRIORITY is the new priority for the task. The lower the number, the higher
the priority The value may range from zero to 254.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task I.D. number does not exist.

If STATUS equals K_OK, then the task has the new priority for its priority. Note that
the new priority will become effective immediately but will not cause a rescheduling.

K_Task_Priority example:

void task1(void); /* prototype task1 */

 unsigned char task1_slot; /* global storage for task I.D. number */

void task2(void)
8

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Priority
{
unsigned char status; /* local */
...
status = K_Task_Priority(task1_slot,20);
/* go change task 1 priority */

if (status != K_OK)
{
/* take corrective action. */
}

...
}

void task1(void)
{
/* declare locals if need be */
/* task 1 code... */

}

Comments

Task 2 is changing the priority of task 1. This function will be used very sparingly, if
at all. It is best to design the application code so task priorities need not be changed
from their initial values. The new priority becomes effective immediately after this
function call but does not cause a rescheduling.
 249

25

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Start
TASK MANAGER FUNCTION

K_Task_Start

Purpose: This function takes a task from the IDLE state into the READY state. If the
task is in the READY state when this function is called, then this trigger will queue up
and when the task finishes its code, the task will automatically become READY again.
This function will queue a maximum of 255 triggers.

Called

Before entering RTOS, tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Start(byte); /* this is the function prototype */

unsigned char TASK_SLOT; /* global, declared earlier */

unsigned char STATUS; /* should be local */

STATUS = K_Task_Start(TASK_SLOT);

Passed

TASK_SLOT is the name where the particular task's slot number (I.D. number)
resides.

Returned

An immediate task switch will occur if the priority of task being triggered is higher than
the current RUNNING task.

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task identification number does not exist.

If STATUS equals K_OK, then the task is put into the READY state. If it is in the
READY state already, then the trigger will be put into the task's trigger queue.

K_Task_Start example:

void task1(void); /* prototype task1 */
0

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Start
 unsigned char task1_slot; /* global storage for task I.D. number */

void user_code(void)
{
unsigned char status; /* local */
...
status = K_Task_Start(task1_slot);

/* go trigger (start) task 1 */

if (status != K_OK)
{
/* take corrective action. */
}

...
}

void task1(void)
{
/* declare locals if need be */
/* task 1 code... */

}

Comments

We are triggering (starting) task 1. This will put task 1 into the READY state. This
means that the task is able to run. The task will become the running task when it is the
highest priority task able to run. If task 1 had already been started, then the trigger will
increment the start (trigger) byte of the task's control block for use when the task
finishes its code.
 251

25

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Unlock
TASK MANAGER FUNCTION

K_Task_Unlock

Purpose: This function lowers the privilege flag for the calling task. This function can
be called only by the task that used the K_Task_Lock function, which raises the
privilege flag. Once the privilege is lowered, the CMX scheduler performs normally
again.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
void K_Task_Unlock(void); /* this is the function prototype */

K_Task_Unlock();

Passed

Nothing is passed. Only tasks can call this function.

Returned

No status is returned.

K_Task_Unlock example:

void task2(void); /* prototype task2 */

 void task2(void)
{
/* task's application code ... */
K_Task_Lock();
/* task 2 has raised the privilege flag, task 2 must lower the
privilege flag before the task's code ends */
...
K_Task_Unlock(); /* make sure task lowers privilege flag */

}

void task1(void)
{
/* declare locals if need be */
/* task 1 code... */

}

2

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Wait
TASK MANAGER FUNCTION

K_Task_Wait

Purpose: This function allows a task to suspend itself for a specified period of time or
indefinitely. It is very useful for synchronization with time, interrupts, and other tasks.

Called

Tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Wait(word16); /* this is the function prototype */

#define TIME_CNT ???

unsigned char STATUS; /* should be local */

STATUS = K_Task_Wait(TIME_CNT);

Passed

TIME_CNT is number of system ticks that this task will suspend itself. If the value is
zero then the task will be suspended indefinitely until the K_Task_Wake function is
used. If the value is non-zero, then the task will be suspended for that number of system
ticks. The K_Task_Wake function may be used prior to the time left, to wake this
function and put it back into the READY state. The maximum value that TIME_CNT
may be is 65535.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task identification number does not exist.

K_TIMEOUT = Warning: the time specified has elapsed.

If STATUS equals K_OK, then the task has RESUMED execution because the
K_Task_Wake or K_Task_Wake_Force function was used to wake this task. If
STATUS equals K_TIMEOUT, then the time period specified has expired and this is
why the task was awakened.

K_Task_Wait example:

void task1(void); /* prototype task1 */
 253

25

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Wait
 unsigned char task1_slot; /* global storage for task I.D. number */

void task1(void)
{
unsigned char status; /* local */
...
status = K_Task_Wait(100);

/* task 1 will suspend itself for 100 system ticks, unless the
K_Task_Wake function is used to wake this task prior to time
period elapsing */

if (status == K_ERROR)
{
/* ERROR, take corrective action. */
}

if (status == K_TIMEOUT)
{
/* time out occurred. In some cases this is what you want
for this task at this time. If the task was not expecting
the time period to expire, then corrective action could take
place here */
}

...
status = K_Task_Wait(0);

/* task 1 will now suspend itself indefinitely until the
K_Task_Wake function is used to wake this task. */

if (status == K_ERROR)
{
/* ERROR, take corrective action. */
}

...
}

4

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Wake
TASK MANAGER FUNCTION

K_Task_Wake

Purpose: This function wakes a task that had put itself in a suspended state. The task
must have used the K_Task_Wait function to suspend itself. If the task that "wakes up"
has a higher priority than the currently RUNNING task, then an immediate
rescheduling (task switch) will occur.

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Wake(byte); /* this is the function prototype */

unsigned char TASK_SLOT; /* global, declared earlier */

unsigned char STATUS; /* should be local */

STATUS = K_Task_Wake(TASK_SLOT);

Passed

TASK_SLOT is the name where the particular task's slot number resides.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task identification number does not exist.

K_NOT_WAITING = Error: the task specified was not waiting.

If STATUS equals K_OK, then the task specified has been "awakened" and put into the
READY state. If STATUS equals K_NOT_WAITING, then the task specified was not
waiting for this function call.

K_Task_Wake example:

void task1(void); /* prototype task1 */

 unsigned char task1_slot; /* global storage for task I.D. number */
 255

25

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Wake
void task2(void)
{
unsigned char status; /* local */
...
status = K_Task_Wake(task1_slot);
/* task 2 is waking task 1 */

if (status != K_OK)
{
/* ERROR, take corrective action. */
}

...
}

void task1(void)
{
/* task1 code ... */
K_Task_Wait(0);
/* more task 1 code ... */

}

Comments

The K_Task_Wake function is very useful when used with the K_Task_Wait function.
Since interrupts may call this function, this allows you to write application code where
interrupts can wake a task. Also other tasks may wake a task that has suspended itself
either indefinitely or for a specific time period.
6

QUICK REFERENCE

TASK MANAGER FUNCTION -- K_Task_Wake_Force
TASK MANAGER FUNCTION

K_Task_Wake_Force

Purpose: This function is like the above K_Task_Wake function, with the exception that
it will wake any task suspended by the following CMX functions: K_Task_Wait,
K_Mesg_Wait, K_Event_Wait and K_Mesg_Send_Wait. This function will not wake a
task that is waiting for a resource. If the awakened task has a higher priority than the
currently RUNNING task, an immediate rescheduling (task switch) will occur.

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Task_Wake_Force(byte); /* this is the function prototype */

unsigned char TASK_SLOT; /* global, declared earlier */

unsigned char STATUS; /* should be local */

STATUS = K_Task_Wake_Force(TASK_SLOT);

Passed

TASK_SLOT is the name where the particular task's slot number resides.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: the task identification number does not exist.

K_NOT_WAITING = Error: the task specified was not waiting.

If STATUS equals K_OK, then the task specified has been "awakened" and put into the
READY state. If STATUS equals K_NOT_WAITING, then the task specified was not
waiting for this function call.

K_Task_Wake_Force example:

void task1(void); /* prototype task1 */
 257

25

QUICK REFERENCE
TASK MANAGER FUNCTION -- K_Task_Wake_Force
 unsigned char task1_slot; /* global storage for task I.D. number */

void task2(void)
{
unsigned char status; /* local */
...
status = K_Task_Wake_Force(task1_slot);
/* task 2 is forcefully waking task 1 */
/* Normally this function is not needed */

if (status != K_OK)
{
/* ERROR, take corrective action. */
}

...
}

void task1(void)
{
/* task1 code ... */
K_Task_Wait(0);
/* more task 1 code ... */

}

8

QUICK REFERENCE

CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Create
CYCLIC TIMERS MANAGER FUNCTION

K_Timer_Create

Purpose: This function sets up a cyclic timer’s event function. When the cyclic timer
executes because its programmed time period expires, it calls the K_Event_Signal
function using the parameters programmed here. The K_Event_Signal function mode,
the task slot number or priority, and the event to set are sent to this function.

Called

Before entering RTOS, tasks.

#include <cxfuncs.h> /* has function prototype */
byte K_Timer_Create(byte,byte,byte,word16); /* this is the function prototype */

#define CYCLIC_NUM ??? /* Identifies the cyclic timer. */

#define MODE ??? /* determines the mode of the K_Event_Signal function. */

#define EVENT ??? /* determines which event to set. */

unsigned char TASK_PRI; /* works in conjunction of selected mode, specifies task or
priority or is not used. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Create(CYCLIC_NUM,MODE,TASK_PRI,EVENT);

Passed

CYCLIC_NUM is the numerical value of which cyclic timer that this function will
work with. Range in value from 0 to 1 less than maximum number of cyclic timers
declared.

MODE is the mode in which the K_Event_Signal function will execute.

TASK_PRI is the tasks slot number, the priority, or unused that is determined by the
MODE selected.

EVENT is the event bit that will be set when the cyclic timer's executes and calls the
K_Event_Signal function.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.
 259

26

QUICK REFERENCE
CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Create
K_ERROR = Error: cyclic number out of range.

K_Timer_Create example:

#define CYCLIC1 1 /* identifies cyclic timer 1. */

#define CY1_EVENT 0x0002 /* this is the event bit that will be set. */

#define CYCLIC1_MODE 0 /* mode declaration for K_Event_Signal function */

unsigned char task2_slot; /* previous declared, global. */

void task1(void)
{
unsigned char status; /* local */
...
status =
K_Timer_Create(CYCLIC1,CYCLIC1_MODE,task2_slot,CY1_EVENT);
/* task 1 will now set up cyclic timer 1, so when its time
period expires and executes, will automatically call the
K_Event_Signal function, which will perform in the following
manner. The K_Event_Signal function will set task 2's event
bit 1. The setting of this event within task 2 will occur every
time cyclic timer 1 has its time period expire. */

if (status != K_OK)
{
/* take corrective action. */
}

...
}

void task2(void)
{
unsigned short events; /* local */
events = K_Event_Wait(CY1_EVENT | MBOX1_EVENT,0);

/* task 2 can now wait until the CY1_EVENT or MBOX1_EVENT to
become set waking this task. CY1_EVENT will become set when
the associated cyclic timer, becomes running and its time
period expires, calling the K_Event_Signal function which will
set the CY1_EVENT. */
if (events & CY1_EVENT)
{
/* process this event. */
}

if (events & MBOX1_EVENT)
{
/* get message from mailbox, process. */
}

0

QUICK REFERENCE

CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Create
}

Comments

The K_Timer_Create function can be called at any time to change the set up parameters
this function will use when it calls the K_Event_Signal function. Since cyclic timers
are either "one-shots" or cyclic in nature, they are very useful in telling a task when a
time period has elapsed.
 261

26

QUICK REFERENCE
CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Cyclic
CYCLIC TIMERS MANAGER FUNCTION

K_Timer_Cyclic

Purpose: This function is used to change a cyclic timer’s cycle time period. You supply
the cyclic time period the system ticks that must expire before this cyclic timer
executes. The current remaining time left before this cyclic timer executes is left
untouched. The new cyclic time period takes effect when the cyclic timer executes and
reloads its time counter with the cyclic time. The new time can range from zero to
65535 and if zero will make this cyclic timer a "one-shot" timer. Also, the cyclic timer
is started if it was stopped when this function is called.

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Timer_Cyclic(byte,word16); /* this is the function prototype */

#define CYCLIC_NUM ??? /* Identifies the cyclic timer. */

#define NEW_CYCLIC_PERIOD ??? /* new cyclic period. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Cyclic(CYCLIC_NUM,NEW_CYCLIC_PERIOD);

Passed

CYCLIC_NUM is the number of the cyclic timer that the caller wants to work with.
This may range from 0 to 1 less than the maximum number of cyclic timers declared.

NEW_CYCLIC_PERIOD is the number of system ticks that the cyclic timer will use
at the recycle time period. May range from 0 to 65535.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: cyclic timer number out of range.

If STATUS equals K_OK, the specified cyclic timer has its cyclic time changed and the
timer started, if it was stopped.
2

QUICK REFERENCE

CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Cyclic
K_Timer_Cyclic example:

#define CYCLIC1 1 /* This identifies cyclic timer 1. */

void task1(void)
{
unsigned char status; /* local */
...
status = K_Timer_Cyclic(CYCLIC1,100);

/* task 1 will change cyclic timer 1 cyclic time to 100. Also
cyclic timer 1 will be started again, if it had been stopped
by the K_Timer_Stop function or it was a "one-shot" cyclic
timer and it had executed once. */

if (status != K_OK)
{
/* take corrective action. */
}

}

Comments

This new cyclic time period does not take effect until the time remaining for this cyclic
timer expires. Then the new cyclic time will be used and put into the cyclic time
counters. If the cyclic time period is zero, then the cyclic timer will be stopped since
the timer is programmed to operate as a "one-shot" timer.
 263

26

QUICK REFERENCE
CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Initial
CYCLIC TIMERS MANAGER FUNCTION

K_Timer_Initial

Purpose: This function is used to change a cyclic timer’s initial time period. You supply
the initial time period with the system ticks that must expire before this cyclic timer
executes. The current remaining time left before this cyclic timer executes is
immediately replaced with this time, overriding the "normal" time left. The cyclic time
period that was programmed is left untouched. This function also restarts the cyclic
timer, if it had been stopped.

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Timer_Initial(byte,word16); /* this is the function prototype */

#define CYCLIC_NUM ??? /* Identifies what cyclic timer. */

#define NEW_INITIAL_PERIOD ??? /* new initial period. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Initial(CYCLIC_NUM,NEW_INITIAL_PERIOD);

Passed

CYCLIC_NUM is the number of the cyclic timer that the caller wants to work with.
May range from zero to one less than maximum number of cyclic timers declared.

NEW_INITIAL_PERIOD is the number of system ticks that the cyclic timer will use a
immediately in its time counters. This time is reduced at each system tick and when it
becomes zero, the cyclic timer executes the K_Event_Signal function. May range from
one to 65535.

Returned

A status will be returned to caller indicating K_OK: a successful operation, the
specified cyclic timer has its initial time changed and also the cyclic timer is started if
it was stopped or K_ERROR: the cyclic timer number was out of range.
4

QUICK REFERENCE

CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Initial
This is very useful. A cyclic timer could continuously have this function called by a
watchdog function. If the watchdog function did not execute or detected something
wrong, the cyclic timer would eventually have its time counters decrement to zero,
which could then notify a task to perform an orderly shutdown.

K_Timer_Initial example:

#define CYCLIC1 1 /* This identifies cyclic timer 1. */

void task1(void)
{
unsigned char status; /* local */
...
status = K_Timer_Initial(CYCLIC1,50);

/* task 1 will change cyclic timer 1 initial time to 50. Also
cyclic timer 1 will be started again, if it had been stopped
by the K_Timer_Stop function or it was a "one-shot" cyclic
timer and it had executed once. Lets say there was a count of
3 remaining in the cyclic time counters, when this function was
called. The cyclic time counters would immediately be loaded
with 50, overriding the previous value of 3. */

if (status != K_OK)
{
/* take corrective action. */
}

}

 265

26

QUICK REFERENCE
CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Restart
CYCLIC TIMERS MANAGER FUNCTION

K_Timer_Restart

Purpose: This function restarts a cyclic timer whether it was stopped or is still running.
The time remaining in the cyclic timers time counters and the cyclic time period is left
untouched. This works in conjunction with the K_Timer_Stop function which stops
cyclic timers. This function is very useful to restart a cyclic timer that had been stopped
without changing any parameters of the cyclic timer.

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Timer_Restart(byte); /* this is the function prototype */

#define CYCLIC_NUM ??? /* Identifies the cyclic timer. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Restart(CYCLIC_NUM);

Passed

CYCLIC_NUM is the number of the cyclic timer that the caller wants to work with.
This may range from zero to one less than maximum number of cyclic timers declared.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: cyclic timer number out of range.

If STATUS equals K_OK, then the specified cyclic timer is restarted if it was stopped.
If already started, this function has no effect.

K_Timer_Restart example:

#define CYCLIC1 1 /* This identifies cyclic timer 1. */

void task1(void)
{

6

QUICK REFERENCE

CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Restart
unsigned char status; /* local */
...
status = K_Timer_Restart(CYCLIC1);
/* task 1 will restart cyclic timer 1. If cyclic timer 1 was
currently started, then this function would have no effect. If
the cyclic timer was stopped, then the cyclic timer would be
started, using the current time periods within it. */

if (status != K_OK)
{
/* take corrective action. */
}

}

 267

26

QUICK REFERENCE
CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Start
CYCLIC TIMERS MANAGER FUNCTION

K_Timer_Start

Purpose: This function is used start a cyclic timer which is assumed to have been set up
by the K_Timer_Create function. Both the initial time and cyclic time periods are
programmed into the cyclic timer. Also the cyclic timer is started. The initial time
period is used first by the cyclic timer. After the initial time period expires, the cyclic
timer will be used from then on.

Called

Before entering RTOS, tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Timer_Start(byte,word16,word16); /* this is the function prototype */

#define CYCLIC_NUM ??? /* Identifies what cyclic timer. */

#define INITIAL_PERIOD ??? /* initial time period. */

#define CYCLIC_PERIOD ??? /* cyclic time period. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Start(CYCLIC_NUM,INITIAL_PERIOD,CYCLIC_PERIOD);

Passed

CYCLIC_NUM is the cyclic timer number the caller wants to work with. This may
range from zero to one less than the maximum number of cyclic timers declared.

INITIAL_PERIOD is the number of system ticks the cyclic timer will use immediately
in its time counters. This time is reduced at each system tick and when it becomes zero,
the cyclic timer executes the K_Event_Signal function. This may range from one to
65535.

CYCLIC_PERIOD is the number of system ticks the cyclic timer will use at the recycle
time period. This may range from zero to 65535.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.
8

QUICK REFERENCE

CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Start
K_ERROR = Error: cyclic timer number out of range.

If STATUS equals K_OK, then the specified cyclic timer is started. The initial time
period and cyclic period are used for this cyclic timer.

☞ This function may be called more than once for a particular cyclic timer, to change both
the cyclic timer’s initial time and cyclic time.

K_Timer_Start example:

#define CYCLIC1 1 /* This identifies cyclic timer 1. */

void task1(void)
{
unsigned char status; /* local */
...
status = K_Timer_Start(CYCLIC1,10,50);

/* task 1 will start cyclic timer 1. The initial time period
will be 10 and cyclic time period will be 50. This means that
the cyclic time counter will be loaded with 10 initially.
After this initial time period expires (because of 10 system
ticks), the cyclic timer will call the K_Event_Signal
automatically with the parameters programmed by the
K_Timer_Create function. Then the cyclic time counter will be
loaded with the cyclic time period from then on and that time
will be used by the time counters. If the cyclic time period
is 0, then the cyclic timer will execute only once "one-shot"
mode and then stopped. Otherwise the cyclic time will be used
to determine the frequency in which this cyclic timer will
execute. */

if (status != K_OK)
{
/* take corrective action. */
}

}

Comments

To fully understand how flexible and powerful cyclic timers are, and how many
different ways they may be used, please read the Cyclic Timers Manager Functions
chapter.
 269

27

QUICK REFERENCE
CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Stop
CYCLIC TIMERS MANAGER FUNCTION

K_Timer_Stop

Purpose: This function stops a cyclic timer. If this function is called, the cyclic timer
will remain stopped (not execute its code, the K_Event_Signal function) until started
again by the K_Timer_Start, K_Timer_Restart, K_Timer_Cyclic, or K_Timer_Initial
functions. The cyclic time periods currently in effect and their time amounts are left
untouched by this function.

Called

Tasks and interrupts.

☞ Interrupts can call this function, but only indirectly. See the Processor Specific section on
how to do this.

#include <cxfuncs.h> /* has function prototype */
byte K_Timer_Stop(byte); /* this is the function prototype */

#define CYCLIC_NUM ??? /* Identifies what cyclic timer. */

unsigned char STATUS; /* should be local */

STATUS = K_Timer_Stop(CYCLIC_NUM);

Passed

CYCLIC_NUM is the number of the cyclic timer that the caller wants to work with.
This may range from zero to one less than maximum number of cyclic timers declared.

Returned

STATUS returned is one of the following:

K_OK = Good: function call was successful.

K_ERROR = Error: cyclic timer number out of range.

If STATUS equals K_OK, then the specified cyclic timer is stopped or if already
stopped, then has no effect.

K_Timer_Stop example:

#define CYCLIC1 1 /* This identifies cyclic timer 1. */

void task1(void)
{

0

QUICK REFERENCE

CYCLIC TIMERS MANAGER FUNCTION -- K_Timer_Stop
unsigned char status; /* local */
...
status = K_Timer_Stop(CYCLIC1);

/* task 1 will now stop cyclic timer 1. Cyclic timer 1 will
not execute its code again (the K_Event_Signal function),
until this cyclic timer gets started again with one of the
cyclic timer functions that start or restart a cyclic timer. */

if (status != K_OK)
{
/* take corrective action. */
}

...
}

 271

27

QUICK REFERENCE
UART FUNCTIONS -- K_Update_Recv
UART FUNCTIONS

K_Update_Recv

Purpose: If the receive buffer is not full, then the received character will be placed into
the receive buffer and the receive head pointer will be incremented to point to the next
storage location. The receiver count_in variable will also be incremented, indicating
the number of bytes received. If a task is waiting on the receiver for a specified number
of characters, then the K_Update_Recv function will test to see if the required number
of characters are present now. If so, the task will automatically be put into the
RESUME state, indicating the required number of characters are present.
2

QUICK REFERENCE

UART FUNCTIONS -- K_Update_Xmit
UART FUNCTIONS

K_Update_Xmit

Purpose: The K_Update_Xmit function is called by the transmitter interrupt. First the
function will determine whether the transmitter empty flag is set. If so, then the
transmit count_out variable will be tested for zero. If the count_out variable is non-
zero, indicating that there are additional characters to transmit, the transmitter will
automatically be loaded with the next buffer character, the count_out variable
decremented and the tail pointer incremented so it is pointing to the next character. If
the count_out variable is zero, it will test to see if there is a task waiting to transmit more
characters. Remember, only one task should have exclusive ownership of the
transmitter (through the use of the resource functions). If the task is waiting, then the
task will automatically be put into the RESUME state, indicating it may now put more
characters into the transmit buffer when it becomes the highest priority task able to run.
 273

27

QUICK REFERENCE
UART FUNCTIONS -- K_Update_Xmit
4

QUICK REFERENCE

UART FUNCTIONS -- K_Update_Xmit
 275

27

QUICK REFERENCE
UART FUNCTIONS -- K_Update_Xmit
6

QUICK REFERENCE

UART FUNCTIONS -- K_Update_Xmit
 277

27

QUICK REFERENCE
UART FUNCTIONS -- K_Update_Xmit
8

QUICK REFERENCE

UART FUNCTIONS -- K_Update_Xmit
 279

28

QUICK REFERENCE
UART FUNCTIONS -- K_Update_Xmit
0

QUICK REFERENCE

UART FUNCTIONS -- K_Update_Xmit
 281

28

QUICK REFERENCE
UART FUNCTIONS -- K_Update_Xmit
2

QUICK REFERENCE

UART FUNCTIONS -- K_Update_Xmit
 283

Index
Symbols

"C" compilers
using with CMX 139

A

Alignment 51

C

Clear mode command 31
CMX C Function Calls 139
CMX Configuration File 136
CMX Multi-Tasking Executive 1
CMX Operating Flags 138
CMX Scheduler Chapter 138
CMX Timer Task 132
Configuration module 57
Critical regions of code 96
Cyclic Timers Manager Functions 83

K_Timer_Create 84, 259
K_Timer_Cyclic 91, 262
K_Timer_Initial 88, 264
K_Timer_Restart 92, 266
K_Timer_Start 86, 268
K_Timer_Stop 93, 270

E

Event Manager Functions 29
K_Event_Reset 39, 141
K_Event_Signal 34, 143
K_Event_Wait 30, 145

I

Interrupt pipe 137
Interrupts 2, 6, 137, 139
Interrupts that Interface with CMX Functions

138

K

K_Event_Reset 39, 141

K_Event_Signal 34, 143
K_Event_Wait 30, 145
K_Get_Char 106, 147
K_Get_Char_Wait 107, 149
K_Get_Str 109, 151
K_Get_Str_Return 116, 153
K_Get_Str_Wait 111, 155
K_Get_Str_Wait_Return 113, 157
K_Init_Recv 97, 159
K_Init_Xmit 98, 160
K_Mbox_Event_Set 66, 161
K_Mem_FB_Create 51, 163
K_Mem_FB_Get 53, 165
K_Mem_FB_Release 55, 167
K_Mesg_Ack_Sender 64, 169
K_Mesg_Get 61, 171
K_Mesg_Send 57, 173
K_Mesg_Send_Wait 59, 175
K_Mesg_Wait 63, 177
K_OS_Disable_Interrupts 121, 179
K_OS_Enable_Interrupts 122, 181
K_OS_Init 119, 183
K_OS_Intrp_Entry 123, 184
K_OS_Intrp_Exit 124, 186
K_OS_Low_Power_Func 129, 188
K_OS_Slice_Off 127, 190
K_OS_Slice_On 126, 191
K_OS_Start 120, 192
K_OS_Task_Slot_Get 130, 193
K_OS_Tick_Get_Ctr 131, 194
K_OS_Tick_Update 128, 195
K_Put_Char 99, 196
K_Put_Char_Wait 100, 198
K_Put_Str 102, 200
K_Put_Str_Wait 104, 202
K_Que_Add_Bottom 46, 204
K_Que_Add_Top 44, 206
K_Que_Create 41, 208
K_Que_Get_Bottom 49, 210
K_Que_Get_Top 47, 212
K_Que_Reset 43, 214
K_Recv_Count 117, 216
K_Resource_Get 70, 217

Index
K_Resource_Release 73, 219
K_Resource_Wait 71, 221
K_Semaphore_Create 76, 223
K_Semaphore_Get 77, 225
K_Semaphore_Post 80, 227
K_Semaphore_Reset 82, 229
K_Semaphore_Wait 78, 231
K_Task_Coop_Sched 24, 233
K_Task_Create 8, 234
K_Task_Create_Stack 11, 236
K_Task_Delete 27, 240
K_Task_End 25, 242
K_Task_Lock 22, 244
K_Task_Name 28, 246
K_Task_Priority 16, 248
K_Task_Start 14, 250
K_Task_Unlock 23, 252
K_Task_Wait 17, 253
K_Task_Wake 19, 255
K_Task_Wake_Force 21, 257
K_Timer_Create 84, 259
K_Timer_Cyclic 91, 262
K_Timer_Initial 88, 264
K_Timer_Restart 92, 266
K_Timer_Start 86, 268
K_Timer_Stop 93, 270
K_Update_Recv 99, 272
K_Update_Xmit 98, 273

M

Memory Manager Functions 51
K_Mem_FB_Create 51, 163
K_Mem_FB_Get 53, 165
K_Mem_FB_Release 55, 167

Message Manager Functions 56
K_Mbox_Event_Set 66, 161
K_Mesg_Ack_Sender 64, 169
K_Mesg_Get 61, 171
K_Mesg_Send 57, 173
K_Mesg_Send_Wait 59, 175
K_Mesg_Wait 63, 177

Mode values in the K_Event_Signal function
35

value of 0 (zero) 35
value of 1 35
value of 2 36
value of 3 36
value of 4 36
value of 5 36
value of 6 36

O

Operating System Functions 118
K_OS_Disable_Interrupts 121, 179
K_OS_Enable_Interrupts 122, 181
K_OS_Init 119, 183
K_OS_Intrp_Entry 123, 184
K_OS_Intrp_Exit 124, 186
K_OS_Low_Power_Func 129, 188
K_OS_Slice_Off 127, 190
K_OS_Slice_On 126, 191
K_OS_Start 120, 192
K_OS_Task_Slot_Get 130, 193
K_OS_Tick_Get_Ctr 131, 194
K_OS_Tick_Update 128, 195

P

Preemption 1
Priority 1
Privilege flag 22

Q

Queue Manager Functions 40
K_Que_Add_Bottom 46, 204
K_Que_Add_Top 44, 206
K_Que_Create 41, 208
K_Que_Get_Bottom 49, 210
K_Que_Get_Top 47, 212
K_Que_Reset 43, 214

R

RAM 8, 11, 41
Receive Buffer 96
Resource Manager Functions 69

Index
K_Resource_Get 70, 217
K_Resource_Release 73, 219
K_Resource_Wait 71, 221

Return Status Byte Values 5, 140
K_ERROR 5, 140
K_NOT_WAITING 5, 140
K_OK 5, 140
K_QUE_EMPTY 5, 140
K_QUE_FULL 5, 140
K_RESOURCE_NOT_OWNED 5, 140
K_RESOURCE_OWNED 5, 140
K_SEMAPHORE_NONE 5, 140
K_TIMEOUT 5, 140

ROM 8

S

Scheduler 1
Semaphore Manager Functions 75

K_Semaphore_Create 76, 223
K_Semaphore_Get 77, 225
K_Semaphore_Post 80, 227
K_Semaphore_Reset 82, 229
K_Semaphore_Wait 78, 231

Setting Up Tasks 3
Stacks 133
Synchronization 34, 37
System tick 1, 2

T

Task Manager Functions 8
K_Task_Coop_Sched 24, 233
K_Task_Create 8, 234
K_Task_Create_Stack 11, 236
K_Task_Delete 27, 240
K_Task_End 25, 242
K_Task_Lock 22, 244
K_Task_Name 28, 246
K_Task_Priority 16, 248
K_Task_Start 14, 250
K_Task_Unlock 23, 252
K_Task_Wait 17, 253
K_Task_Wake 19, 255

K_Task_Wake_Force 21, 257
Task states 2

IDLE 2
READY 2
RESUME 3
RUN 2
WAIT 3

Task switch 1
Time Slice Chapter 136
Time slicing 136
Timer task 23
Transmit Buffer 96

U

UART Manager Functions 95
K_Get_Char 106, 147
K_Get_Char_Wait 107, 149
K_Get_Str 109, 151
K_Get_Str_Return 116, 153
K_Get_Str_Wait 111, 155
K_Get_Str_Wait_Return 113, 157
K_Init_Recv 97, 159
K_Init_Xmit 98, 160
K_Put_Char 99, 196
K_Put_Char_Wait 100, 198
K_Put_Str 102, 200
K_Put_Str_Wait 104, 202
K_Recv_Count 117, 216
K_Update_Recv 99, 272
K_Update_Xmit 98, 273
Receive Buffer 96
Transmit Buffer 96

W

WAIT (suspended) state 3
When A Task Is Interrupted 2

	The CMX Multi-Tasking Executive
	The CMX Scheduler
	When A Task Is Interrupted
	Task States
	IDLE state
	READY state
	RUN state
	WAIT (suspended) state
	RESUME state

	Setting Up Tasks
	CMX Return Status Byte Values
	CMX DATA TYPES
	Layout Of The Functions
	Task Manager Functions
	The K_Task_Create function
	The K_Task_Create_Stack function
	The K_Task_Start function
	The K_Task_Priority function
	The K_Task_Wait function
	The K_Task_Wake function
	The K_Task_Wake_Force function
	The K_Task_Lock function
	The K_Task_Unlock function
	The K_Task_Coop_Sched function
	The K_Task_End function
	The K_Task_Delete function
	The K_Task_Name function

	Event manager functions
	The K_Event_Wait function
	The clear mode command
	The K_Event_Signal function
	Mode values in the K_Event_Signal function
	The K_Event_Reset function

	Queue Manager Functions
	The K_Que_Create function
	The K_Que_Reset function
	The K_Que_Add_Top function
	The K_Que_Add_Bottom function
	The K_Que_Get_Top function
	The K_Que_Get_Bottom function

	Memory Manager Functions
	The K_Mem_FB_Create function
	The K_Mem_FB_Get function
	The K_Mem_FB_Release function

	Message Manager Functions
	The K_Mesg_Send function
	The K_Mesg_Send_Wait function
	The K_Mesg_Get function
	The K_Mesg_Wait function
	The K_Mesg_Ack_Sender function
	The K_Mbox_Event_Set function

	Resource Manager Functions
	The K_Resource_Get function
	The K_Resource_Wait function
	The K_Resource_Release function

	Semaphore Manager Functions
	The K_Semaphore_Create function
	The K_Semaphore_Get function
	The K_Semaphore_Wait function
	The K_Semaphore_Post function
	The K_Semaphore_Reset function

	Cyclic Timers Manager Functions
	The K_Timer_Create function
	The K_Timer_Start function
	The K_Timer_Initial function
	The K_Timer_Cyclic function
	The K_Timer_Restart function
	The K_Timer_Stop function

	UART Manager Functions
	The Receive Buffer
	The Transmit Buffer
	The K_Init_Recv function
	The K_Init_Xmit function
	The K_Update_Xmit function
	The K_Update_Recv function
	The K_Put_Char function
	The K_Put_Char_Wait function
	The K_Put_Str function
	The K_Put_Str_Wait function
	The K_Get_Char function
	The K_Get_Char_Wait function
	The K_Get_Str function
	The K_Get_Str_Wait function
	The K_Get_Str_Wait_Return function
	The K_Get_Str_Return function
	The K_Recv_Count function

	The Operating System Functions
	The K_OS_Init function
	The K_OS_Start function
	The K_OS_Disable_Interrupts function
	The K_OS_Enable_Interrupts function
	The K_OS_Intrp_Entry function
	The K_OS_Intrp_Exit function
	The K_OS_Slice_On function
	The K_OS_Slice_Off function
	The K_OS_Tick_Update function
	The K_OS_Low_Power_Func function
	The K_OS_Task_Slot_Get function
	The K_OS_Tick_Get_Ctr function

	The CMX Timer Task
	Stacks in General
	The RTOS Configuration File
	Time Slice Chapter
	Interrupts in General
	How Interrupts Interface with CMX Functions
	The CMX Scheduler Chapter
	CMX Operating Flags

	QUICK REFERENCE
	Using CMX with C compilers
	CMX Return Status Byte Values
	Event Manager Function
	K_Event_Reset
	Event Manager Function
	K_Event_Signal
	Event Manager Function
	K_Event_Wait
	UART Functions
	K_Get_Char
	UART Functions
	K_Get_Char_Wait
	UART Functions
	K_Get_Str
	UART Functions
	K_Get_Str_Return
	UART Functions
	K_Get_Str_Wait
	UART Functions
	K_Get_Str_Wait_Return
	UART Functions
	K_Init_Recv
	UART Functions
	K_Init_Xmit
	Message Manager Function
	K_Mbox_Event_Set
	MEMORY Manager Function
	K_Mem_FB_Create
	MEMORY Manager Function
	K_Mem_FB_Get
	MEMORY Manager Function
	K_Mem_FB_Release
	Message Manager Function
	K_Mesg_Ack_Sender
	Message Manager Function
	K_Mesg_Get
	Message Manager Function
	K_Mesg_Send
	Message Manager Function
	K_Mesg_Send_Wait
	Message Manager Function
	K_Mesg_Wait
	Operating System Function
	K_OS_Disable_Interrupts
	Operating System Function
	K_OS_Enable_Interrupts
	Operating System Function
	K_OS_Init
	Operating System Function
	K_OS_Intrp_Entry
	Operating System Function
	K_OS_Intrp_Exit
	Operating System Function
	K_OS_Low_Power_Func
	Operating System Function
	K_OS_Slice_Off
	Operating System Function
	K_OS_Slice_On
	Operating System Function
	K_OS_Start
	Operating System Function
	K_OS_Task_Slot_Get
	Operating System Function
	K_OS_Tick_Get_Ctr
	Operating System Function
	K_OS_Tick_Update
	UART Functions
	K_Put_Char
	UART Functions
	K_Put_Char_Wait
	UART Functions
	K_Put_Str
	UART Functions
	K_Put_Str_Wait
	Queue Manager Function
	K_Que_Add_Bottom
	Queue Manager Function
	K_Que_Add_Top
	Queue Manager Function
	K_Que_Create
	Queue Manager Function
	K_Que_Get_Bottom
	Queue Manager Function
	K_Que_Get_Top
	Queue Manager Function
	K_Que_Reset
	UART Functions
	K_Recv_Count
	Resource Manager Function
	K_Resource_Get
	Resource Manager Function
	K_Resource_Release
	Resource Manager Function
	K_Resource_Wait
	SEMAPHORE Manager Function
	K_Semaphore_Create
	semaphore Manager Function
	K_Semaphore_Get
	semaphore Manager Function
	K_Semaphore_Post
	SEMAPHORE Manager Function
	K_Semaphore_Reset
	semaphore Manager Function
	K_Semaphore_Wait
	Task Manager Function
	K_Task_Coop_Sched
	Task Manager Function
	K_Task_Create
	Task Manager Function
	K_Task_Create_Stack
	Task Manager Function
	K_Task_Delete
	Task Manager Function
	K_Task_End
	Task Manager Function
	K_Task_Lock
	Task Manager Function
	K_Task_Name
	Task Manager Function
	K_Task_Priority
	Task Manager Function
	K_Task_Start
	Task Manager Function
	K_Task_Unlock
	Task Manager Function
	K_Task_Wait
	Task Manager Function
	K_Task_Wake
	Task Manager Function
	K_Task_Wake_Force
	Cyclic Timers Manager Function
	K_Timer_Create
	Cyclic Timers Manager Function
	K_Timer_Cyclic
	Cyclic Timers Manager Function
	K_Timer_Initial
	Cyclic Timers Manager Function
	K_Timer_Restart
	Cyclic Timers Manager Function
	K_Timer_Start
	Cyclic Timers Manager Function
	K_Timer_Stop
	UART Functions
	K_Update_Recv
	UART Functions
	K_Update_Xmit

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

