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Abstract— This paper presents the design procedure of the
integral sliding mode controller with enhanced robustness
properties for a class of nonlinear uncertain systems. The
integral sliding mode control (I-SMC) is synthesized with
the generalized disturbance attenuation scheme called robust
internal-loop compensator (RIC) through the Lyapunov re-
design framework, thus introducing a generalisation of the well-
known case for linear systems. The resulted two-layer control
structure employs the classical controller with the feedforward
term in the outer control loop to track the reference, while
the inner control loop compensates the generalized disturbance
and provides robust stability. The closed-loop system is proved
to be asymptotically stable via Lyapunov stability theory. The
developed control algorithm is used for attitude tracking of the
small-scale helicopter system in the presence of additional para-
metric uncertainties and external disturbances. An excellent
tracking performance and robustness stability of the proposed
control method are revealed through computer simulations and
experimental testing over the whole domain of the helicopter
outputs.

Index Terms— Sliding mode control, robust internal-loop
compensator, disturbance observer, robust stability, Lyapunov
methods, asymptotic stability, attitude control, laboratory heli-
copter.

I. INTRODUCTION

A robust control design procedure for a nonlinear un-
certain system includes two important requirements: perfor-
mance specification of the closed-loop system and robustness
to the modelling uncertainties, external and internal distur-
bances. A quantified trade-off between these two desired
requirements has been provided using the generalised dis-
turbance attenuation framework, called robust internal-loop
compensator (RIC) [1]–[5]. Although effective performances
and unified analysis of the model based disturbance compen-
sation algorithms have been achieved, the concepts of RIC
are only presented for the linear systems.

Small-scale helicopters are highly nonlinear systems with
significant cross-couplings, unpredictable inputs (disturbance
and noise), unknown dynamics, inherently unstable charac-
teristics and parametric uncertainties. In general, small-scale
helicopters are versatile flying machines, capable to perform
complex manoeuvres and low altitude flights. Therefore, they
have been successfully used in various applications, such
as search and rescue operations, inspection in inaccessible

areas and emergency situations like nuclear disasters, floods,
etc. On the other hand, small-scale helicopters are more
susceptible to wind gusts and physical parameters variation
than their full sized counterparts due to the light-weighted
structure.

In the recent decades different control techniques have
been intensively developed to address the autonomous flight
of aerial vehicles [6]–[8]. Various control algorithms [9]–
[11], such as classical proportional-integral-derivative (PID)
controller, linear quadratic optimal control combined with
a state estimator (LQG), optimal linear quadratic output
control (PLQ), model predictive control (MPC) and fuzzy
control, have already been implemented to the laboratory
small-scale helicopter system CE 150 supplied by Humosoft.
The addressed algorithms do not consider estimation of dis-
turbances, uncertainties and cross-coupling dynamics, thus
tracking performances are slightly degraded. Significantly
improved tracking performances and decreased power con-
sumption of the small-scale helicopter CE 150 are presented
in [12] using the disturbance observer (DOB) based con-
trol. Furthermore, our previous paper [13] describes the
disturbance observer based sliding mode control (SMC) of
the helicopter system CE 150 in the presence of additional
parametric uncertainties and external disturbances, which are
main difficulties for the motion control.

This paper introduces a generalisation of the RIC scheme
for a class of linear systems, by synthesis of the nonlinear
I-SMC and the linear RIC for a class of nonlinear uncertain
systems through Lyapunov redesign framework. The new
control term based on the RIC is introduced to improve
robustness properties of the closed-loop system and reduce
chattering effect of the I-SMC. In order to enhance the
performances of the DOB based SMC algorithm described
in [13], the proposed approach in this paper provides a
systematic way to tune the controller parameters for robust
stability and performance specification using the RIC [1]–
[5]. This resulted in a higher control bandwidth of the
closed-loop system, which is very important for small-scale
helicopters with fast dynamics, especially during aggressive
flights. First, the classical controller with the feedforward
control term is developed based on the nominal model.
Then the RIC based control term is proposed in order to



compensate plant input generalised disturbances, and the I-
SMC term is introduced to provide finite time convergence
to the equilibrium solution and robustness to the disturbance
compensation error. Additional disturbances in the form of
wind gusts and 30% uncertainties on the model parameters
are applied to the small-scale helicopter system CE 150 as in
[13] to demonstrate the control quality. Differently from the
previous papers [9]–[13], dynamic changes in the helicopter
center of gravity are provided by moving the ballast along
its own horizontal axis using the servomechanism. Excellent
tracking performances of the proposed control structure will
be shown through both, simulation and real experiment, even
in the presence of these additional disturbances.

The paper is organized as follows. Synthesis of the I-
SMC and the RIC for a class of nonlinear uncertain systems
is introduced in Section II using the Lyapunov redesign
framework. In Section III the helicopter model and control
strategy are presented. Simulation and experimental results
are discussed in Section IV. Concluding remarks are given
in Section V.

II. SYNTHESIS OF THE I-SMC AND THE RIC IN THE
LYAPUNOV REDESIGN FRAMEWORK

This section presents synthesis of the I-SMC and the
RIC through the Lyapunov redesign framework for a class
of nonlinear uncertain systems. Without loss of generality,
the proposed control method is presented for SISO systems,
which provide common insight about the basic concepts of
the robust motion controller design.

Consider a single degree of freedom mechanical system
(either translational or rotational) [14], [15]:

a(q)q̈(t) + τd (t, q, q̇, τ) = τ (t, q, q̇) , (1)

where q(t) and q̇(t) represent the state variables, position
and velocity, respectively, τ (t, q, q̇) denotes the control input,
a(q) is continuous strictly positive function representing
inertia of the system, and τd(t, q, q̇, τ) denotes the plant input
disturbance which includes Coriolis and friction torques,
gravitational torque and external disturbances. The functions
a(q) and τd(t, q, q̇, τ) are defined for (t, q, q̇, τ) ∈ [0,∞) ×
D × D × D, where D ⊂ R is a domain that contains the
origin. Assume that τd is piecewise continuous in t and
locally Lipschitz in q, q̇ and τ , so that with the feedback
control τ , that is piecewise continuous in t and locally Lip-
schitz in q and q̇, the closed-loop system will have a unique
solution through every point (t0, q0, q̇0) ∈ [0,∞)×D ×D.
The acceleration q̈(t) is also assumed to be continuous and
bounded function. The torque ∆a(q)q̈ induced by varying
inertia ∆a(q) = a(q)−an can be lumped into the generalized
plant input disturbance τdis = τd + ∆a(q)q̈ if the nominal
inertia coefficient an is known, so the perturbed system is
described with (2):

anq̈(t) + τdis (t, q, q̇, τ) = τ (t, q, q̇) . (2)

The plant input generalized disturbance τdis may additionally
include various uncertain terms due to the model simpli-
fication, parameter uncertainties, etc. The uncertain torque

τdis satisfies an important structural property called matching
condition. Namely, disturbance term τdis and control input
τ enters the system (2) at the same point.

The tracking error e(t, q) is defined as difference between
the actual output q(t) and the reference input qref (t):

e(t, q) = q(t)− qref (t), (3)

where the reference input to the controlled plant qref is
assumed continuous and differentiable function for an ap-
propriate number of times. The control law will be designed
so the system output q is forced to satisfy e(t, q) = 0 in
equilibrium. In other words, the system output should be
constrained to the domain or manifold:

S1 =
{
q
∣∣ e(t, q) = 0

}
. (4)

The generalized error σ(t, q, q̇) is introduced in order to
provide relative degree one (r = 1) with respect to the
control input τ :

σ (t, q, q̇) = ė(t, q) + Λ1e(t, q) + Λ

t∫
0

e(t, q) dt, (5)

where Λ and Λ1 are positive constants. Due to the steady
state error attenuation, an integral component of the tracking
error (3) is included in the generalized error (5). The control
objective can be reformulated using the generalized error σ
to drive the system output into the integral sliding manifold:

S2 =
{
q
∣∣σ(t, q, q̇) = 0

}
. (6)

Let us choose the nominal model of the system (2) as:

anq̈n = τn, (7)

where qn is the nominal output generated internally by the
nominal control input τn. We proceed to design a stabilizing
controller using this nominal model. The generalized error
dynamics of the nominal system is computed using (5) and
(7):

σ̇ = a−1
n τn −

(
q̈ref − 2Λė− Λ2e

)
. (8)

The equivalent control is chosen to cancel right-hand side of
(8):

τeqn = an

(
q̈ref − 2Λė− Λ2e

)
. (9)

Implementation of the equivalent control (9) is presented in
Fig. 1, where Pn(s) =

(
ans

2
)−1

is the transfer function
of the nominal system, Cff (s) = ans

2 and C(s) =
an
(
2Λs+ Λ2

)
e represent the transfer functions of the

feedforward and the feedback controller, respectively. The
feedforward control Cff (s) denotes nominal plant inverse,
thus it enhances tracking performance and minimizes the
transfer function:

e(s)

qref (s)
=
Pn(s)Cff (s)− 1

1− Pn(s)C(s)
. (10)
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Fig. 1. Standard nominal control structure

Since the feedforward control Cff (s) does not affect closed
loop stability, the transfer function from the reference input
qref to the nominal output qn can be arranged from Fig. 1:

qn(s)

qref (s)
=

Λ(2s+ Λ)s

s2 + 2Λs+ Λ2
. (11)

The transfer function (11) has two poles in the left half-plane,
so the feedback control C(s) stabilizes the nominal closed
loop system.

Suppose now that the system (2) is affected with uncer-
tainties τdis and apply the control (12):

τ (t, q, q̇) = τeqn (t, q, q̇) + τv (t, q, q̇) + τ̂dis (t, q, q̇) (12)

to the nominal system (7). The resulting closed-loop system:

anq̈ = τeqn + τv + τ̂dis − τdis, (13)

is a perturbation of the nominal closed-loop system (7). The
block structure of the system (13) is depicted in Fig. 2. Here,
τv(t, q, q̇) and τ̂dis(t, q, q̇) represent the additional feedback
controls, which need to be designed in such a way that the
overall control (12) stabilizes the actual system (13) in the
presence of internal and external disturbances. The additional
control τ̂dis is introduced in order to compensate the plant
input generalized disturbance τdis. The additional control
τv is included in the overall control (12) to provide sliding
mode motion toward the manifold (6) and enhancement of
disturbance attenuation characteristic. In complex domain,
the disturbance compensation error is expressed as:

p(τdis, Q) = τdis − τ̂dis = (1−Q)τdis, (14)

where the disturbance observer dynamics τ̂dis = Q(s)τdis
is described with the linear filter low-pass Q(s). The dis-
turbance estimation error p can be treated as the input
disturbance in (13):

anq̈ = τeqn + τv − p, (15)

so the additional control τv should achieve robustness to
the disturbance compensation error p, rather than provide
compensation of the plant input generalized disturbance τdis
as in [15].

A. Structure analysis of disturbance attenuation

In complex domain, the output q of the actual plant P (s)
can be expressed from Fig. 2 as follows:

q = P

[
Pn
χ

(τn + τv)−
Pn(1−Q)

χ
τd −

Q

χ
ξ

]
, (16)

P (s)

1

Pn(s)

Q(s)

τd

−
τn

τv

τ q

ξ−
anq̈

τdis

τ̂dis

Fig. 2. System with additional feedback controls τ̂dis and τv
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Fig. 3. Robust internal-loop comensator

where ξ is the measurement noise and χ(s) = Pn(s) +
[P (s) − Pn(s)]Q(s). According to (16, below the cut-
off frequency ωc of the filter Q(s) it should be arranged
|Q(jω)| ≈ 1 in order to compensate input disturbance τd.
On the other hand, it should be achieved |Q(jω)| ≈ 0
above the cut-off frequency of Q(s), so the measurement
noise ξ can be attenuated. Hence, the main goal is to make
trade-off between |1 − Q(jω)| ≈ 0 and |Q(jω)| ≈ 0. The
estimated disturbance τ̂dis can be reformulated using the RIC
framework [1]–[5]:

τ̂dis = −K(s)en. (17)

Here K(s) denotes the feedback compensator which needs
to enforce plant P (s) with disturbances τdis behave like a
nominal model Pn(s). The following error en(t, q) = q(t)−
qn(t) represents the difference between the actual output
q and the nominal output qn. Fig. 2 can be equivalently
transformed into Fig. 3 using the following parametrization
(as in [2]):

Q(s) =
Pn(s)K(s)

1 + Pn(s)K(s)
. (18)

Now, thanks to the parametrization of Q into Pn and K,
systematic design of the filter Q is possible in the RIC
framework using (18). For example, if the nominal system
is chosen as a simple double integrator with nominal inertia,
i.e. Pn(s) = (ans

2)−1, then a derivative controller K(s) =
anλs can be managed in order to achieve a linear low-pass
filter:

Q(s) =
λ

s+ λ
, (19)

where λ is a positive coefficient representing the cut-off
frequency of the linear filter (19).



B. Analysis of robust stability

For the system (13), let us consider a Lyapunov candidate
as the positive definite function:

V =
σ2

2
, V (0) = 0. (20)

The first order time derivative of (20):

V̇ = σσ̇, (21)

depends on the generalized error dynamics:

σ̇ = q̈ −
(
q̈ref − 2Λė− Λ2e

)
(22)

= a−1
n (τeqn + τv + τ̂dis − τdis)− a−1

n τeqn (23)

= a−1
n (τv + τ̂dis − τdis) . (24)

The first derivative of V along the trajectories of the system
(13) is computed using (21) and (24):

V̇ = a−1
n σ(τv + τ̂dis − τdis) (25)

= a−1
n σ(τv − p). (26)

Due to the matching condition, the generalized disturbance
τdis appears exactly at the same point on the right-hand side
of (25) where the additional control terms τv and τ̂dis appear.
Hence, if τ̂dis is managed to compensate the generalized
disturbance τdis, it is possible to select τv in order to cancel
the effect of the disturbance compensation error p on V̇
according to (26), so that a−1

n σ(τv − p) ≤ 0 is satisfied.
Assume that with the control input (12), the generalized

disturbance τdis satisfies the inequality [15]:∣∣τdis (t, q, q̇, τ)
∣∣ ≤ ρ(t, q, q̇) + k

∣∣τv (t, q, q̇) + τ̂dis (t, q, q̇)
∣∣ ,

(27)
where ρ : [0,∞)×D×D → R is a nonnegative continuous
function and k ∈ [0, 1) is a constant. The only information
we need to know about the generalized disturbance τdis is
the estimate (27). The function ρ represents a measure of
the size of disturbances and uncertainties. It is not required
ρ to be small, but only to be known. The goal is to show
that with the knowledge of a function ρ, a coefficient k and
Lyapunov function V , an additional controls τ̂dis and τv can
be designed, so that the overall control (12) will stabilize the
actual system (13) in the presence of internal and external
disturbances. Right-hand side of (25) can be bounded as
follows:

V̇ ≤ a−1
n

(
στ̂dis + στv +|σ||τdis|

)
(28)

≤ a−1
n

(
στ̂dis + k|σ||τ̂dis|

)
+ a−1

n

(
ρ|σ|+ στv + k|σ||τv|

)
. (29)

We propose the generalized disturbance compensation τ̂dis
and the additional control τv in the following form:

τ̂dis = −η1(t, q, q̇)

1− k
σ, (30)

τv = −η2(t, q, q̇)

1− k
sgn(σ), (31)

where η1(t, q, q̇) and η2(t, q, q̇) are nonnegative continuous
functions for all (t, q, q̇) ∈ [0,∞) × D × D. The signs of

the additional control inputs (30) and (31) are opposite to
the sign of the distance from the sliding manifold (6), thus
directing the motion toward the equilibrium solution σ = 0.
It follows from (29), (30) and (31):

V̇ ≤ a−1
n

(
− η1

1− k
σ2 + k

η1
1− k

|σ|2
)

+ a−1
n

(
ρ|σ| − η2

1− k
|σ|+ k

η2
1− k

|σ|
)

(32)

= −a−1
n η1σ

2 − a−1
n η2|σ|+ a−1

n ρ|σ| (33)
= −a−1

n (1− θ)η1σ2 + a−1
n

(
ρ− p0 − η1θ|σ|

)
|σ|

−a−1
n (η2 − p0)|σ| (34)

≤ −a−1
n (1− θ)η1σ2, (35)

for all
η1 ≥

ρ− p0
θ|σ|

, η2 ≥ p0, (36)

where θ ∈ (0, 1) is constant parameter and p0 is positive
constant representing bounds of the disturbance estimation
error p, namely |p| ≤ p0. The inequalities (35) and (36)
ensure that the first order time derivative of V is negative
definite and the trajectories of the closed-loop system (13)
reach the positively invariant set:

Ωη =

{
|σ| ≤ ρ− p0

η1θ

}
, (37)

in finite time and remain inside thereafter. Therefore, the
solutions of the closed-loop system (13) are uniformly ulti-
mately bounded. The term a−1

n θη1σ
2 is added and subtracted

on the right hand side of (34) in order to dominate over the
only positive term a−1

n ρ|σ| outside the set (37). The radius
of the ball (37) can be made arbitrarily small by increasing
the magnitude η1 of the additional control τ̂dis. Therefore,
the additional control terms (30) and (31) should be selected
so the conditions (36) are satisfied. This means that the
generalised disturbance τdis should be compensated by the
magnitude η1 of the disturbance attenuation based control
term τ̂dis, and the disturbance estimation error p caused by
the disturbance compensator should be attenuated by the
switching gain η2. It is important to notice that a sharper
result could be obtained, if the magnitude η2 of the switching
control term τv is increased and selected to dominate over
the whole generalised disturbance τdis, i.e. η2 ≥ ρ, but the
chattering may be significant in this case. Namely, it could
be derived using (34):

V̇ ≤ −a−1
n η1σ

2 + a−1
n (ρ− η2)|σ| ≤ −a−1

n η1σ
2, (38)

for all η1 > 0 and η2 ≥ ρ. The function V̇ is negative
definite along the solutions of the closed-loop system (13),
and the equilibrium point of the origin (6) is uniformly
asymptotically stable.

III. APPLICATION TO THE HELICOPTER SYSTEM CE 150

A. Control strategy

The 2DOF helicopter system Humosoft CE 150 studied
here is depicted in Fig. 4. It consists of the rigid body



Fig. 4. Laboratory helicopter system Humosoft CE 150

TABLE I
CONSTRAINTS FOR THE HELICOPTER INPUTS AND OUTPUTS

Operational range

Inputs
u1 [0, 0.6]
u2 [−0.3, 0.3]
u3 [−1, 0]

Outputs ψ [−45◦, 45◦]
ϕ [−130◦, 130◦]

with massive support, two propellers driven by DC motors,
the power supply unit, the communication unit and the
ballast. The helicopter body is driven with two DC motors
with permanent stator magnets using pulse width modulation
and power amplifiers. The helicopter position angles, the
elevation and the azimuth, are measured by incremental
encoders. In order to validate robustness properties of the
control algorithm to the uncertainties and disturbances, the
ballast is used in the real experiments to simulate dynamic
changes in the center of gravity. Fig. 5 shows the over-
all control structure of the laboratory helicopter system.
Three main parts are presented: the helicopter body, the
PC based controllers and the interface module. The PC
based controllers are designed in MATLAB (Simulink). The
communication between the PC and the helicopter system is
established by the multifunctional card MF624. It provides
implementation of the control algorithms from the PC to the
helicopter system and data acquisition from the helicopter
system to PC. The real time experiments are performed using
MATLAB xPC Target Toolbox.

B. Helicopter dynamics model

This subsection describes the summary mathematical
model of the laboratory helicopter system CE 150 with
two degrees of freedom, representing a highly nonlinear
MIMO system with significant cross-couplings. The detailed
modeling procedure is not in scope of this paper, therefore
only the main results are depicted. The helicopter system has
three inputs (voltage u1 of the main motor, voltage u2 of the
tail motor and voltage u3 of the servomotor for controlling
the ballast position along the horizontal bar), and two outputs
(the elevation angle ψ and the azimuth angle ϕ). Tab. I
presents operating ranges of the helicopter input and output
variables.

The elevation dynamics is described considering the
torques in the vertical plane (depicted in Fig. 6) [12]:

aψψ̈ = τ1 + τϕ̇ − τf1 − τm − τG, (39)

τϕ̇ = mlϕ̇2 sinψ cosψ, (40)

τf1 = Cψsgn ψ̇ +Bψψ̇, (41)
τm = mgl sinψ, (42)
τG = kGϕ̇ω1 cosψ, (43)

for ϕ̇ � ω1. Here, aψ represents the moment of inertia
around the horizontal axis, τ1 is the moment produced
by the main propeller, τϕ̇ is the centrifugal torque, τf1
denotes Coulumb and viscous friction torques, τm is the
gravitational torque, τG stands for the gyroscopic torque,
m is the helicopter mass, g stands for the gravitational
acceleration, l represents the distance from the vertical axis
to the main motor axis, ω1 denotes the angular velocity
of the main propeller, kG is the gyroscopic coefficient, Bψ
and Cψ stand for viscous and Coulumb friction coefficients,
respectively. Some influences are neglected in the elevation
dynamics (39)−(43), such as motor stabilizing torque and
variations of air resistance. This unmodeled dynamics should
be compensated by the elevation disturbance observer.

The torques balance in the horizontal plane is computed
to describe the azimuth dynamics [12]:

aϕϕ̈ = τ2 − τf2 − τr, (44)
τf2 = Cϕsgn ϕ̇+Bϕϕ̇, (45)
aϕ = aψ sinψ, (46)

where aϕ represents the inertia moment around the vertical
axis, τ2 denotes a moment produced by the tail propeller,
τf2 stands for Coulumb and viscous friction torques, τr
is a reaction torque of the main motor, ω2 is the angular
velocity of the tail propeller, Bϕ and Cϕ represent viscous
and Coulumb friction coefficients. The azimuth disturbance
observer should compensate unmodeled influences which are
not considered through (44)-(46), such as coupling effects
between the azimuth friction torque and the tail propeller
speed.

C. The empirical model of the main DC motor and the main
propeller dynamics

Since the body structure of the helicopter system CE 150
does not allow direct physical access to the appropriate in-
ternal signals, the main DC motor dynamics is approximated
with the second order transfer function [12]:

ω1(s)

u1(s)
=

1

(T1s+ 1)2
. (47)

Here, ω1(s) and u1(s) stand for Laplace transforms of ω1(t)
and u1(t), respectively, and T1 represent time constant of the
main motor. The parabolic function of the angular velocity
is used to approximately describe the main propeller torque
[12]:

τ1(t) = a1ω
2
1(t) + b1ω1(t), (48)
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Fig. 5. Block diagram of the real-time control scheme for the helicopter system CE 150

Fig. 6. Torques acting on the helicopter body in the vertical plane

where a1 and b1 denote parameters of the main propeller
characteristic. Also, analogue relations to (47) and (48) are
used to describe the tail DC motor dynamics with parameters
T2, a2 and b2.

D. The empirical model of the helicopter cross-coupling
dynamics

One of the most composite features of the helicopter
system CE 150 is strong cross-coupling effect between the el-
evation and azimuth dynamics. It is not possible to precisely
identify these interaction torques, since no appropriate signal
is available for measurement. Therefore, the reaction torque
of the main motor to the azimuth dynamics is approximated
with the first order transfer function [12]:

τr(s)

u1(s)
= K

Tzs+ 1

Tps+ 1
, (49)

where Tz and Tp represent time constants, and K is a gain
constant.

A simple genetic algorithm is used to identify all unknown
helicopter parameters, which are listed in our previous paper
[12].

E. Control Design

The elevation dynamics (39)−(43) can be specified with
(2), introducing identities: an ≡ aψ , q ≡ ψ, τdis ≡ τf1 +

τm + τG − τϕ̇ and τ ≡ τ1. Also, the azimuth dynamics
(44)−(46) can be described with (2), using the substitutions:
an ≡ aϕ, q ≡ ϕ, τdis ≡ τf2 + τr and τ ≡ τ2.

The helicopter system CE 150 is treated as decoupled set
of two SISO systems, since the control algorithm is designed
for a class of SISO nonlinear systems. Substituting η1 =
anλ1, η2 = anλ2 and k = 0 in (30) and (31), the overall
control for the helicopter system is derived in the vector
form:

τ = an

(
q̈ref − 2Λė− Λ2e

)
−anλ1σ−anλ2 sgn(σ), (50)

where an = diag
(
anψ , anϕ

)
, qref =

[
qrefψ , qrefϕ

]T
,

Λ = diag
(
Λψ,Λϕ

)
, e =

[
eψ, eϕ

]T
, λ1 = diag

(
λ1ψ , λ1ϕ

)
,

λ2 = diag
(
λ2ψ , λ2ϕ

)
, σ =

[
σψ, σϕ

]T
and τ = [τ1, τ2]

T .
The disturbance attenuation control term τ̂dis = −anλ1σ of
the overall control (50) is equivalent to the RIC based control
(17) described with the transfer function K(s) = anλ1s and
the model following error en = s−1σ. Thus, differently from
conventional DOB based SMC [13], [14], the disturbance
compensation is managed using the structural characteristics
of the RIC and the closed-loop stability analysis is performed
using the Lyapunov redesign framework. In comparison
to the RIC based control schemes [1]–[5], the proposed
algorithm has the potential to improve tracking performances
and robustness properties to the disturbance compensation
error p using the magnitude η2 of the sliding mode control
term τv .

Implementation of the control law (50) is depicted in
Fig. 7. It consists of the feed-forward control term τff =
anq̈ref to improve transient performances, the proportional-
derivative feedback control term τfb = −an

(
2Λė+ Λ2e

)
to

enhance stability, the RIC based control term τ̂dis = −anλ1σ
to attenuate the plant input generalized disturbance τdis,
and the I-SMC based term τv = −anλ2sgn(σ) to achieve
robustness to the disturbance compensation error p. The gains
λ1ψ and λ1ϕ need to be selected large enough, so they could
extend the bandwidth of the closed-loop system and (36)
could be satisfied.
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Fig. 7. I-SMC combined with the RIC for a class of nonlinear systems with matched uncertainties

IV. SIMULATION AND EXPERIMENTAL RESULTS

The DOB based SMC algorithm [13] exhibited most
promising tracking performances and disturbance attenuation
characteristics over the other control algorithms [9], [12],
[13] implemented to the helicopter system CE 150. This sec-
tion presents enhancement of the developed control method
and results comparison with the DOB based SMC [13]. Al-
though various reference signals are tested, the simultaneous
steps in the reference inputs are selected due to the perfor-
mance comparison with the control algorithms [9], [12], [13].
The perturbation tests are performed in the simulations and
during the real experiments in order to investigate robustness
properties of the proposed control scheme to the additional
internal and external disturbances. All results are depicted
for the following values of the controller parameters: Λ =
diag(3.5, 5.5), λ1 = diag(0.4, 0.7) and λ2 = diag(4, 4),
which are not tuned for the best tracking performance, but
rather to demonstrate the effective robustness properties of
the proposed control method.

A. Simulation results

The simulation model of the helicopter system CE 150
has been developed in MATLAB (Simulink) according to
the Section III. There are 30% uncertainties on the model
parameters included in the simulation mode. Also, wind gusts
with significantly strong magnitude (speed) of 10 m/s are
represented by the sinusoidal signals (with high-frequency
50 rad/s and low-frequency 0.5 rad/s) and added to the he-
licopter dynamics. Angle responses of the elevation and
azimuth dynamics are depicted in Fig. 8 and Fig. 9, re-
spectively. It is notable that the RIC based I-SMC improved
tracking performances in comparison with the DOB based
SMC, especially when the limits of the helicopter outputs are
approached. The RIC based I-SMC algorithm has provided
excellent tracking performances over the entire range of
the output variables, with lower overshoots and steady state
errors.

B. Experimental results

The perturbation test is performed at the real experiment
by changing the ballast position along its horizontal axis from
the start to the end position. The ballast was at the middle
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Fig. 8. Comparison of the elevation angle responses in the sim. mode
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Fig. 9. Comparison of the azimuth angle responses in the sim. mode

position at the beginning of the test. The ballast motion was
started about 160 second of the test, using the third control
input presented in Fig. 12. The test results are depicted in
Fig. 10, Fig. 11 and Fig. 12. In comparison with the DOB
based SMC, the RIC based I-SMC provided superior tracking
performances with lower tracking errors.

V. CONCLUSIONS

In this paper the synthesis of the I-SMC and the RIC is
proposed for a class of nonlinear SISO systems with matched
uncertainties. The designed control method introduces a gen-



0 100 200 300 400 500 600 700
−6

−4

−2

0

2

t [s]

e ψ
[◦
]

DOB-SMC
RIC-SMC

Fig. 10. Comparison of the elevation tracking errors at the real exp.

0 100 200 300 400 500 600 700

−10

0

10

t [s]

e ϕ
[◦
]

DOB-SMC
RIC-SMC

Fig. 11. Comparison of the azimuth tracking errors at the real exp.

0 100 200 300 400 500 600 700
0

0.05

0.1

0.15

0.2

0.25

u
2
[M

U
]

DOB-SMC RIC-SMC

0 100 200 300 400 500 600 700

0

0.2

0.4

0.6

0.8

u
1
[M

U
]

DOB-SMC RIC-SMC

0 100 200 300 400 500 600 700
−1

−0.5

0

t [s]

u
3
[M

U
]

Fig. 12. Control inputs to the helicopter system

eralisation of the well-known RIC based control for a class
of linear systems. The RIC based I-SMC is implemented
to the highly nonlinear small-scale helicopter system CE
150, demonstrating an excellent tracking performance and
robust stability even in the presence of parametric uncer-
tainties and external disturbances. Numerical simulations and
real experiments have approved robustness properties of the
developed control scheme under the perturbation test, that
included ballast displacements, 30% uncertainties on the
model parameters, and wind gusts with high amplitudes.
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