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Abstract— This paper addresses the challenges of the distur-
bance observer (DOB) algorithms faced with highly nonlinear
electromechanical systems which are dealing with high resolu-
tion and high speed operations. It describes the synthesis of ro-
bust and stable controllers and their applications in controlling
azimuth and elevation angles of the helicopter model CE 150
supplied by Humosoft. Description of the helicopter, including
its mechanical characteristics and mathematical model, is given
in the paper. Tracking error, transient performances, power
consumption and motor strains are used for the validation of
control quality. Implementation of the control system on the
experimental setup is also explained. MATLAB and Simulink
are used as tools for developing the simulation model of
the helicopter system. Obtained simulations are showing that
developed controllers provide significantly improved results
even in the presence of unknown and unpredictable inputs
(disturbance and noise), unpredictable and unknown dynamics,
external forces (torques) and change of the system parameters.

I. INTRODUCTION

Modern electromechanical systems are often required to
operate at high speeds to yield high productivity. Precision
and accuracy requirements are becoming more and more
strict at the same time. Advanced control plays a significant
role while meeting these challenges.

The helicopters are widely used in transportation, air
surveillance and as combat aerial vehicles. They are very
interesting from the control point of view due to nonlinearity,
instability in the open-loop and high cross-coupling effects.
Main difficulties in controlling such systems are nonlinear
friction, uncertainties of the systems parameters, unmodelled
dynamics and external disturbances.

In the last two decades nonlinear control methods for the
the nonlinear systems have been intensively developing [1].
For highly nonlinear systems usage of the classical control
theory (PI, PD and PID controllers) is not recommended.
These controllers give satisfactory results only in a very small
area around the set point. The control performance could
be improved using an output tracking based on approximate
linearisation [2], [3]. This approach neglects cross-coupling
effects of the helicopter. The model of a small unmanned
helicopter has been linearised at different set points along
the elevation axis and a gain scheduling control has been
implemented in [4].

Many authors have been studied methods for controlling
azimuth and elevation angles of the helicopter model CE 150

supplied by Humosoft [5]–[9]. The performance comparison
of three optimal control techniques to a helicopter system:
model predictive control (MPC), linear quadratic optimal
control combined with a state estimator (LQG), and optimal
linear quadratic output control (PLQ), is discussed in [8].
These three schemes obtained significantly improved results
over classical control algorithms. However, the application
of these algorithms is not trivial due to demand for frequent
model linearisation and significant random disturbances.
MPC has substantial inter-sample computation demands and
the largest memory requirements [9]. LQG and PLQ algo-
rithms proved satisfactory results only below the horizontal
line ψ = 0. Above this angle the instability of the open
loop plant and increasing model-plant mismatch leads to poor
tracking results.

Papers [5]–[7] describe capabilities of the inteligent meth-
ods for controlling 2DOF nonlinear helicopter model. The
fuzzy control in dealing with helicopter uncertainties is
described in [5]. The capability of neural networks scheme
to control laboratory helicopter model CE 150 was discussed
in [6]. Performance of these controllers are slightly degraded
due to inability for precise estimation of the helicopter para-
metric uncertainties, the dynamic of actuators, nonlinear fric-
tion forces, external disturbances and cross-coupling effects.
Because of the computational burden of these algorithms, it
is not efficient to implement these algorithms for the more
complex realistic systems.

Design of disturbance observer (DOB) based controller
is one of the most popular methods in the field of high
performance positioning systems. DOB based techniques
appeared in the late 1980s. In [10] dynamics for each elbow
of the robot manipulator is decoupled, and DOB controller is
designed for each part independently. The nonlinear distur-
bance observer based design, with assumed upper and lower
bounds of the disturbance to be known, is discussed in [11].
The DOB based control has been widely used in industry
[12]–[15]. This paper focuses on high performance tracking
control for electrical driven helicopter body with unmodelled
and unknown uncertainties. The cross-coupling effects of the
elevation and azimuth dynamics can be treated as external
disturbances. The DOB control is used to compensate these
effects, thus the interference terms can be decoupled and
the desired dynamics performances can be obtained. Hence,



DOB and feed-forward control loop will be added to the
PD feedback controller to improve robustness and tracking
performance.

This paper is organized as follows. In Section II the
helicopter system CE 150 is presented. Synthesis of the
controllers in the acceleration framework is subject of Sec-
tion III, describing the outer control loop of the cascade
structure. This section also presents the inner control loop
that realizes disturbance observer and its application in the
control structures. Implementation of the control algorithm
in simulation and experimental setup is discussed in Section
IV. Concluding remarks are given in Section V.

II. CONTROL SYSTEM DESCRIPTION

The proposed real-time control system for the helicopter
model is composed of three major components (as shown in
Fig. 1): the PC based controllers, the interface module and
the helicopter system. The PC based controllers of the eleva-
tion and azimuth angle are designed in MATLAB/Simulink.
The multifunctional card MF624 is used as interface module
between PC based controller and helicopter system. It is
designed for data acquisition and transmission. The card
is optimized for use with MATLAB/Simulink Real Time
Toolbox. It also provides implementation of the control
algorithms from the PC to the helicopter system. The MF624
card features fully 32 bit architecture for fast throughput.
As the user communicates with the system via Real Time
Toolbox interface, all input/output signals are dimensionless
and scaled into the MU (Machine Unit) interval 〈−1,+1〉.
The MATLAB/Simulink xPC Target Toolbox is used to
perform the experiments in real time applications. Finally,
the helicopter system contains the helicopter body, two DC
motors with permanent stator magnets, power amplifiers and
encoders as sensors.

A. Model of the helicopter body

This subsection introduces the mathematical model of the
helicopter CE 150 supplied by Humosoft Ltd. This model is
used for synthesis of the controller and validating tracking
performance. The helicopter is a rigid body with two DC
motors that drive main and side rotors, power amplifiers and
encoders as sensors. It has two degrees of freedom, elevation
(pitch) angle ψ, that represent rotation around horizontal
axis, and azimuth (jaw) angle ϕ, that represents rotation
around vertical axis. The axis of main and side propellers
are mutually orthogonal. The helicopter model is a MIMO
system with two input signals (voltage of the main motor
u1 and voltage of the side motor u2) and two output signals
(elevation and azimuth), with operation ranges given in Table
I.

TABLE I
INPUT AND OUTPUT SIGNALS OF THE HELICOPTER MODEL

Inputs Outputs
u1 u2 ψ [◦] ϕ [◦]

Oper. range [0, 0.6] [−0.3, 0.3] [−45, 45] [−130, 130]

Considering the forces (torques) in the vertical plane,
the elevation dynamics can be described by the following
equations [16]:

aψψ̈ = τ1 + τϕ̇ − τf1 − τm + τG, (1)
τm = mgl sinψ, (2)

τϕ̇ = mlϕ̇2 sinψ cosψ, (3)

τf1 = Cψsign ψ̇ +Bψψ̇, (4)
τG = kGϕ̇ω1 cosψ, for ϕ̇� ω1, (5)

where:

aψ −moment of inertia around horizontal axis,
τ1 −moment produced by the main motor propeller,
τϕ̇ − centrifugal torque,
τf1 − Coulumb and viscous friction torques,
τm − gravitation torque,
τG − gyroscopic torque,
m−mass of the helicopter body,
g − gravitational acceleration,
l − distance from zaxis to main motor axis,

ω1 − angular velocity of the main propeller,
kG − gyroscopic coefficient,
Bψ − viscous friction coefficient,
Cψ − Coulumb friction coefficient.

Taking into account the forces (torques) in the horizontal
plane, the azimuth dynamics model can be taken as [16]:

aϕϕ̈ = τ2 − τf2 − τr, (6)
τf2 = Cϕsign ϕ̇+Bϕϕ̇, (7)
aϕ = aψ sinψ. (8)

where:

aϕ −moment of inertia around vertical axis,
τ2 −moment produced by the side motor propeller,
τf2 − Coulumb and viscous friction torques,
τr − reaction torque of the main motor,
ω2 − angular velocity of the side propeller,
Bϕ − viscous friction coefficient,
Cϕ − Coulumb friction coefficient.

B. Model of DC motors

It is impossible to directly identify physical parameters
of DC motors due to helicopter body structure. Hence, no
appropriate internal signal are available for measurements.
Dynamics of the main motor model can be described as the
second order transfer function [16]:
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Fig. 1. Block diagram of the proposed real-time control system for the helicopter model

ω1(s)

u1(s)
=

1

(T1s+ 1)2
, (9)

where ω1(s) and u1(s) are Laplace transforms of ω1(t)
and u1(t) respectively, while T1 is the main motor time
constant. Torque generated by the main propeller can be
presented with parabolic function of the angular velocity:

τ1(t) = a1ω
2
1(t) + b1ω1(t). (10)

The parameters that need to be considered in the iden-
tification process are: time constant T1 and parameters of
the propeller characteristic a1 and b1. Analogue relations as
(9) and (10) can be defined for the side motors, but with
parameters T2, a2, b2.

C. DC motors cross-coupling model

One of the major characteristics of the helicopter are cross-
coupling effects of the propellers. Exact identification of this
reaction effects is not possible due to absence of appropriate
signal measurements. Dynamics of the main motor reaction
to the side motor can be described by the first order transfer
function [16]:

τr(s)

u1(s)
= K

Tzs+ 1

Tps+ 1
. (11)

An identification method presented in [16] requires spe-
cially prepared experiment for the determination of each
individual helicopter parameter. For more accurate parameter
identification each experiment needs to be repeated several
times. In order to reduce the number of conducted exper-
iments and simplify the process of identification, unknown
helicopter parameters have been determined using a simple
genetic algorithm [17]. Obtained values of helicopter param-
eters are shown in Table II.

III. SYNTHESIS OF THE DOB BASED CONTROLLER

For mechanical systems control task implies achieving the
desired motion in dependence to the control input. In general,

TABLE II
PARAMETERS VALUE OF THE HELICOPTER MODEL CE 150

Parameter Value Unit
aψ 0.005435

[
kgm2

]
Bψ 0.016

[
kgm2/s

]
Cψ 0.002

[
kgm2/s

]
τg 0.071 [Nm]
a1 0.047 [Nm]
b1 0.089 [Nm]
aϕ 0.002

[
kgm2

]
Bϕ 0.006

[
kgm2/s

]
Cϕ 0.001

[
kgm2/s

]
a2 0.268 [Nm]
b2 0.0408 [Nm]
KG 0.0368 [Nm/s]
Kc 0.0032 [Nm/s]
K 0.0352 [Nm]
Tz 2.7 [s]
Tp 0.75 [s]
T1 0.1 [s]
T2 0.25 [s]
Kψ 0.167 [◦]
yψ0

−45 [◦]
Kϕ 0.176 [◦]

the main requirements to the control structure are: closed-
loop system stability, tracking of the reference input, distur-
bance and noise effects reduction, parametric uncertainties
reduction and unmodelled dynamics effect reduction.

Mathematical model of a single degree of freedom me-
chanical system (either translational or rotational) can be
written in the following form [18]:

aN q̈ (t) + τdis (q (t) , q̇ (t) , t) = τ, (12)

Here q and q̇ ≡ v stands for the state variables, position
and velocity, respectively; aN is known nominal inertia coef-
ficient and τdis is generalized input disturbance that includes
Coriolis forces, friction force, gravitational forces, external
forces (interaction forces - if contact with environment exists)
and changes of the system parameter (i.e. variations of the
system inertia ∆a(q)). The elevation dynamics (2) can be
described with (12), using identities: aN ≡ aψ , q ≡ ψ,
τdis ≡ τf1 + τm − τϕ̇ − τG and τ ≡ τ1. Also, the
azimuth dynamics (7) can be presented with (12), assuming:



aN ≡ aϕ, q ≡ ϕ, τdis ≡ τf2 + τr and τ ≡ τ2.
The main idea consists in forming the control law as

follows:

τ = aN q̈des + τ̂dis. (13)

Applied force has two components, the estimated distur-
bance τ̂dis in the inner control loop and the force induced by
desired torque aN q̈des in the outer control loop. The control
force (13) cancels plant input disturbance and makes plant
a simple double integrator q̈ = q̈des, thus, robust in changes
of system parameters and external forces. Implementation of
control input (13) is shown in Fig. 2.

A. Synthesis of the outer control loop

In case the control output is linear or nonlinear continuous
function of position y(q), tracking error e = y(q)−yref can
be defined as a measure of the distance from reference value
described by equilibrium solution. If tracking error is equal
to zero, system output is constrained to domain or manifold:

S(q, q̇) =
{
q
∣∣ e(q) = y(q)− yref = 0

}
. (14)

Control task can be formulated as requirement to enforce
equilibrium e(y, yref ) = 0, or to enforce convergence to
the manifold (14) and achieve stability of the equilibrium.
Dynamics of the control error can be described using gener-
alized error function σ:

σ = σ (e, ė) = ė+ k1e, (15)

where k1 is a positive constant. Generalized error σ is
selected to have relative degree one with respect to control
input. Now, the desired acceleration q̈des needs to be selected
to enforce output convergence and stability of equilibrium.
Desired acceleration is composed of two components. The
first one, called equivalent acceleration q̈eq , stands for the
value of the input acceleration for which the rate of change of
the distance from the equilibrium is zero σ = 0. The second
one, called convergence acceleration, is selected to guaranty
convergence to equilibrium solution if initial conditions are
not consistent with equilibrium σ|t=0 6= 0 [18].

Dynamics of (15) can be expressed as follows:

σ̇ = ë+ k1ė

=
∂2y(q)

∂q2
q̇2 +

∂y(q)

∂q
q̈ − ÿref + k1ė (16)

=
∂y(q)

∂q

[
q̈ −

(
∂y(q)

∂q

)−1(
ÿref −

∂2y(q)

∂q2
q̇2 − k1ė

)]
.

Now, desired acceleration can be derived from (16) in the
form:

q̈des = q̈eq + q̈conv, (17)

q̈conv =

(
∂y(q)

∂q

)−1

σ̇. (18)

Equivalent acceleration yields from σ̇ = 0 and (16):

q̈eq =

(
∂y(q)

∂q

)−1(
ÿref −

∂2y(q)

∂q2
q̇2 − k1ė

)
. (19)

To complete design of desired acceleration, the rate of
change of the generalized error σ̇ needs to be determined. For
this purpose, Lyapunov function candidate can be selected as:

V =
σ2

2
> 0, V (0) = 0. (20)

The first order time derivative of (20) is:

V̇ = σσ̇ = −2kV, (21)

where k is a positive constant that represent Lyapunov
convergence coefficient.

Relations (21) yields:

σ̇ + kσ = 0. (22)

Solution of the (22) is exponentially decreasing function
σ(t) = σ(0)e−kt. This implies convergence to the equilib-
rium solution σ and the stability of the equilibrium. Now
convergence acceleration can be determined as:

q̈conv = −k
(
∂y(q)

∂q

)−1

σ. (23)

For the purpose of helicopter control, position (elevation or
azimuth angle) is selected for output variable, i.e. y(q) = q.
Finally, desired acceleration for the outer control loop can
be formed using (19) and (23):

q̈des = ÿref − (k1 + k) ė− kk1e. (24)

Obtained controller (24) consists of a PD control term in
order to reduce computational burden, and a feed-forward
control of a simple predictor to improve performances.
Controller parameters k and k1 are designed according to
the nominal system Pn(s) = 1/s2 that represents a simple
double integrator. The coefficients kψ = 4 and kϕ = 5 are
applied, so the elevation and azimuth angles tend to reference
as quickly as possible. Also, the coefficients k1ψ = 6 and
k1ϕ = 20 are applied, so the elevation and azimuth steady
state errors are as small as possible.

B. Synthesis of the inner control loop

This subsection introduces design of the disturbance ob-
server based on position measurements and known control
force. Disturbance is defined as a sum of all possible signals
due to the differences between the actual system and the
model. This means that the actual plant with the disturbance
compensator can be regarded as nominal model if the distur-
bance is well cancelled [14]. DOB based controller makes a
system robust using Q-filter which cuts off the disturbance
in low frequency range.

The augmented system (12) with model of disturbance
ϑ̇ = τ̇dis ≈ 0, ϑ = −a−1

N τdis is observable [18]. Intermedi-
ate variables can be selected as:
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Fig. 2. Cascade control loop with DOB in the inner and task controller in the outer loop

z1 = ϑ− l1q, l1 = const, (25)
z2 = v − l2q, l2 = const. (26)

The first order time derivation along the trajectories of
system (12) are:

ż1 = −l1 (z2 + l2q) , (27)

ż2 = z1 − l2z2 +
(
l1 − l22

)
q + a−1

N τ. (28)

The dynamics of the observer should be the same as
dynamics of the intermediate variables and can be written
as:

ˆ̇z1 = −l1 (ẑ2 + l2q) , (29)
ˆ̇z2 = ẑ1 − l2ẑ2 +

(
l1 − l22

)
q + a−1

N τ. (30)

Solving for ẑ1 Laplace transformation of (29) and (30)
yields:

ẑ1 = −l1
l2sq + l1q + a−1

N τ

s2 + l2s+ l1
. (31)

Substituting (31) into ϑ̂ = ẑ1 + l1q, it can be written:

τ̂dis =
l1

s2 + l2s+ l1
τdis. (32)

The pole position of the observer α and β are determined
by constants l1 and l2:

α+ β = −l2, (33)
αβ = l1. (34)

Implementation of the disturbance observer (32) is shown
in Fig. 3. Poles position l1ψ = 0.6, l2ψ = 1.7 are selected
for the elevation dynamics, and l1ϕ = 1.2, l2ϕ = 1.7
for the azimuth dynamics, so the observer could estimate
disturbance in a low frequency and noise in a high frequency
range.

−
l2

− 1

s ẑ1 −
−

l1
1

s ẑ2

l1 − l22 l2 l1

τ

aN

q

− τ̂dis
aN

Fig. 3. Disturbance observer with the position and the force as inputs

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the simulation and the experimental results
of the helicopter CE 150 control are presented. A Simulink
model of the helicopter system was developed for the simu-
lations according to section II. If the DOB based controllers
estimate and attenuate cross-coupling effects and generalized
disturbance as well, the complex helicopter system can be
treated like set of two SISO systems. Consequently, the
synthesis of the DOB based controller of the elevation dy-
namics is performed independently to the azimuth dynamics
(according to the section III), and vice versa.

A. Simulation results

This subsection presents the effectiveness of the DOB
based controllers in comparison to the fuzzy controllers
proposed in [6]. Elevation angle responses are shown in
Fig. 4 and azimuth angle responses in Fig. 5. Changes of
the elevation and azimuth reference values are simultaneous
in all conducted experiments. It can be noticed in Fig.
4 that DOB based controller can achieve better tracking
performance over the wide range of elevation angles with
lower overshoots and steady state errors. Moreover, the
steady state error of the elevation angle with DOB controller
is exponentially decreasing, while fuzzy controller provides
errors depending to the operation range. In Fig. 5 there are
obvious higher oscillations at the azimuth response based on
the fuzzy controller. This implies more power consumption
and higher strain rates of the DC motor.

B. Experimental results

In this subsection, the improvements of the DOB based
control system are presented through experiments. In the
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Fig. 6 it can be seen that DOB based controller is capable
to eliminate influence of the azimuth angle. The fuzzy
controller provides poor tracking of the elevation angle at the
moments of high changes in the azimuth reference signal.
Fig. 7 shows significant improvements of the DOB based
azimuth output without high overshoots. In the Fig. 8 control
errors are presented. The DOB based control error in the
steady state is about 1.5%. Most important feature of the
DOB control is shown in the Fig. 9. Power consumption and
main motor strains with DOB control are significantly less
comparing to the fuzzy control.

V. CONCLUSIONS

In this paper disturbance observer based controllers are
designed and implemented to the nonlinear helicopter sys-
tem CE 150. Proposed DOB based controllers guarantee
robust and stable closed-loop behaviour of the helicopter
body for a wide range of azimuth and elevation angles
during the long time flight. Designed disturbance observer
based controllers compensate severe nonlinear friction in the
bearings, uncertainties of the system parameters, unmodelled
dynamics, external disturbances and strong interactions of the
elevation and azimuth dynamics. Proposed controllers consist
of a PD feedback control in order to reduce computational
burden, a disturbance observer to estimate uncertainties and
a feed-forward control of a simple predictor to improve
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performances. Implementation of the DOB based controllers
is very simple despite the need for relatively short sampling
time combined with substantial controller computation. It is
shown that designed controller uses less power and improves
tracking performance. The validity of the proposed cascade
control structure was verified through both, simulation and
experiment.
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