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ABSTRACT

Contour-based Fourier descriptors are very simple and effec-
tive shape description method used for content-based image
retrieval. Similarity between Fourier descriptors is usually
computed using measures such as City-block or Euclidean
distance. These similarity measures consider all harmonics to
be equally important, therefore harmonics with larger magni-
tude tend to have larger significance during the computation
of shape similarity. In order to increase the importance of har-
monics with lower magnitude, we propose to use weighted
City-block distance for computing shape similarity. The pro-
posed weighting coefficients are inspired by the contrast sen-
sitivity of the human visual system to different spatial fre-
quencies, known as the Contrast Sensitivity Function (CSF).
Although weighted distances generally do not improve the re-
trieval performance, experimental results clearly demonstrate
that human observers favour the retrieval system based on the
weighted distances, and find it more accurate and relevant.

Index Terms— Content based image retrieval, Fourier
descriptors, weighted distance, contrast sensitivity function,
frequency

1. INTRODUCTION

Shape is widely used as a discriminative element in the field
of content-based image retrieval (CBIR). In many applica-
tions, shape captures the most of the perceptual information
of the observed objects on images. A variety of shape descrip-
tion techniques have been developed over the years [1, 2].

Fourier descriptors (FD) are established as compact shape
descriptors, well known for their low computational com-
plexity and relatively high retrieval performance. Although
Fourier descriptors may be used as a region-based method [3],
they are quite more often used as a global contour-based
shape description technique [4–6]. Fourier descriptors are
computed by first applying the Discrete Fourier transform
over the shape signature function (such as Perimeter area
function [4], Farthest distance function [6], Complex coor-
dinates [5] etc.), and subsequently applying different pro-
cedures in order to the achieve invariance under translation,

rotation, change of scale and/or starting point of the contour.
Fourier descriptors have a hierarchical representation in fre-
quency domain, where low frequency harmonics contribute
to coarse description of the shape, while high frequency
harmonics contain details and/or noise.

The similarity between shapes is commonly measured
using City-block or Euclidean distance between their corre-
sponding Fourier descriptors [4–6], therefore harmonics with
larger magnitude tend to have larger significance during the
computation of shape similarity. Since the low frequency
harmonics usually have larger magnitude, middle and high
frequency components hardly contribute in shape matching.
It may seem technically correct to reduce the importance of
high frequency components, since they are more susceptible
to noise and carry (probably irrelevant) details. However, the
magnitude and frequency of the harmonics are not linearly
correlated to their semantical contribution, as it will be shown
in the paper. This is in fact in accordance with the human
visual perception, since the human visual system is most sen-
sitive in detecting contrast differences occurring at “middle”
frequencies. Therefore, a computer-based shape retrieval sys-
tem performance may prosper if the shape difference analysis
is focused around middle frequencies instead of the low fre-
quencies. In order to exploit this effect, we propose to use
a weighted City-block distance. Experimental results do not
show significant improvement of retrieval performance, but
human users assess the weighted distance-based retrieval sys-
tem to be more accurate, and more suitable to human shape
perception.

The paper is organized as follows. Section 2 gives a brief
introduction to contour-based Fourier descriptors. Contrast
sensitivity function is explained in Section 3. Section 4 intro-
duces three proposed weighting schemes. Methodology and
experimental results are given in Section 5 and 6, while the
conclusion and guidelines for future work are given in the last
section.



2. CONTOUR-BASED FOURIER DESCRIPTORS

The shapes that are analyzed in this paper can be described as
single plane closed (discrete) curves. In preprocessing stage,
the coordinates of the shape boundary are extracted from the
image, and re-sampled with the fixed number of points N us-
ing equal arc-length sampling. The re-sampled points of the
contour Pn = (xn, yn) n = 0, 1, ..., N − 1 may be repre-
sented using Complex coordinates shape signature [5]:

Zn = xn + jyn. (1)

The Discrete Fourier Transform is computed using:

ak =
1
N

N−1∑
n=0

Zne
−j2πnk/N , (2)

where k = 0, 1, ..., N − 1. Fourier coefficients ak are used to
compute FD, therefore they must be additionally transformed
in order to be invariant under translation, rotation, scale and
starting point change. Invariance under rotation and starting
point change is easily obtained using only the magnitude of
the Fourier descriptors, while invariance under translation is
achieved by disregarding the coefficient a0. In order to intro-
duce scale invariance authors in [5] proposed to use an effec-
tive scaling coefficient Sc =

∑N−1
i=1 |ai|. Therefore, a Fourier

descriptor is given with:

F =
{ |a−M/2|

Sc
, ...,
|a−1|
Sc

,
|a1|
Sc

,
|a2|
Sc

, ...,
|aM/2|
Sc

}
, (3)

where M is the chosen number of Fourier coefficients (M
is smaller than N ). It is important to note that the discrete
Fourier transform is a periodic discrete sequence (with pe-
riod N ), which explains the notation aj = aj+N (for j =
−M/2, ...,−1) in equation (3). In order to use a simpler no-
tation, a substitution fi = |ai|/Sc (i = 1, 2, ...,M/2, N −
M/2, ..., N − 1) is used, while f0 is introduced and set to
zero. Also, we introduce a measure of the “energy” of the
shape reconstructed with M coefficients as:

EM =
M/2∑

i=−M/2

|fi|. (4)

It is important to note that the nominal energy of the shape is
equal to one (E(M=N) = 1).

During matching stage, two Fourier descriptors FI =
{f Ii } and FII = {f IIi } based on Complex coordinates shape
signature are compared using City-block distance (Euclidean
distance is used for other shape signatures):

d(FI,FII) =
M/2∑

i=−M/2

|f Ii − f IIi |. (5)

The problem with this simplistic approach is that low fre-
quency components fi (|i| ≤ 5) have considerably larger
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Fig. 1. Magnitude analysis of Fourier coefficients fi of shapes
from MPEG-7 CE-1 Set B: a) boxplot - on each box, the cen-
tral mark is the median, the edges of the box are the 25th
and 75th percentiles, the whiskers extend to the most extreme
datapoints considered not to be outliers, and the outliers are
plotted individually, b) the average values of magnitudes.

magnitude than the high frequency components, therefore
they tend to be more important for shape discrimination. To
support this fact, boxplot analysis of the first 20 coefficients
fi of 1400 shapes from MPEG-7 CE-1 Set B [7, 8] 1 is
given in Figure 1. Low frequency components contain the
coarse description of the shape, while the high frequency
components append details and eventually noise. This can
be seen in Figure 2a)-e), where a shape is reconstructed
from M lowest frequency coefficients (f−M/2, ..., fM/2) for
M = 4, 8, 16, 32, 64. It is interesting to note that the shape
given in Figure 2a) has almost 70% of the energy of the
initial shape, but its resemblance with the original shape is
rather low. This means that the magnitude of the harmonic
is not directly correllated with the semantical contribution of
that component. Therefore we propose to use the weighted
City-block distance:

dw(FI,FII) =
M/2∑

i=−M/2

wi|f Ii − f IIi |. (6)

where wi (i = −M/2, ...,M/2) are the weighting coeffi-
cients and

∑N/2−1
i=−N/2 wi = 1. To the best of the authors’

knowledge, this is the first time that weighted distance is pro-
posed to be used in conjunction with Fourier descriptors. In
the following sections, three different sets of weighting coef-
ficients wi are proposed.

3. MOTIVATION - CONTRAST SENSITIVITY
FUNCTION (CSF)

Since there could be literally unlimited possibilities for the
weighting functions, the proposed analytical forms are pri-

1http://www.cis.temple.edu/~latecki/TestData/mpeg7shapeB.tar.gz



a) b) c) d) e)

Fig. 2. Shape reconstructed with M = 4, M = 8, M = 16, M = 32 and M = 64 Fourier coefficients (shape energies are
0.6899, 0.8047, 0.8707, 0.9313, 0.9655 respectively)

Fig. 3. Illustration of the CS. Although the contrast on the im-
age increases linearly from the bottom, and all vertical lines
are the same length, the lines in the middle seem longer. (Note
that the illustration may not be completely understandable on
certain zoom levels on a computer monitor, because of alias-
ing)

marily inspired by the sensitivity of the human visual system
to certain spatial frequencies.

The level of contrast necessary to elicit a perceived re-
sponse by the human visual system is known as the contrast
threshold [9]. The inverse of the threshold is known as
the contrast sensitivity (CS). The contrast sensitivity func-
tion (CSF) describes the contrast levels at a given spatial
frequency necessary to elicit a perceptual response for a
given spatial pattern, luminance level, and temporal fre-
quency [9, 10]. Another description, as given by [11], is to
refer to the contrast sensitivity function as a threshold modu-
lation function that normalizes all frequencies such that they
have equal contrast thresholds. It is generally well understood
that achromatic contrast sensitivity can be described with a
band pass spatial filter peaking around 3-4 cycles per degree
of visual angle [11].

The illustration of CS is given on Figure 3. The contrast
on the image increases linearly from the bottom. Although
all vertical lines are the same length, it seems that the lines in
the middle of the image are longer. This happens because the
human visual system is most sensitive to these “middle” fre-
quencies. Therefore, all proposed weighted distances in the
paper favour “middle” frequencies and reduce the importance
of low frequency components.

4. WEIGHTED FUNCTION MODELS

Three different forms of weighting coefficients are proposed,
based on the following functions: CSF [11], Rayleigh distri-
bution [12], and Log-normal distribution [13].

CSF model - This model is inspired by the most common
and popular analytical form of the contrast sensitivity func-
tion proposed by Barten [11] (which is very similar to the
model proposed by Mohshon and Kiorpes [14]):

csf(f) = a · f · e−bf
√

1 + cebf , (7)

where parameters a = 540(1 + 0.7/L)−0.2/[1 + 12/X/(1 +
f/3)2], b = 0.3(1 + 100/L)0.15 and c = 0.06 are determined
as functions of illumination L and the size of the pattern X
in degrees, and f is the frequency in cpd. For typical usages
X = 45◦ and L = 500[cd/m2].

The CSF model given by (7) represents the actual CSF
function of the human visual system. However, using di-
rect search to find the optimal parameters is slightly compli-
cated, because these parameters do not independently affect
the shape of CSF function. That is why we propose two more,
different but simpler models: Rayleigh and Log-normal dis-
tribution models. Shapes of these functions are very similar
to the CSF function (as shown in Figure 6), but they are con-
siderably simpler for interpretation and analysis.

Rayleigh distribution model - It is given by [12]:

csfR(f) =
f

σ2
e−

f2

2σ2 . (8)

Unlike the model proposed with relation (7), this model is
more convenient for optimization since it has only one pa-
rameter (so called scale parameter σ), and the statistical pa-
rameters such as the mean, maximum, variance etc. are given
by simpler relations.

Log-normal distribution model - Unlike the Rayleigh
distribution model, Log-normal distribution [13] has two de-
grees of freedom - standard deviation σ and expected value
µ:

csfLN (f) =
1

fσ
√

2π
e−

(lnf−µ)2

2σ2 . (9)

In contrast to the Barten CSF model (7), function parameters
(σ and µ) have certain physical meaning and facilitate opti-
mization procedures.

5. METHODOLOGY

In order determine the optimal weighted distance, a com-
monly adopted Bulls-Eye retrieval performance score was
chosen for evaluation [15]. Bulls-Eye score is defined as the



Fig. 4. Representative shapes of the modified Diatoms dataset
(total of 425 shapes distributed in 20 classes).

Fig. 5. MPEG-7 CE-1 Set B representative shapes (70 classes
with 20 variations per class).

percentage of relevant results in the first 2 ·K retrieved results
of a query, where K is the number of elements in the shape
class which the shape belongs to [15]. Average Bulls-Eye
score is computed after all elements in the dataset have been
used as a query.

Prior to conducting optimization procedures, a suitable
dataset had to be chosen. The proposed dataset is based on the
original Diatoms dataset initially presented in [15], but shape
classes that have extremely similar contours or differ only by
scale, are removed. Therefore, the initial set is reduced to the
total of 425 elements distributed into 20 classes (each class
has at least 20 shapes). Representative shapes for each class
are presented in Figure 4. The modified Diatoms dataset is
essentially curve-based, and does not contain projective trans-
formations, non-rigid transformations, articulation, noise etc.,
all of which may affect retrieval performance. Thus, the el-
ements in the proposed dataset differ only by their shape i.e.
by the magnitudes of the harmonics.

The unknown parameters for Rayleigh and Log-normal
function model were estimated by direct search using Bulls-
Eye score as the cost function, while the CSF model param-
eters are found using least-squares curve fitting of Rayleigh
and Log-normal model.

The obtained weighting coefficients are validated on the
popular MPEG-7 CE-1 Set B [8]. Representative elements
of MPEG-7 CE-1 Set B are depicted in Figure 5. MPEG-7
CE-1 Set B consists of 1400 shapes representing real life ob-
jects, classified into 70 classes with 20 similar shapes for each
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Fig. 6. Comparison of different weighting functions: CSF,
Rayleigh and Log-normal based functions.
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Fig. 7. Bulls-Eye score vs. scale parameter of the Rayleigh
distribution σ, achieved on the modified Diatom dataset. A
maximal score of 83.06 is achieved for σ = 5.4 (denoted
with mark o ).

class. This database is more difficult for shape-based image
retrieval, since it includes rotation, scaling, skew, stretching,
defection, indentation and articulation of shapes.

Finally, the retrieval performance is analyzed using an
online survey, filled in by human users. Different retrieval re-
sults with similar performance scores, obtained with weighted
and unweighted distances, were presented to human ob-
servers. The users voted for retrieval lists that they assessed
as more relevant and accurate. The main conclusions of this
survey are presented in the following section.

6. EXPERIMENTAL RESULTS

The analytical forms of the obtained weighting coefficients
wi on the modified Diatom set for each of the three models
presented in the Section 4 are given in Table 1, and depicted
in Figure 6. In order to further illustrate the effects of the
weighted distances to the performance of the retrieval, the
Bulls-Eye score vs. Rayleigh distribution scale parameter σ
is given in Figure 7. Highest Bulls-Eye scores are achieved
when the expected value of the distribution is located closer
to the “middle” frequencies. This leads to a conclusion that
“middle” frequencies are more important than low and high
frequencies for shape retrieval, and clearly carry more infor-
mation. Moreover, retrieval performance on this dataset can



Table 1. The proposed weighted City-block distance coefficients wi (i = −M/2, ...M/2).
Weighted distance Coefficients Optimal parameters Bulls-Eye

Unweighted wi = 1 - 79.71

Rayleigh wi = |i|
σ2 e
− i2

2σ2 σ = 5.4 83.06

Log-normal wi = 1
|i|σ
√

2π
e−

(ln(i)−µ)2

2σ2 σ = 0.7077, µ = 1.8871 83.63

CSF wi = a · |i| · e−b|i|
√

1 + ceb|i|
a = 675(1 + 0.7/L)−0.2/[1 + 12/X/(1 + f/3)2]

b = 0.8016, c = 0.06,
L = 0.1621, X = 0.001927

81.55

a) b)

Fig. 8. a) Original classic car shape, b) shape reconstructed
using weighting coefficients (contains only 4.52% of the ini-
tial energy).

be increased by 3 to 4%, just by emphasizing these “middle”
frequencies using a weighted distance.

Another interesting fact is illustrated in Figure 8. The
classic car shape is reconstructed with and without multiplica-
tion with the weighting coefficients. On first glance it seems
that the cars in Figure 8a) and Figure 8b) are not extremely
similar. However, the shapes in Figure 8a) and Figure 8b) are
clearly more similar than the shapes in Figure 8a) and Figure
2a), although the shape depicted in 8b) has the energy equal
to 0.0452, while the shape in Figure 2a) has the energy equal
to 0.6899. This leads to the conclusions that low frequency
components are not the most important for shape discrimina-
tion, and that the magnitude of the harmonics is not directly
correlated with the respective semantical contribution.

The proposed weighted distances are validated on the
MPEG-7 CE-1 Set B. The achieved Bulls-Eye scores are
presented in Table 2. The results indicate small improve-
ments of the Bulls-Eye score, moreover Rayleigh and Log-
normal weighted coefficients seem to sligthly underperform.
From the retrieval performance point of view, it appears that
weighted distances introduce a rather small technical con-
tribution. However, the usage of weighted distances yield
another very interesting result. They allow reducing the
average energy of the 1400 descriptors from the MPEG-7
CE-1 Set B from 1.0 to 0.049 without significantly altering
retrieval performance. This indicates a large redundancy
in FD shape description, and points out the importance of
middle frequency components over low and high frequency
components.

Finally, the effects of weighted distances on human per-
ception were investigated. Human users were asked to assess

Table 2. Bulls-Eye scores for different weighted City-block
distances on MPEG-7 CE-1 Set B.

Weighted distance Bulls-Eye score
Unweighted 75.75

Rayleigh 75.51
Log-normal 74.09

CSF 76.44

Fig. 9. Retrieval results for different query shapes on MPEG-
7 CE-1 Set B. First image on the left is the query image.
For both queries, the first row presents the results with un-
weighted distance, while the second row presents the results
for the weighted distances (CSF for the “camel” shape, Log-
normal for the “hammer” shape).

the retrieval results achieved with unweighted and weighted
distances. Users had to fill in an online survey with 21 ques-
tions. Two questions were repeated, so that the non-consistent
users are excluded from the statistics. Every question con-
tained two retrieval result lists, and users had to choose the
one which they found more accurate and relevant. In order to
obtain objective results, the users were not fully acquainted
with the exact purpose of the research. Two example ques-
tions are presented in Figure 9. The survey was completed by
46 contestants, aged from 20 to 52, both males and females.
In order to evaluate the results of the survey a measure given
by k = nw/ntot is introduced, where nw is the number of
users that voted for weighted distance results and ntot is the
number of all participants. Hence k = 100% is the best re-
sult (meaning all users voted for the weighted distance), and
k = 0% is the worst result (none of the users voted for the



Table 3. Survey results - the percentage of votes for weighted
distances against unweighted distance.

Weight.distance k(%)
Rayleigh 69.25

Log-normal 76.08
CSF 78.26

weighted distance). In the end, the average value of k is com-
puted. The final results are presented in Table 3.

It may be concluded from the results given in Table 3
that users would rather see the retrieval results obtained with
weighted distance, especially CSF-based weighted distance,
regardless of the fact that retrieval performance (Bulls-Eye
score) is almost the same. This is justified by the fact that
the non-relevant retrieval results obtained with the weighted
distances are more closer to human visual understanding. As
illustrated in Figure 9, in the first query, the “camel” shape
is more similar to “horse”, “cow” or “elefant” than the “but-
terfly” shape, and in the second query, the “hammer” shape
is more similar to the “spoon” shape than it is to the “bat”
shape. Although both queries have similar retrieval perfor-
mance (since the “spoon” and “bat” are in fact dissimilar to
the “hammer” shape), the users find weighted distance based
retrieval system to be more accurate and results to be more
relevant.

7. CONCLUSION

Using weighted distances inspired by the human visual sys-
tem may enhance users’ experience of the shape retrieval sys-
tem, although the quantitative retrieval performance remains
the same. The weighted distances did not exhibit significant
retrieval performance improvement on MPEG-7 CE-1 Set B,
mostly due to the Fourier descriptors limitations, and sensi-
tivity to non-rigid transformations. Moreover, experiments
demonstrate that the energy/magnitude/frequency of the har-
monics is not directly related to their semantical contribution
in the shape description, and that in fact the “middle” frequen-
cies carry most of the important information about the shape.

The work presented in this paper should give new insights
to human-based shape understanding. As part of future work,
the weighted coefficients will be analyzed in conjunction with
other shape description methods.
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