
Page 1

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Component-based real-time systems

Ivica Crnkovic
Mälardalen Högskola

ivca.crnkovic@mdh.se
http://www.idt.mdh.se/~icc

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Outline

• Basic principles of real-time (RT) systems
• Component specification and component-based process
• Suitability of component-based approach for RT systems
• RT Components, specification and composition
• Component-based RT systems development process
• (Examples of component-models for embedded and RT systems)

Page 2

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

“A real-time system is a system that reacts upon outside events and
performs a function based on these and and gives a response within
a certain time. Correctness of the function does not only depend on
correctness of the result, but also the timeliness of it”.

The controlled process dictates the time scale (some processes have
demand on response at second-level, others at milliseconds or even
microsecond level).

What is a real-time system?

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Example:
An air bag must not be inflated too late, nor too early!

In some cases the system must wait before it responds!

Collision
Too late

time

Too early

Correct result at the right time

Page 3

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Predictable vs. fast

A robot arm with good
timing catches the
passing boll.

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Too fast robot arm
misses the passing boll!

Predictable vs. fast

Page 4

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Interaction with the environment

A sensor transforms physical data (temperature, pressure) to digital format
Examples: thermometer, microphone, video camera

An actuator works the other way round - transforming digital data to
physical format.
Example: motors, pumps, machines…

A real-time system interacts with the environment via
sensors and actuators

RT
software
system

Sensor

Actuator
Process

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Embedded systems: Volvo S80

Vehicle mechanics

ECU

Sensor ActuatorSensor

gateway
(CAN) BUS

ECU

Sensor ActuatorSensor

ECU

Sensor ActuatorSensor

Page 5

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Resources
– Enough resources (e.g., ABS break system)
– System with limited resources (e.g., telephone switches)

Activation
– Event Triggered (ET) systems (e.g., bank transaction systems)
– Time Triggered (TT) systems (e.g., aircraft control system)

Service level
– Soft real-time systems (e.g., multimedia systems)
– Hard real-time systems (e.g., airbag)

Classification of real-time systems

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Enough resources
– You can always guarantee that all functions in the system are able to execute

when they so desire.
– Most often safety critical applications
– Expensive
– Example: ABS-system, ”fly-by-wire”-system, power plant…

Limited resources
– There may be occasions when the system is unable to handle all functions that

wants to execute.
– Designed to work well under normal conditions.
– Example: telephone – everybody wants to make a phone call simultaneously will

result in that some has to wait.

Enough resources vs. Limited resources

Page 6

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Event driven real-time systems
– External events determines when a program is to be executed
– Often through interrupts
– Example: telephone switches, ”video-on-demand”, transaction

systems…

Time driven real-time systems
– The system handles external events at predefined points in time
– Most often cyclic systems repeats a certain scenario
– Example: ABS, control systems, manufacturing systems…

Event driven vs. time driven systems

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Hard real-time systems
– The cost for not fulfilling the functional and temporal constraints are

severe
– Failing to meet hard real-time constraints results in computations, at best,

being useless
– Often safety critical the correctness must be verified before system

operation
– Example: ABS, airbag, defence system, power plant…

Soft real-time systems
– Occasional miss of fulfilling a timing constraint can be acceptable
– The usefulness of the computation is reduced (reduced service) Example:

reservation systems, ATM machines, multimedia, virtual reality…

Hard vs. Soft real-time systems

Page 7

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Most of the real-time systems are based on following:
1. Several parallel activities are given some unique priorities
2. A resource manager makes sure the task with the highest priority will

execute

Challenges when constructing RT systems

1 3

Activities

Resource
manager

timeCPU

1

2

3

ready

ready

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Task
• A sequential program performing an activity and that possibly

communicates with other tasks in the system. A task often has a priority
relative to other tasks in the system.

• Sometimes thread is used instead of task.

Process
• A virtual processor that can handle several tasks with a common memory

space.

Definition – task

Page 8

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Task
• A task is specified by a temporal behavior, function and state

Function entries

State

Functions

Inports
outports

Taks Properties:
Execution time
Memory consumption
…..

System specification:
Period
Release Time
Deadline

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

• A platform for development of RTS Systems
• The development of RTS application software becomes easier and

more effective

Real-Time Operating System

RTOS

Implements scheduling,
synchronisation and communication
using services in the HW -adaption
layer

HW - adaption layerCode for handling
processor registers
and status as well as
code for handling
interrupts

HW
The processor,
specialised HW suited
for the environment

Application

Uses the services the
RTOS provides, e.g.,
service calls

Page 9

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Event triggered RTOS
– Each task has a priority
– Among the tasks willing to execute, the task with highest priority gets to
– Priority assignment before or during execution
– Example: WxWorks from Windriver, Vertex from Mentor, Spring from Umass

Time triggered RTOS
– Tasks are executed according to a schedule determined before the execution
– Time acts a means for synchronisation
– Example: Rubus from Arcticus Systems, TTP from TTTech.

Types of real time operating systems

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

A TT RTOS is often implemented by
• A time table (schedule)
• An RTOS executes the programs according to the time table
• A time table can either be pre-emptive or non-pre-emptive

Conflicts between tasks
• Resolved in the schedule, before system starts to run
• Requires a deeper understanding and knowledge about the system

Parallel from day-to-day life: time tables for trains
• Assuming no delays or break downs on trains can occur, we could eliminate

the whole signalling system for trains (this due to the construction of the time
table is such that no two trains can reside at the same railway section)

Time triggered (TT) RTOS

Page 10

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Task types

To implement real-time systems, we need:
• Models to describe the system (“constructive model”)
• Analysis to predicts the system’s behavior (“analytical model”)

A useful task model should be able to express:
• Timing requirements
• Shared resources
• Communication
• Precedence demands

Task types
• Periodic tasks
• Sporadic tasks
• Aperiodic tasks

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Periodic tasks

An infinite sequence of identical activities –
invocations (jobs)

timeTask A A1

(Inv. 1)

A2

(Inv. 2)

A3

(Inv. 3)

period period

Analogy from real life:
Example:
• Audio and video sampling
• Regulating
• Monitoring of temperature and pressure

Page 11

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Sporadic tasks

Known minimum interarrival time (mint)
between two consecutive invocations

timeTask A A1

mint

A2 A2

After the mint has passed, the next
invocation can get activated at any
time – we do not know when

Laying an egg – A hen never lays
more than one egg per day. After
laying an egg, we do not know when
exactly the next egg will come, but we
do know that it has to pass at least 24
hours from the previous one

Example:
• Regulation of water tanks
• Detection of enemy missiles

in a fighter jet

Analogy from real life:

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Aperiodic tasks

• Non-periodic execution
• Events that triggers an aperiodic task may

occur at any time

time
A1

?

A2

Analogy from real life:
Lightning – can strike at any time
(in right conditions)

Example:
• A device generates interrupts
• An operator presses the

emergency button
• Alarms

Page 12

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

What is a deadline?

Task deadline is the latest point in time at which the task has to be
completed

• Absolute deadline
• Relative deadline

Hard real-time systems:
deadlines must not be
missed!

Task
tid

Deadline

Soft real-time systems: deadlines
can be missed, but preferably they are
not!

Task
time

Deadline

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

What is a release time?

Task release time is the earliest point in time we can activate (release) the
task

Airbag-example:

Crash
Too late

time
Too early

Release time Deadline

Page 13

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Definition of periodic task

Periodic task i can be described with:

RTi – release time, i.e., earliest start time for task i

Di – relative deadline, i.e., the latest point in time within which task i has to
complete, counted from the current period start

Ci – execution time during a period time

Ti – period time, i.e., how often the task i gets ready

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Event ordering

Events can be:
• Predictable time triggered tasks
• Unpredictable event triggered tasks

What happens if several events occur at the same time?
• We must have some event ordering mechanism!

Example:

Assume two tasks handling two simultaneous events:

Task A: deadline = 5 Task B: deadline = 7
execution time = 3 execution time = 4

Does it matter in which order we execute the tasks?

Page 14

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Simple classification of scheduling algorithms

Scheduling

Online Offline

Time
triggered

Priority based

Static priorities Dynamic priorities

RM FPS RM+PIP EDF

RM Rate Monotonic
FPS Fixed Priority Scheduling
EDF Earliest Deadline First
PIP Priority Inheritance Protocol

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Online vs offline scheduling

Online scheduling
(+) flexible
(+) relatively simple analysis

(-) difficult to cope with complex constraints
(-) less deterministic

Offline scheduling
(+) deterministic
(+) simplier to test and verify
(+) handles complex constraints

(-) new schedule must be generated if we add a new function
(-) it could take a long time to produce a schedule

Page 15

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Online vs. offline scheduling

When to use each of the methods?

Offline scheduling
• High demands on timing and functional

verification, testability and determinism
• Safety-critical applications, e.g., control system

for Boeing 777

Online scheduling
• Demands on flexibility, meny non-periodic

activities
• Example: multimedia applications

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

What do wee need to schedule tasks?

Task properties:
– Execution time:

• Worst case execution time
• Best case execution time

• Precedence requirements
– Resources
– Tasks

• Properties setup from the system requirements
– Execution period
– Release
– Deadline

– Priority

Page 16

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Execution time analysis – WCET analysis

WCET = Worst Case Execution Time
• We want to find out how long time a task needs for its

execution before we run the task

Why WCET analysis?
• Predictability!
• Pre-requisite for any schedulability analysis

How can we get WCET?
• measuring + safety margins

- hazardous
- difficult to measure in a right way

• Analysis
- safe (can be proven)
- difficult

What is the longest
execution time (WCET)?

Task code

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Execution time analysis

Earlier presented scheduling algorithms:
• Ci = WCET
• Can not guaranty correct timing behavior if WCET is wrong

Execution time depends on:
• Input data
• Program logic (defined by source code)
• Compiler
• Hardware (CPU, memory,…)

Other relevant values:
• BCET – Best Case Execution Time
• ACET – Average Case Execution Time

Page 17

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

RT systems and component-
based approach

• Why is CBD approach interesting for RT systems?

– Reusability
– Predictability
– Managing complexity

• Why is CBD approach more difficult for development of RT
systems?

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Main challenges

• How to specify components that they provide all information
needed for RT design?

• How to flexible reuse specification of components when the
environment is changed (problem with WCET, resources)?

• How to predict (RT) properties of the RT systems from the RT
components?

Page 18

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Software Component Definition

Szyperski (Component Software beyond OO programming)
• A software component is

– a unit of composition
– with contractually specified interfaces
– and explicit context dependencies only.

• A software component
– can be deployed independently
– it is subject to composition by third party.

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Components and Interfaces - UML definition

Component – a set of interfaces
required (in-interfaces)
provided (out-interfaces)

Interface – set of operations
Operations – input and output parameters of

certain type

Page 19

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Substitution

• Substituting a component Y for a component X is said to be safe if:
– All systems that work with X will also work with Y

• From a syntactic viewpoint, a component can safely be replaced if:
– The new component implements at least the same interfaces as the

older components
• From semantic point of view?

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Specifying the Semantics of Components

• Current component technologies assume that the user of a
component is able to make use of such semantic information.

• Extension of Interface (adding semantics)
– a set of interfaces that each consists of a set of operations.
– a set of preconditions and postconditions is associated with each

operation.
– A set of invariants

• Also called: Contractually specified interfaces

Page 20

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Precondition, Postconditions, Invariants
• Precondition

– an assertion that the component assumes to be fulfilled before an operation is
invoked.

– Will in general be a predicate over the operation’s input parameters and this
state

• Postcondition
– An assertion that the component guarantees will hold just after an operation has

been invoked, provided the operation’s pre-conditions were true when it was
invoked.

– Is a predicate over both input and output parameters as well as the state just
before the invocation and just after

• Invariant
– Is a predicate over the interface’s state model that will always hold

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Semantic Specification in a UML metamodel

Interface

Com ponent

*

in-interfaces*

*

out-interfaces

*

State
1 *

Constraint

*

*

* 1

Invariant

1

*

1

*

Operation

*

*

Param eter

1

*

PreCondition
* 1

PostCondition
1 *

1

*

InParameter OutParam eter

*

*

*

*

*

*

*

2

Page 21

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Extrafunctional properties

• Extrafunctional (non-functional) properties
– runt-time properties

• Performance, latency
• Dependability (Reliability, robustness, safety)

– Life cycle properties
• Maintainability, usability, portability, testability,….

• There is no standards for specification of extrafunctional properties

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Extrafunctional properties specifications
Credentials (Mary Shaw)
• A Credential is a triple <Attribute, Value, Credibility>

– Attribute: is a description of a property of a component
– Value: is a measure of that property
– Credibility: is a description of how the measure has been obtained

• Attributes in .NET
– A component developer can associate attribute values with a component

and define new attributes by sub-classing an existing attribute class.
• ADL UniCon

– allows association of <Attribute, Value> to components
– UML 2.0

Page 22

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Extra-functional Properties
Component

Interface

Operation

*

in-interfaces*

*

*

Attribute
Value
Credibility
IsPostulate : Boolean

Credential

*
1

* 1

*

1

Parameter

1

*

Type
1 *

*

out-interfaces

*

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Can we use de-facto standard component models?

• Commonly used CBSE technologies in not-RTS (EJB, CORBA and
COM) are seldom used in RTS as they:
– Require excessive processing requirements
– Require excessive memory requirements
– Provide unpredictable timing characteristics
– Have no means for specifying RT properties

Page 23

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

What is an RT component?

• It should include
– Functional specification

• Interface (provided and required)

– Real- time specifications
• Execution time

– WCET
– Average execution time

– Requirements for the environment (resources)
– Parameters that can be setup (period, priority,…)

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

What is an RT component?

• A simplest solution:
– A component is a task

• A more complex (and more powerful) solution:
– A component is a set of tasks

• OR
– Many components build a task

• How do we specify a component?

Page 24

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

A Port-based Component model

Port-based
component

Variable
input
ports

Variable
output
ports

Resource ports for
communication with sensors
and actuators

Configuration parameters

REQUIRED INTERFACEREQUIRED INTERFACE PROVIDED INTERFACEPROVIDED INTERFACE

Component properties
WCET
Memory consumption

….

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Example: A task as a component
Component-model used in REBUS (Volvo construction equipment)

• The timing requirements are specified by release-time, deadline, WCET
and period

Task: BrakeLeftRight
Period: 50 ms
Release time: 10 ms
Deadline: 30 ms
Precedes: outputBrakeValues
WCET: 2 ms

oil pressure

speed

….

brake left wheel

brake right wheel

Task state information

Page 25

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Component composition

• BrakeLeftRight precedes outputBrakeValues).

Component:
BrakeLeftRight

oil pressure

speed

brake left wheel

brake right wheel

State information

input 1

input 2

Component:

OutputBrakeValues

State information

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Composition of Components

Task:
BrakeLeftRight

oil
pressure

speed

brake left

brake right

Task state information

Task:
OutputBrakeValues

Task state information

Component: BrakeSystem

pressure

speed

Page 26

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Composition of Components

Component 1

(C1)

Component 2

(C3)

Component n

(C2)

in1_Cnew

in2_Cnew

in3_Cnew

in4_Cnew

in_C1

in2_Cn

in1_C2

in2_C2

out_C1

out_C2

out1_Cn

out2_Cn

out1_Cnew

out2_Cnew

out3_Cnew

New Component (Cnew)

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

What is with time attributes?

• How do we specify properties of an assembly?
– Execution time (WCET,…)

• How do we map assembly properties to the components being
composed?
– Period?
– Priority?

Page 27

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Specification Of Time Attributes

• We specify “virtual time attributes” of the composed component,
which are used to compute the timing attributes of sub-components,
ie:

IF virtual period is set to P,
THEN the period of a sub-component A should be PA = fA * P
AND the period of B is PB = fB * P,
WHERE fA and fB are constants for the composed component

T a s k :
B r a k e L e f tR ig h t

o i l
p r e s s u r e

s p e e d

b r a k e le f t

b r a k e r ig h t

T a s k s ta t e in f o r m a t io n

T a s k :
O u tp u tB r a k e V a lu e s

T a s k s t a t e i n f o r m a t io n

C o m p o n e n t : B r a k e S y s t e m

p r e s s u r e

s p e e d

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Properties of Composed components
• Can we use WCET?

– No
– WCET cannot be computed since its parts may be executing with

different periods.

• End-to-end deadlines
– Are set such that the system requirements are fulfilled
– Should be specified for the input to and output from the component

• Latency – time for an assembly to respond to input signal
– Average, Worst case (end-to-end deadline), best case

T a s k :
B r a k e L e f tR ig h t

o i l
p r e s s u r e

s p e e d

b r a k e le f t

b r a k e r ig h t

T a s k s ta t e in f o r m a t io n

T a s k :
O u tp u tB r a k e V a lu e s

T a s k s t a t e i n f o r m a t io n

C o m p o n e n t : B r a k e S y s t e m

p r e s s u r e

s p e e d

Page 28

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Substitution principles
• When we can replace a component?
• Goal: on-line upgrade task components in a ‘safe’ way

• Two issues:
– new components must not be faulty
– schedulability of all tasks must be guaranteed

• Existing approach – Sha 1998
– basic idea: monitor output to ensure values within valid range
– run-time upgrade possible if

WCET (new comp) ≤ WCET (old comp)

• Problem :
– tasks execute for less then WCET

• order of task execution may change
• deadlines can be missed

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

A B C

rel(A,C) rel(B) dl(B) dl(A,C)

(a)

B CC

A is replaced by A’; wcet(A’)<wcet(A)

Order of execution changed – deadline met

A’

rel(A,C) rel(B) dl(B) dl(A,C)

(b)

Example 1: preemptive FPS
task priority

A high

B medium

C low

Page 29

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Example 2: non-preemptive FPS

A B C

rel(A,C) rel(B) dl(B) dl(A,C)

BC

dl(A,C)

B misses
deadline!

(a)

A’

rel(A,C) rel(B) dll(B)

(b)

task priority

A high

B medium

C low

A is replaced by A’; wcet(A’)<wcet(A)

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

On-line upgrading of real-time components in priority-
based RTS

• Solution?
– preemptive FPS

• eliminate/predict preemptions at design stage
– non-preemptive FPS

• work on the WCET
• predict exact execution time?

• Another solution
– Off-line scheduling
– Missing possibility of on-line upgrading of a component

Page 30

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Component-based development process

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Component-based development process
• Basic principles

– Separation of development processes. Components may be developed
separately from the systems

Requirements Design Implementation Test Release Maintenance

1 Find 2 Select 4 Adapt

3 Create

5 Deploy 6 Replace4 Test

System life cycle

Page 31

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Designing Component-based RT System
System specification

Top-level design

Detailed design

Scheduling / interface
check

Obtain components
timing behavior on

target platform

System verification Final product

Component
library

Create specifications for
the new components

Implement and verify
new components using
classical development

methods

Add new
components

to library

Architecture analysis

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Designing Component-based RT System
System specification

Top-level design

Detailed design

Scheduling / interface
check

Obtain components
timing behavior on

target platform

System verification Final product

Component
library

Create specifications for
the new components

Implement and verify
new components using
classical development

methods

Add new
components

to library

Architecture analysis decomposition of the system decomposition of the system
into into

manageable components manageable components

Page 32

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Designing Component-based RT System
System specification

Top-level design

Detailed design

Scheduling / interface
check

Obtain components
timing behavior on

target platform

System verification Final product

Component
library

Create specifications for
the new components

Implement and verify
new components using
classical development

methods

Add new
components

to library

Architecture analysis
detailed component design
selecting components to be
used from the candidate set.

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Designing Component-based RT System
System specification

Top-level design

Detailed design

Scheduling / interface
check

Obtain components
timing behavior on

target platform

System verification Final product

Component
library

Create specifications for
the new components

Implement and verify
new components using
classical development

methods

Add new
components

to library

Architecture analysis

Reasoning about extra-
functional requirements such
as: reliability, integrity, safety,
and maintainability, portability,
etc.

Page 33

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Designing Component-based RT System
System specification

Top-level design

Detailed design

Scheduling / interface
check

Obtain components
timing behavior on

target platform

System verification Final product

Component
library

Create specifications for
the new components

Implement and verify
new components using
classical development

methods

Add new
components

to library

Architecture analysis

Are temporal requirements of the
system satisfied, assuming time
budgets assigned in the detailed
design stage.

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Designing Component-based RT System
System specification

Top-level design

Detailed design

Scheduling / interface
check

Obtain components
timing behavior on

target platform

System verification Final product

Component
library

Create specifications for
the new components

Implement and
verify new

components using
classical development

methods

Add new
components

to library

Architecture analysis

Page 34

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Designing Component-based RT System
System specification

Top-level design

Detailed design

Scheduling / interface
check

Obtain components
timing behavior on

target platform

System verification Final product

Component
library

Create specifications for
the new components

Implement and verify
new components using
classical development

methods

Add new
components

to library

Architecture analysis

Measure the actual timing
properties

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Designing Component-based RT System
System specification

Top-level design

Detailed design

Scheduling / interface
check

Obtain components
timing behavior on

target platform

System verification Final product

Component
library

Create specifications for
the new components

Implement and verify
new components using
classical development

methods

Add new
components

to library

Architecture analysis

Functional/timing system behaviour

Page 35

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Component technology in embedded world
We should consider:
• Contractually specified interfaces
• Managing extrafunctional properties
• Component as a unit of composition and independent deployment
• Explicit context dependencies
• Component granularity
• Reuse
• Location transparency
• Component wiring
• Portability, platform independence

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Unit of composition and independent
deployment

• Run-time composition
– Component lifecycle,
– Run-time environment,
– Dynamic composition (binding)

• Configuration composition
– Capable of generating monolithic

firmware from component-based design,
– Optimization

More feasible for embedded systemsMore feasible for embedded systems

Component technologyComponent technology

Page 36

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Explicit context dependencies

What is a context in embedded world?
• Other components and interfaces
• Run-time environment

– CPU,
– RTOS,
– Component implementation language,
– Resource constraints

embedded systems specificembedded systems specific

Component technologyComponent technology

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Component granularity

• Coarse-grained components
– Often distributed components
– Too heavy bag of unnecessary

functionality,
– Too much resources used

• Fine-grained components,
– Light, unneeded functionality reduced,
– Scarcer uses of resources, More feasible for embedded systemsMore feasible for embedded systems

Component technologyComponent technology

Page 37

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Reuse

• Black-box reuse
– From component’s user point of view

• White-box reuse
– From composition environment point of view

• Gray-box reuse (composition environment)
– If clear conventions for knowledge about

implementation are introduced

More feasible for More feasible for
embedded systemsembedded systems

Component technologyComponent technology

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Portability, Platform independence

• Binary independence

• Source level portability suffices,
– Design-time composition,
– Run-time environment restrictions

• Source level portability requires:
– Agreement on implementation language,
– Agreement on available libraries,
– Providing proper abstractions (i.e. RTOS API)

More feasible for More feasible for
embedded systemsembedded systems

Component technologyComponent technology

Page 38

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden. © 1999 ABB Automation Products AB

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Framework

Component Repository

Composition environment

Run-time environment

January 25, 2005 Ivica Crnkovic (c) : Component-based real-time systems

Summary

• It is more difficult to apply component-based approach to real-time
systems

• The main challenges are in
– prediction of timing properties in different environments

• Execution time – depends of CPU
– Compositing of real-time properties
– Substitution principles are not clear

• Composition (deployment) time is different from run time

