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Abstract—This paper discusses some of the interesting proper-
ties of stability analysis of a discretized wave equation. The solu-
tions of the wave equation are wave functions, hence oscillating,
so when testing stability the discretization scheme usually shows
marginal stability. Marginal stability is a sufficient condition for
a discrete scheme convergence and many authors don’t bother
with mathematical consistency. However, inadequatly chosen
discretization method may lead to the additional unwanted oscil-
lations. This paper illustrates this effect in a different approach.
First, the wave equation is introduced together with a Perfectly
matched layer (PML). Then the 1D wave equation is discretized
by using Finite Differences Method (FDM) and Finite-differences
Time-domain method (FDTD). It is shown that the latter method
does not produce spurious oscillations in the solution. Eigenvalue
analysis is done to explain this effect and discuss stability of the
numerical scheme.

Index Terms—wave equation, perfectly matched layer, finite
differences method, finite-differences time-domain method, sta-
bility

I. INTRODUCTION

The wave equation is the fundamental equation in any wave

propagation analysis. Every psyhical phenomena involving

the propagation of waves in a continuous medium is based

on wave equation or on some of its various generalization.

Propagation of water waves, acoustic waves, elastic waves

in solids, and electromagnetic waves are all based on this

equation. The authors of this paper used wave equation mostly

for sound field analysis, but the analysis proposed in this paper

could be applied in many other technical areas, and on similar

systems of partial differential equations.

Even though a mathematical description of wave propa-

gation problems looks fairly simple, usually described with

a linear partial differential equation, finding an analytical

solution of the problem is not trivial in case of general initial

and boundary conditions. With the ubiquity of computers,

solving and analyzing continual analytical problems with some

discrete numerical method seems almost natural. Today, there

are many discretization methods developed (Finite difference

methods (FDM), Finite volume methods, Finite element meth-

ods, Domain decomposition methods and many others), from

which every one of them has several variations, each with its

own advantages and disadvantages [1-2].

Unfortunately, inevitable aproximations arise when numer-

ically solving a continual problem. One of the problems

described in this paper is that these approximations can

lead to instability of the numerical solution. Usually testing

stability and convergence of the discrete numerical scheme is

relatively easy using Lax-Richtmayer theorem [2-5]. The main

contribution of this paper is the illustration of the stability

issues of the discretized wave equation, that are neglected in

many research papers (such as [6-7]) because the discretization

scheme is inherently not unstable, but marginally stable. This

phenomenon is usually hardly visible in ”soft” mathematical

approach. It will be shown that marginal stability actually

doesn’t interfere with the numerical results, but yet it may

lead to interesting stability consequences.

II. THE WAVE EQUATION

The wave equation in its simplest form, known as non-

dispersive wave equation with constant wave propagation

speed, refers to a scalar function u = (x1, x2, ..., xn, t) =
u(x, t), x ∈ Ω, that satisfies:

c2∇2u =
∂2u

∂t2
(1)

where ∇
2 is the (spatial) Laplacian, c is a fixed constant

equal to the propagation speed of the wave, and Ω is the

wave equation analysed domain. The wave equation could

be described even in a more complex and nonlinear form,

depending on the medium and wave type analysed [8]. In this

paper the simplest linear wave equation (1) will be analysed.

Wave equation is almost always subject to initial and

boundary conditions. Initial conditions are related to the

initial perturbation of the wave function, or to variuos wave

sources, while boundary conditions are more interesting when

analysing wave field with objects that can cause reflection,

absorption, refraction or difraction.

There are several types of boundary conditions [1]. The

wave equation usually deals with two types of boundary con-

ditions, called Dirichlet and Neumann boundary conditions.

Dirichlet boundary condition is important in determining the

wave field in the neighborhood of solid boundaries (e.g. closed

areas, solid obstacles), while Neumann boundary condition

is necessary when modeling open tubes, or elastic boundary

conditions.

III. PERFECTLY MATCHED LAYER CONCEPT

When modeling infinite space in a finite domain, spurious

reflections can occurr at the end of the analysed domain,

as it was a solid boundary. This problem arises in many

technical areas (open sea waves analysis, seizmic processes,

electromagnetic radiation etc.). When solving wave function,
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Fig. 1: 1D wave propagation with PML implemented, Ui is

the discretized wave function, and σi is the absorbing function

in time n. On the right side of the x-axis waves are absorbed,

while on the left the reflection begins.

some of the conventional methods, such as real coordinate

transformations (e.g. xT = tanh(x)), will cause the solutions

to oscillate infinitely fast close to the boundary which will

again simulate a infinitely hard wall.

While trying to model wave propagation in an infinite

open space, it was necessary to exploit the concept of Per-

fectly Matched Layer (PML). PML is firstly introduced in by

Berenger [9-10]. The basic idea of PML is to form a ”thin”

layer around the analysed domain, which will absorb all the

waves entering it. It can be shown (using [10]) that the entire

process of deriving the PML layer in one dimension (x) can
be described using only a symbolic transformation:

∂

∂x
−→ 1

1 + j σx(x)
ω

∂

∂x
(2)

where ω is the angular frequency of the wave, j is the

imaginary unit, and σx is an absorbing real scalar function

defined on a domain. Function σx determines the absorbing

properties of domain. When σx > 0 the oscillating solution has

exponential decay, while σx = 0 leads to an ordinary equation

(as illustrated on Fig. 1). In practice, usually quadratic or cubic

form of σx is used in the absorbing layer [11].

In order to implement PML the equation (1) is usually

written in the following equivalent form:

∇ · (a∇u) =
1

b

∂2u

∂t2
(3)

where a and b are constants related with wave speed c =
√

ab.
The equation (3) is then separated into two first order equa-

tions, introducing a vector function: v(x, t) and its correspond-
ing auxillary differential equation:

∂u

∂t
= b∇ · v (4)

∂v

∂t
= a∇u (5)

After some algebra, which is omitted for brevity, the latter

equations for one-dimensional case and implemented PML (2)

become:
∂u

∂t
= b

∂v

∂x
− σxu (6)

∂v

∂t
= a

∂u

∂x
− σxv (7)

The equations (6) and (7) will be the starting equations for

discretization in the following section.

IV. DISCRETIZATION OF WAVE EQUATION

Two most popular wave equation discretization methods: Fi-

nite Differences Method (FDM) and Finite-differences Time-

domain method (FDTM) will be used in this paper.

FDM is based on the approximation of m-th order derivation

of the function with m-th order forward, backward and central

difference [2]. The expression for central differences is given

with (8):

δm
h [f ](x) =

m
∑

k=0

(−1)k

(

m

k

)

f
(

x +
(m

2
− k

)

h
)

(8)

where f represents a function whose finite difference is

formed, and h is the grid interval of space (or time) division.

Similar relations exist for forward and backward differences.

However, the central difference (8) yields a more accurate

approximation (O(h2)) than forward and backward differences
(O(h)) [2]. Also the latter methods lead to an unconditionally

unstable dicrete scheme from equations (6) and (7), so (8) is

usually preferred in calculation.

In order to use relation (8), space and time domain should be

uniformly discretized with discretization intervals ∆x and ∆t
respectively (Fig. 2a). Notation Un

i = u(x=i∆x, t=n∆t) will

be adopted in the following text, where i and n are positive

integers or zeros.

Using the relation (8) in (6) and (7) gives a discrete

difference equation systems for central differences FDM:

U
n+ 1

2

i = U
n− 1

2

i + b
∆t

∆x
(V n

i+ 1
2

− V n
i− 1

2

) − ∆t · σiU
n
i (9)

V
n+ 1

2

i = V
n− 1

2

i + a
∆t

∆x
(Un

i+ 1
2

− Un
i− 1

2

) − ∆t · σiV
n
i (10)

Considering that the values in the centers of the grid cannot

be calculated, the equations (9) and (10) are not usable for

implementation and the equations after the extension become:

Un+1
i = Un−1

i + b
∆t

∆x
(V n

i+1 − V n
i−1) − 2∆t · σiU

n
i (11)

V n+1
i = V n−1

i + a
∆t

∆x
(Un

i+1 − Un
i−1) − 2∆t · σiV

n
i (12)

As one can see, the main issue in the latter equations is that

the precision of the function derivation which is calculated

is reduced, because the derivation is calculated over two grid

rectangles.

The Finite-difference Time-domain method (FDTD) is first

introduced by Yee [12], and so far it is one of the most

popular discretization method for solving many scientific and
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Fig. 2: Space-Time divisions using: a) FDM, b) FDTD

engineering problems. FDTD is superior over FDM in numer-

ically solving system of differential equations as the one given

with (6) and (7). The main idea of the simplest variation of

FDTD method is that the functions V n
i and Un

i are calculated

in different space and time domain divisions using central

differences (8), such as in Fig. 2b . This approach has even

its own physical interpretation [12]. So the derived equations

are (very similar to equations (9) and (10), but programmable

after averaging):

U
n+ 1

2

i = U
n− 1

2

i + b
∆t

∆x
(V n

i+ 1
2

− V n
i− 1

2

) − ∆t · σiU
n
i (13)

V n+1
i+ 1

2

= V n
i+ 1

2

+ a
∆t

∆x
(U

n+ 1
2

i+1 −U
n+ 1

2

i )−∆t · σiV
n+ 1

2

i+ 1
2

(14)

The FDTD approach has its own drawbacks (increasing mem-

ory and computing resource demands), but it is a stable

algorithm. Actually, it exploits the advantages and reduces the

disadvantages of FDM central difference method.

V. STABILITY ANALYSIS OF ANALYSED DISCRETIZATION

SCHEMES

It can be easily verified by numerical simulation that the

FDTD discrete scheme ((13),(14)) is stable (e.g. Fig. 1), but

the FDM scheme ((11),(12)) shows additional unwanted oscil-

lations, as can be seen on Fig. 3). The main idea of this paper

is to illustrate and discuss the difference between FDM and

FDTM discrete scheme on these unwanted oscillation. Many

authors treat these oscillations as instability of the solution,

and usually directly use FDTD method without entering into

mathematical dicussion. However, both discrete systems are

actually marginally stable, which is a sufficient condition for
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Fig. 3: Unwanted oscillability of the solution using FDM

numerical scheme convergence, but the eigenvalues positions

on unity circle are different, and that will determine the

behaviour of the solution.

The fundamental theorem of numerical mathematics, known

as a Lax-Richtmyer theorem shows that an iterational discrete

scheme is convergent if and only if it is stable [5]. The finite

difference scheme is said to be convergent if Un
i tends to

u(x, t) as ∆x and ∆t tend to zero. If a numerical scheme is

convergent, then a numerical solution actually represent the

actual solution. Instead of proving covergence, most authors

prove the stability of the scheme. In this paper, stability is

discussed using Von Neumann stability analysis as in [6].

On a finite domain, solutions of the difference sheme ((11)

and (12)) can be assumed:

Un
i = Uρe

j(−ωn∆t+ki∆x) (15)

V n
i = Vρe

j(−ωn∆t+ki∆x) (16)

where ω is the angular frequency, and k is the wavenumber.

Relations (11) and (12) can be written in the following form:








Un+1
i

Un
i

V n+1
i

V n
i









=









S 1 B 0
1 0 0 0
A 0 S 1
0 0 1 0

















Un
i

Un−1
i

V n
i

V n−1
i









= G









Un
i

Un−1
i

V n
i

V n−1
i









(17)

Where S = −2∆tσi, B = b ∆t
∆x

2jsin(k∆x) and A =
a ∆t

∆x
2jsin(k∆x). Sufficient condition for bounded numerical

solution of numerical scheme (17) in Von Neumann sense is

that

‖ G ‖≤ 1 (18)

where ‖ ‖ denotes a matrix norm (induced from Euclidean

vector norm). This implies that the eigenvalues λi of the matrix

G must satisfy:

max|λi| ≤ 1 (19)

The characteristic polynomial of the system (17) is:

P (λ) = λ4 − 2Sλ3 + (S2 − 2−AB)λ2 + 2λS + 1 = 0 (20)



If PML is neglected (S=0), using Jury criterion [13-14] on

(20) it can be shown that the scheme is stable if the following

condition is satisfied:

∆t ≤ ∆x√
ab

(21)

Otherwise the scheme is unstable (equation sign implies

marginal stability). The inequality (21) is commonly used as

the stability criterion in literature [15]. As it can be easily

shown from (20), the eigenvalues of the equation must satisfy:

λ1λ2λ3λ4 = 1 (22)

which means that all eigenvalues of the equation must lie on

unity circle (hence causing marginal stability), or the system

will be unstable (if all the roots lie inside the unity circle the

product in the equation (22) is less then one). This can also

be derived directly from Jury criterion.

Using the FDTD method, equations (19) and (14) can be

written as:
[

Un
i

V
n+ 1

2

i+ 1
2

]

=

[

S′ B′

A′S′ S′ + A′B′

]

[

Un−1
i

V
n− 1

2

i+ 1
2

]

(23)

where S′ = (1−∆tσi

2 )/(1+ ∆tσi

2 ), A′ = a∆t
∆x

(ejk∆x−1)/(1+
∆tσi

2 ) and B′ = b∆t
∆x

(1− e−jk∆x)/(1 + ∆tσi

2 ). Now it can be

shown that the characteristic polynomial for (23) is:

P (λ) = λ2 + (−2S′ − A′B′)λ + S′2 = 0 (24)

As can be seen, if the PML doesn’t exist (S=0, S’=1), the

characteristic polynomials (20) and (24) have almost identical

form, but the equation (20) has four roots lying on unity

circle, while equation (24) has only two. It is easily shown

that the discrete stability condition for both equations is the

same (given with (21)), but the FDTD method doesn’t show

additional oscillations.

VI. DISCUSSION

The most important observation to be made is that all

discrete schemes describing wave-like equations must be

marginally stable, because the solutions are essentially os-

cillating functions. Stability can be guaranteed only when

using a medium whis attennuates the waves (such as PML),

but in an ideal lossless medium the sollutions are inherently

marginaly stable. FDM method illustrated above, because of its

mathematical formulation increases the system order by two,

introducing more (fake) poles on unity circle. This introduces

two marginally stable sine waves as solutions of the equation

(one is the actual solution and one is the consequence of

unapropriate discretization).

Let’s assume the eigenvalues of equation (24) without PML

(S’ set to 1) are λ1 = ejφ and λ2 = e−jφ which are conjugate-

complex pair both lying on unity circle. The numerical solution

of the wave equation could be decribed in the form:

S(n) = a1λ
n
1 + a2λ

n
2 = a1e

jφn + a2e
−jφn (25)

The latter equation represents a solution in the form of a

sine function of certain amplitude, frequency and phase. The

eigenvalues of equation (20) are actually the square roots of

λ1 and λ2 respectively, so the eigenvalues are: λ11 = ej
φ

2 ,

λ12 = ej
φ+2π

2 , λ21 = e−j
φ

2 , λ22 = e−j
φ+2π

2 . Hence, the

solution could be described as:

S(n) = a11λ
n
11 + a12λ

n
12 + a21λ

n
21 + a22λ

n
22 (26)

S(n) = a11e
j

φn

2 +a12(−1)nej
φn

2 +a21e
−j

φn

2 +a22(−1)ne−j
φn

2

(27)

Equation (27) clearly illustrates why every odd sample on

Fig. 3 is zero, hence introducing this unwanted ”oscillability”,

because it can be shown a11 = a12 = a1

2 and a21 = a22 = a2

2
for the same inital conditions. Note that the frequency of

the solution is twice reduced. This is a logical consequence

because the grid size is two times larger. Also it is clear from

the characteristic polynomials and Jury criterion that intro-

ducing PML improves stability, because it actually introduces

attenuation in the solutions.

VII. CONCLUSION

This paper illustrates an advantage of using FDTD method

instead of FDM in numerical solving wave equations, de-

scribed by a partial differential equations system. Also, it

presents the stability issues in discretization of wave and

similar equations, showing that is impossible to prove abso-

lute stability of the convergence scheme whose solutions are

oscillating wave functions, which is often oversighted.
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