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Abstract—This paper presents a sound field analysis method
which uses numerical solving of the wave equation. The wave
equation is described, its analytical and numerical solutions,
and its application in sound field analysis. Finite difference
method is used for solving the equation. Comparison of analytical
and numerical solutions is shown, together with a discussion
on convergence and stability of the numerical solution. Finally,
the sound field simulator based on numerical solving of wave
equation is presented. Applicability of sound field simulator for
developing object detection algorithms is also analyzed.
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I. INTRODUCTION

Many localization problems, detection of objects and/or its

position in an unstructured environment uses some kind of

optical sensors, sonar, radar, GPS, cameras or lasers (as in

[1],[2]). Most of the research in this area today is based on

Image processing, and combined sensing techniques, primarily

insipred by the ways that humans and animals move in

unknown environments. Humans mostly use their vision to get

informations from the world, but hearing, and getting informa-

tions from sounds of the environment is often underestimated

and not exploited enough. However, there are many examples

from nature (e.g. bats), which show that the biological acoustic

system has great potential in localization and object detection.

The authors of this paper are trying to investigate the

possibility of syntesis of an (ultra)sound sensoring system

that would be capable of solving the localization problem

in unstructured environments, or object detection in a known

sound field. An object positioned in a known field (in this

case a sound field) will undoubtedly affect the characteristics

of the field itself, and change its properties and behaviour. The

possibility of partial or complete reconstruction of the sound

field by measuring it at several points is a challenging subject

of research. As it is going to be shown in the paper, testing

this hipothesis in the sound field simulator, has proven that

this is partially possible.

Sound is usually defined as a travelling wave which is an

oscillation of pressure transmitted through a medium. The

problem with a sound transducer or transciever is that they

are generally very directional, so spatial resolution must be

realized with fast space scanning.

Sound field analysis on its physical level is used in this

project. Even though a mathematical description of the sound

field looks fairly simple (described by the linear partial differ-

ential equation), finding an analytical solution of a sound field

is not trivial in case of general initial and boundary conditions.

Consenquently, for the acoustic analysis of the sound field, and

to get test data, it was necessary to analyze the wave equation

with some numerical method. A sound field simulator, based

on numerical finite differences method of solving a partial

differential equation is developed. Some of the results of this

simulator are shown in this paper.

When numerically solving a continual analytical problems,

some approximations are inevitable. Because these approxima-

tions can lead to instability of the solution, part of this paper

deals with errors, stability and disadvantages of the numerical

approach.

This paper will analyse sound fields in air only, but most

of the discussion can be applied for other fluids and configu-

rations as well.

II. THE WAVE EQUATION

Sound waves are longitudinal waves, and they propagate

through space using compression and rarefaction on the

medium, on the direction of wave propagation. Medium

particles (mostly in a sinusoidal manner) oscillate around

equillibrium position in direction of the wave, causing medium

movement. Besides particle movement, sound can be described

with sound pressure, particle velocity, sound intensity, acoustic

impedance, speed of sound, etc.

There are several approaches which lead to the description

of the sound field, the so called wave equation. The wave

equation is the prototypical example of a hyperbolic partial

differential equation [3]. In its simplest form, the wave equa-

tion refers to a scalar function u = (x1, x2, ..., xn, t) = u(x, t),
x ∈ Ω, that satisfies:

∂2u

∂t2
= c2∇2u (1)

where ∇
2 is the (spatial) Laplacian and where c is a fixed

constant equal to the propagation speed of the wave. This

is known as the non-dispersive wave equation. For a sound

wave in air at 20C this constant is about 343[m/s]. More

realistic differential equations for waves allow for the speed

of wave propagation to vary with the frequency, temperature,



pressure, amplitude of the wave etc. (noted c = c(∗)) leading
to a nonlinear wave equation:

∂2u

∂t2
= c(∗)2∇2u (2)

A wave may also be superimposed onto another movement

(for instance sound propagation in a moving medium like a

gas flow). In that case the scalar u will contain a Mach factor.

Some form of wave equation, or its various generalizations,

almost inevitably arise in any mathematical analysis of phe-

nomena involving the propagation of waves in a continuous

medium. In fact, the studies of water waves, acoustic waves,

elastic waves in solids, and electromagnetic waves are all

based on this equation.

III. INITIAL AND BOUNDARY CONDITIONS OF WAVE

EQUATION

Wave equation is almost always subject to initial and

boundary conditions. Typically for a wave equation initial

conditions are given in form:

u(x, 0) = f(x),
∂u(x, 0)

∂t
= g(x) (3)

The wave equation usually deals with two types of boundary

conditions ([3],[4]), Dirichlet (4) and Neumann (5):

u(x, t) = h(x, t), ∀x ∈ ΩX (4)

∂u(x, t)

∂n
= h(x, t), ∀x ∈ ΩX (5)

Here, n denotes the (typically exterior) normal to the boundary

Ωx.

Boundary conditions (BC) are crucial in analysis of sound

field with objects that can cause reflection, apsorption, re-

fraction or difraction. Dirichlet BC defines the behaviour of

the solution of the wave equation on domain boundaries,

while Neumann BC specifies the values that the derivative

of a solution is to take on the boundary of the domain.

Dirihlet BC is important in determining the sound field in the

neighborhood of solid boundaries (e.g. closed rooms, solid

obstacles), while Neumann BC is necessary when modeling

open spaces (derivation in (5) equals zero), or elastic boundary

conditions (see e.g. [5]).

Determining the form of boundary conditions, and solving

wave equations taking it in consideration, can be difficult.

IV. ANALYTICAL SOLUTION OF THE WAVE EQUATION

A technique known as the method of separation of variables

is perhaps one of the oldest systematic methods for solving

partial differential equations including the wave equation.

Differential equation (1) can also be solved using method

of characteristics, Fourier series, method of eigenfunctions,

integral transform methods, finite Fourier transforms, etc.[6]

It can be shown [6] that the general solution of a 1D wave

equation is given with (6), where m and n are arbitrary

functions, with m representing a right-traveling wave and n a

left-traveling wave.

u(x, t) = m(x − ct) + n(x + ct) (6)

It can also be shown that the general solution of the initial

value problem for a wave equation describing 1D string is

given by (7), where u(x, t = 0) = u0(x), and ∂u/∂t|(t=0) =
v0(x).

u(x, t) =
u0(x − ct) + u0(x + ct)

2
+

1

2c

∫ x+ct

x−ct

v0(s)ds (7)

In analoguous way, but with a fairly complicated procedure, it

is possible to derive the analytical solution of wave equations

of higher dimensions.

An important result that comes from solving the wave

equation is that the general solution is composed from two

wave functions - incident wave and a reflected wave. Another

interesting characteristic is superposition - existence of one

wave in a certain space and time should not affect the existence

or properties of another wave in the same space and time.

V. NUMERICAL SOLVING THE WAVE EQUATION

In dealing with many equations arising from the modelling

of physical problems, the determination of exact analytical

solutions in a simple domain is a formidable task even when

the boundary and/or initial data are relatively simple. It is then

necessary to resort to numerical or approximation methods in

order to deal with problems that cannot be solved analytically.

Most common numerical and approximation approaches to

the solution of partial differential equations are numerical

methods based on finite difference approximations, variational

methods, Rayleigh-Ritz, Galerkin and Kantorovich methods of

approximation, etc. [6]

A sound field simulator developed especially for this project

is based on Finite Difference Method (FDM). For the sake of

simplification,let us assume we are solving a two-dimensional

(2D) wave equation (8), where u(x, y, t) is a function of two

independent spatial variables, and time. Equation (1) leads to:

L(u(x, y, t)) =
∂2u

∂t2
− c2(

∂2u

∂x2
+

∂2u

∂y2
) = 0 (8)

Space domain is divided on a set of uniformly spaced

rectangles with dimension ∆x×∆y, with vertices at Pi,j with

coordinates (i∆x, j∆y), where i, j, are positive or negative

integers or zero, as shown in Fig.1. Also, the time domain is

divided on a set of segments t = k∆t, where k is a positive

integer or zero. We denote u(i∆x, j∆y, k∆t) by uk
i,j .

Using the Taylor series expansion, the nth-order central

differences expressions of arbitrary function f with spacing

h can be derived [7], and are given by:

δn
h [f ](x) =

n
∑

i=0

(−1)i

(

n

i

)

f
(

x +
(n

2
− i

)

h
)

(9)

The difference between the exact value of the n-th derivation

of the function f , and the n-th difference (O(h2) for central



Fig. 1. Uniformly segmented spatial domain

difference) is known as the truncation error in this discretiza-

tion process. The central difference (9) yields a more accurate

approximation than forward and backward differences (which

is O(h)) [7]. If f is twice continuously differentiable its error

is proportional to square of the spacing h2.

Using (9) it can be easily derived:

∂2u

∂x2
=

1

(∆x)2
(uk

i+1,j − 2uk
i,j + uk

i−1,j) + O((∆x)2) (10)

∂2u

∂y2
=

1

(∆y)2
(uk

i,j+1 − 2uk
i,j + uk

i,j−1) + O((∆y)2) (11)

∂2u

∂t2
=

1

(∆t)2
(uk+1

i,j − 2uk
i,j + uk−1

i,j ) + O((∆t)2) (12)

Substituting (10),(11) and (12) in equation (8), and omission-

ing truncation errors, equation (8) leads to:

F (uk
i,j) =

1

(∆t)2
(uk+1

i,j − 2uk
i,j + uk−1

i,j )−

−c2(
1

(∆x)2
(uk

i+1,j − 2uk
i,j + uk

i−1,j)+

+
1

(∆y)2
(uk

i,j+1 − 2uk
i,j + uk

i,j−1)) = 0 (13)

Suppose u(x, y, t) represents the exact solution of a partial

differential equation L(u(x, y, t)) = 0 , and uk
i,j is the

exact solution of the corresponding finite difference equation

F (uk
i,j) = 0. Then, the finite difference scheme is said to be

convergent if uk
i,j tends to u(x, y, t) as ∆x, ∆y and ∆t tend

to zero. The difference, dk
i,j = (u(i∆x, j∆y, k∆t) − uk

i,j)
is called the cummulative truncation (or discretization) error.

This error can generally be minimized by decreasing the grid

sizes.

Another kind of error is introduced when a partial differen-

tial equation is approximated by a finite difference equation. If

the exact finite difference solution uk
i,j is replaced by the exact

solution u(i∆x, j∆y, k∆t) of the partial differential equation

at the grid points Pi,j , then the value F (u(i∆x, j∆y, k∆t))
is called the local truncation error at Pi,j . The finite difference

scheme and the partial differential equation are said to be

consistent if F (u(i∆x, j∆y, k∆t)) tends to zero as ∆x, ∆y,
∆t tends to zero.

In general, finite difference equations cannot be solved

exactly because the numerical computation is carried out

only up to a finite number of decimal places. Consequently,

another kind of error is introduced in the finite difference

solution during the actual process of computation. This kind

of error is called the round-off error. In practice, the actual

computational solution is uk∗
i,j , but not uk

i,j , so that the

difference rk
i,j = uk

i,j − uk∗
i,j is the round-off error at the grid

point Pi,j . In fact, this error is introduced into the solution of

the finite difference equation by round-off errors. In contrast to

the cummulative truncation error, the round-off error cannot be

made small by allowing the grid spacing to tend to zero. Thus,

the total error involved in the finite difference analysis at the

point Pi,j is given by u(i∆x, j∆y, k∆t) − uk∗
i,j = dk

i,j − rk
i,j .

Usually the discretization error dk
i,j is bounded when uk

i,j is

bounded. This fact is used or assumed in order to introduce the

concept of stability. The finite difference algorithm is said to

be stable if the round-off errors are sufficiently small, that is,

the growth of ri,j can be controlled. Taking into consideration

the stability of iterational process (13), and Lax Equivalence

theorem [7], the convergence of the solution of (13) can be

proven.

VI. COMPARATION OF NUMERICAL AND ANALYTICAL

RESULTS

Equation (13) can be effectively used as a computational

algorithm for 2D sound field simulations for numerically

solving the wave equation. Similar finite difference schemes

can be developed for 1D and 3D problems. An illustration

of the simulator computations using the following example is

below.

The simulator results of the following wave equation (c = 1)
will be demonstrated:

∂2u

∂t2
=

∂2u

∂x2
, 0 < x < 1, t > 0 (14)

with the boundary conditions

u(0, t) = u(1, t) = 0, t > 0 (15)

and the initial conditions

u(x, 0) = sinπx,
∂u(x, 0)

∂t
= 0, 0 ≤ x ≤ 1. (16)

in several points of space and time domain.

Analytical solution of the problem is u(x, t) = cosπtsinπx,
so it is possible to calculate the real values of the solution by

simple substitution. Using an equation similar to (13), it is

possible to calculate the solutions of (14) in discrete space

and time points. Both numerically and analytically calculated

results are shown in Table I. A comparison of the analytical

solutions with the finite difference solutions calculated with

a simulator programmed in the way described shows that the

latter results are very accurate.



TABLE I
NUMERICALLY AND ANALYTICALLY CALCULATED RESULTS

Numerical sol. t = 0.1 t = 0.2 t = 0.3 t = 0.4

x = 0.1 0.2940 0.5593 0.7698 0.9050
x = 0.2 0.2503 0.4761 0.6553 0.7703
x = 0.3 0.1820 0.3462 0.4766 0.5602
x = 0.4 0.0960 0.1825 0.2512 0.2953

Analytical sol. t = 0.1 t = 0.2 t = 0.3 t = 0.4

x = 0.1 0.2939 0.5590 0.7694 0.9045
x = 0.2 0.2500 0.4755 0.6545 0.7694
x = 0.3 0.1816 0.3455 0.4755 0.5590
x = 0.4 0.0955 0.1816 0.2500 0.2939

Fig. 2. Sound source and obstacle

VII. SOUND FIELD SIMULATOR APPLICATIONS

The modeling and analysis of a sound field were primarily

developed as an initial tool to test whether it is possible to

correctly detect and locate an an arbitrary object in a sound

field, by only measuring the parameters of the sound field in

a discrete number of points.

Fig. 2 illustrates a 2D sound field (membrane) with ideally

reflective obstacle (3D object in sound field with reduced

dimension), and Fig. 3 shows the readings of the four sensors

(measurements) placed in the field. As one can see in Fig.

3, the readings without obstacle and with obstacle differ as

expected.

Using more sensors (currently up to 14), and multilayer

neural networks ([8]), the authors got encouraging results in

detection of objects in a simulated sound field. A rectangular

object can be detected with fair accuracy in the sound field,

using neural networks. The analysis, and the creation of

training and validation data sets, were made in the simulator.

The simulator results, such as these on Fig. 3 can be used in

the analysis of a sound field with objects. The goal is to try to

establish usable relations between sensor readings and sound

field geometry. Details, and more results from this area will

be the subject of future technical papers.
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Fig. 3. Sensor readings - nominal readings without object in sound field
(solid line), or with object in sound field (dashed line) .

The decribed simulator also allows simple defining and

positioning sound sources, defining and positioning objects

(through boundary conditions), and sensors for measuring

sound field parameters.

VIII. CONCLUSIONS AND FUTURE WORK

It was shown that numerical approach in solving wave

equation in sound field analysis can be used as a tool for

investigating the possibility of object detection in a known

sound field.

The simulator has a possibility of 3D simulation, but still

doesn’t have a usable 3D visualisation (only 2D layers),

what is to be done in close future. Also, characteristics of

sensors (microphones) are not yet considered, and sensors

are considered ideal and unobtrusive which is not a real

assumption.

Future work includes enhancing the simulator by adding

more function (moving objects) and creating a more user-

friendly interface. Physical verification of the simulator is also

planned.
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