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ABSTRACT

Contour-based Fourier descriptors are established as a simple
and effective shape description method for content-based im-
age retrieval. In order to achieve invariance under rotation and
starting point change, most Fourier descriptor implementa-
tions disregard the phase of the Fourier coefficients. We intro-
duce a novel method for extracting Fourier descriptors, which
preserve the phase of Fourier coefficients and have the desired
invariance. We propose specific points, called pseudomirror
points, to be used as shape orientation reference. Experimen-
tal results indicate that the proposed method significantly out-
performs other Fourier descriptor based techniques.

Index Terms— Content based image retrieval, Fourier
descriptors, phase, nominal orientation, pseudomirror points

1. INTRODUCTION

The most important property of a content-based image re-
trieval (CBIR) system is the ability to effectively and effi-
ciently describe shape. Today, many shape description meth-
ods exist, but very few of them are not limited by specific
application, performance or computational complexity. Thus,
the design of an efficient, effective and versatile shape de-
scriptor is still an open challenge.

Fourier descriptors (FD) are global contour-based shape
descriptors that have good retrieval accuracy, compactness,
are insensitive to noise, and have a hierarchical representa-
tion in the spectral domain. They are obtained by apply-
ing the discrete Fourier transform (DFT) over a shape sig-
nature [1–11]. By disregarding the phase and using only the
magnitude of Fourier coefficients, these descriptors become
invariant under rotation, translation, scale, and change of the
starting point of the contour. Many authors adopt this simplis-
tic approach [1–3], which renders valuable information con-
tained in phase inevitable lost.

Since magnitude-based FD are not information preserv-
ing, the original shape cannot be reconstructed from FD.
Moreover, they cannot be used in shape-retrieval tasks where
rotation invariance is not desirable (e.g. traffic signs recogni-
tion [4]).
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Fig. 1. Reconstruction of shapes with equal FD magnitudes:
a) shape reconstructed with the original phase content, b)
shape reconstructed with different phase content.

When the phase information is discarded, the descriptor
ability to discriminate between shapes is affected. As illus-
trated in Figure 1, two completely different shapes may have
equal magnitudes of Fourier coefficients.

In order to use the phase of the Fourier coefficients for
shape-based image retrieval, phase should be normalized un-
der rotation and starting point change. These are the most
common approaches of FD phase normalization found in lit-
erature:

• normalization using geometrical properties such as
points with maximal radius [5], or central moments [6],

• normalization using the phase of the first harmonic [5,
7, 8],

• normalization using the phase of higher order harmon-
ics [5, 9, 10],

• phase is not normalized, but shapes are implicitly
aligned in the spatial domain using cross-correlation
[4], or Procrustes distance as proposed in [11, 12].

Normalization of the phase using single contour point as
shape reference is not suitable when noise, indentation or
spurious peaks are present in the shape.

Normalization using the phase of the harmonics is an ill-
conditioned task. Small variation of the phase of the first
harmonic causes large variations of the phase of higher order
harmonics. In the cases of noise, circular harmonic locus or
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Fig. 2. Parts of the contours are omitted for clarity. Symbol o marks the starting points, while the triangle symbol M marks the
end points. a) The original contour C1 and the “mirrored” contour C1 of the shape are depicted for an arbitrary starting point.
b) Original contour C1 and “mirrored” contour C2 of the shape are depicted for an arbitrary starting point. Contours C1 and
C2 differ only by directionality. c) One nominal orientation (pseudomirror point) for which C1 and C2 are very similar.

harmonics with negligible magnitude, these methods usually
fail. Moreover, phase is computed as 2π-modulus function,
thus the uniqueness of the solution is usually questionable.

It is interesting to note that some authors admit that the
normalized phase is not recommended to use for shape de-
scription (e.g., in [5]). In [6], authors propose a weighting
scheme on the variance of magnitude and phase ratios be-
tween descriptors, to minimize phase normalization errors.
Few authors try to compensate for non-perfect normaliza-
tion using more complex distance measures (such as cross-
correlation [4] or time-warping distance [8]). Methods that
avoid the normalization of the phase, but instead align the
shapes during matching [6, 10, 11], are more robust and also
more computationally demanding.

To this end, we propose a method to determine nominal
orientation(s) of the shape during descriptor extraction. In-
variance under rotation and starting point change is achieved
by using so called pseudomirror points for nominal orienta-
tion. They are determined in spatial domain, yet Fourier de-
scriptors are used to determine their semantic meaning. Ex-
perimental results indicate that phase-preserving FD extracted
using pseudomirror points as orientation reference, outper-
form other phase-based and magnitude-based Fourier descrip-
tor techniques.

The paper is organized as follows. Introduction of
pseudomirror points and Phase-including Fourier Descrip-
tor (PIFD) is given in Section 2. Experimental results are
discussed in Section 3. Finally, a conclusion is given at the
end of the paper.

2. PHASE-INCLUDING FOURIER DESCRIPTOR
(PIFD)

In preprocessing stage, the coordinates of the shape boundary
need to be extracted from the image. Then, the contour is
re-sampled by the fixed number of points N , using equal arc-
length sampling. For subsequent analysis, it will be assumed

that a shape contour is given by N boundary points Pn =
(xn, yn), where n = 0, 1, ..., N − 1. Points of the contour
Pn = (xn, yn) can be represented in the form of complex
numbers:

Zn = xn + jyn, (1)

for which the Discrete Fourier Transform may be computed
as:

ak =
1
N

N−1∑
n=0

Zne
−j2πnk/N , (2)

where k = 0, 1, ..., N − 1. Fourier coefficients ak are used
to derive Fourier descriptors. Our proposed translation and
scaling invariant descriptor is given by:

FTS =
{a−M/2

Sc
, ...,

a−1

Sc
,
a1

Sc
,
a2

Sc
, ...,

aM/2

Sc

}
, (3)

where Sc =
∑N−1
k=1 |ak| is the scaling factor, and ak are com-

puted using (2). The number of Fourier coefficients needed
for shape representation is denoted by M . The number M
is usually small (≤ 30) and invariant with the respect to the
number of points N. Note that the DFT is a periodic sequence
with the period N (a−m = aN−m ).

The descriptor given with (3) is invariant under translation
and scaling, which is very easy to demonstrate (see e.g., a
procedure presented in [3]).

2.1. Pseudomirror points

In order to use information contained in the phase, one must
obtain the invariance of ak under starting point and orienta-
tion change. Let the a(old)

k be the Fourier coefficients of the
initial shape, with starting point P0. The Fourier coefficients
of the shape with the starting point Pm, rotated for an angle
φ, are given by:

a
(new)
k = ejφej2πkm/Na

(old)
k . (4)
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Fig. 3. a) Cost function f(m) and its sub-sampled function fs(m), with their corresponding minima, b) shape orientations
corresponding to the local minima of f(m), c) shape orientations corresponding to the local minima of fs(m).

If the starting point Pm (or m) is known in advance, then the
shape could be de-rotated so that the starting point always
has a specific predetermined argument, therefore φ could be
eliminated from equation (4).

We propose points with specific geometrical and shape
discriminative meaning to be chosen as starting points Pm.
They are determined using the following procedure. Each
contour point Pm is chosen as a starting point, and the contour
is de-rotated with respect to the centroid of the shape, so that
the starting point of the contour lies on the positive real axis.
This contour will be notedC1. Then another, “mirrored” con-
tour is created. The “mirrored” contour C2 is derived by con-
jugating all points of the contour C1, and changing the direc-
tion of the contour. The whole process is illustrated in Figure
2. For the original contourC1, and for the “mirrored” contour
C2, FD a

(1)
k and a(2)

k are computed, respectively. We propose
a following cost function for determining the starting points:

f(m) =
N−1∑
k=1

|a(1)
k(m) − a

(2)
k(m)|,

= 2
N−1∑
k=1

|Im{a(1)
k(m)}|, (5)

where Im{} denotes imaginary part. Points Pm which cor-
respond to the local minima of the cost function f(m) are
proposed to be used as starting points. Such points Pm will
be called pseudomirror points. Depending on the shape, sev-
eral pseudomirror points could be found. The rationale be-
hind this approach is that the pseudomirror points capture the
local (pseudo) similarity of the shape to its mirrored version,
in terms of Fourier descriptors. The pseudomirror points are
inherent to the shape, and hold some shape semantics. In
case of symmetrical objects, pseudomirror points determine
a line which coincides with the axis of symmetry. In case of
shapes with occlusions or indentations (non-perfect symme-
try), pseudomirror points determine the axis of “pseudosym-
metry”, hence these artifacts have less influence in determin-
ing nominal orientation. Moreover, pseudomirror points can
be computed in the pre-processing stage, instead of the match-
ing stage, which allows for a simpler matching technique.

There are two implementation issues that need to be ad-
dressed. When using a lower number of contour points, the
gradient of f(m) computed in points close to the centroid
tends to be large, so the exact minimum of f(m) could fall
somewhere between m and m + 1, leading to smaller errors.
A simple workaround is to interpolate and sub-sample the
original function f(m) with fs(m) around the local minima.
This is illustrated in Figure 3.

Experiments have shown that another small modification
of the algorithm improves retrieval accuracy. The harmonics
with the larger magnitude contribute to the coarse description
of the shape, while those with the smaller magnitude usually
contain subtle intra-class variations, details and noise. Let
Rind be the set that contains the indices of R largest har-
monics, in terms of magnitude. The value R and the set
Rind are determined for the specific shape by solving the
inequality

∑
i∈Rind

|ai| ≤ 0.95
∑M/2
j=−M/2,i6=0 |aj |. Using

f(m) = 2
∑
k∈Rind

|Im{ak(m)}| instead of (5) will improve
retrieval performance and reduce computational time.

2.2. PIFD extraction procedure

These are the steps to follow in order to extract PIFD from
shape contour:

1. In order to avoid constant normalization under transla-
tion and scale, the shape is translated so that the cen-
troid of the shape (given with ZC =

∑N−1
n=0 Zn) is

located at the origin. The shape is then scaled in the
spatial domain by a factor Sc =

∑N−1
k=1 |ak|.

2. For each m ∈ {0, 1, 2, ..., N − 1}, a point Pm is cho-
sen as the starting point, and the contour is de-rotated
so that the starting point of the contour has the argu-
ment of zero degrees. For each starting point ak(m)

may be computed using ak(m) = e−jarg(Zm)ej2πmk/N

ejarg(Z0)ak(0).

3. The cost function f(m) = 2
∑
k∈Rind

|Im{ak(m)}| is
computed.

4. Let Q be a number of wanted pseudomirror points, and
LM be the number of the cost function’s local minima.



Table 1. Similarity measures

Mirror non-invariant d(P1, P2) = min(i1,i2)

∑
|P1(i1, :)− P2(i2, :)|

Mirror invariant d(P1, P2) = min(i1,i2)

[
min{

∑
|P1(i1, :)− P2(i2, :)|,

∑
|P1(i1, :)− P2(i2, :)|}

]

(Step 4a) If Q ≤ LM , then Q best local minima of
f(m) and corresponding points Pq are found.
(Step 4b) If Q > LM then Q − LM points with the
lowest value of f(m) are added to set {Pq} of lo-
cal minima of f(m). This is a useful feature which
improves retrieval accuracy, especially for a coarser
sampling of the contour. For example, if the minimum
is located between indices m and m + 1, it is wise
to use both of these points as potential pseudomirror
points in order to reduce the discretization errors.
The resulting points in {Pq} are potential starting
(pseudomirror) points.

5. For each point Pms ∈ {Pq} corresponding to the index
ms, the function arg(ZmS

) is interpolated with g(ms)
on the interval [ms−S,ms+S] , where S is a positive
integer (usually S = 1 or S = 2), and g(ms) is a linear
or cubic interpolation function.

6. For each pseudomirror candidate point index ms, a
finer pseudomirror candidate point index mfine

s ∈
[ms − S,ms + S] is found by minimizing f(m) using
ak(mS) = e−jg(ms)ej2πmsk/Nejarg(Z0)ak(0). Instead
of a set of points {Pq}, the corresponding {P fineq } is
determined. For each point P fineq descriptors ak(qfine)

are derived.

7. The descriptor is formed as:

PIFDQ×M =


{ak(qfine

0 )}
{ak(qfine

1 )}
...

{ak(qfine
(Q−1))

}


qi∈q,k∈Mind

. (6)

PIFD is a parameter based descriptor, which means that tun-
ing parameters for different datasets may provide better re-
sults. Nevertheless, parameters N = 512, M = 20, and
Q = 8 imply promising results for almost all applications,
while keeping the descriptor compact and allowing fast shape
matching.

2.3. Similarity measures

Clearly the relative position of the proposed pseudomirror
points is mirror-invariant, which means that the points will
be positioned in the same place on the shape even if the shape
contour is mirrored with respect to arbitrary axis. One of the

advantages of PIFD is that it is very simple to introduce mir-
ror invariance in shape description. It is easy to show (using
(5)) that mirrored shapes have conjugated PIFDs.

Suppose that two different shapes are described by PIFDs
P1 and P2 respectively. We propose two similarity measures,
given in Table 1.

3. EXPERIMENTAL RESULTS

3.1. Methodology

The proposed shape descriptor is tested on the popular
MPEG7 CE-1 Set B [13]. Representative elements of MPEG-
7 dataset are depicted in Figure 4. MPEG-7 CE-1 Set B con-
sists of 1400 shapes representing real life objects, classified
into 70 classes with 20 similar shapes for each class. This
database is convenient for shape-based image retrieval testing
since it includes rotation, scaling, skew, stretching, defection,
indentation and articulation of shapes.

Two commonly adopted measures of retrieval perfor-
mance are computed: Precision and recall (PR) diagrams
(used in [1–3]), and Bulls-Eye score (used in [8, 12, 14, 15]).

Precision is defined as the ratio of the number of the re-
levant shapes to the total number of retrieved shapes, while
recall is defined as the ratio of the number of retrieved rele-
vant shapes to the total number of relevant shapes in the entire
database. Average precision for all recall values for all query
shapes in the database is computed and presented.

Bulls-Eye score (BE) is defined as the percentage of rel-
evant results in the first 40 retrieved results of a query. Av-
erage Bulls-Eye score is computed after all elements in the
dataset are used as a query. As opposed to PR diagrams
which demonstrate precision across all recall values, Bulls-
Eye scores favor algorithms that provide a higher precision
for top retrieval results.

3.2. Results and discussion

We selected and implemented several most representative and
best performing Fourier-based methods for comparison with
PIFD: magnitude-based methods (Normalized complex coor-
dinate FD (NCC) [3] and Combined Perimeter Area Function
(CPAF) [2]), phase-based methods (Affine-Fourier descriptor
(AFD) [9], First harmonic aligned FD (FHAFD) [5, 7], Vari-
ance based modified FD (VBMFD) [6]), phase-based meth-
ods with alignment in matching stage (The Correlation based



Fig. 4. MPEG7 CE-1 Set B dataset representative shapes (70
classes with 20 variations per class)
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Fig. 5. PR diagrams obtained on MPEG-7 dataset

FD (CRFD) [4], WARP FD (WARP) [8] and Procrustes dis-
tance aligned FD (PDAFD) as proposed by [11]). To the best
of the authors’ knowledge, it is the first time some of these de-
scriptors (CRFD, WARP, PDAFD, VBMFD) were tested on
the whole MPEG-7 dataset.

The obtained PR diagrams are given in Figure 5, and
Bulls-Eye scores are presented in Table 2. As it may be
seen from the results, PIFD substantially outperforms the
competitive methods.

The phase-based methods (AFD, FHAFD and VBMFD)
cannot obtain good performance because of the inadequate
phase normalization. Since they struggle to accurately deter-
mine the nominal orientation, the matching of FD is prone to
errors.

Methods that align shapes during matching achieve bet-
ter retrieval results, at a cost of a more computationally de-
manding matching process. Moreover, aligning shapes pair-
wise negatively affects retrieval performance. Shapes may
be aligned using orientations that are not their nominal, thus
“false” similarity may be computed.

The magnitude-based methods have promising perfor-
mance, compactness and are simple for computation and
comparison. This explains why magnitude-based FD were
used more frequently in practical applications when com-

pared to phase-based FD. However, since they discard phase
information, they can hardly increase their retrieval perfor-
mance above a certain level.

Computational complexity of PIFD is O(nlogn) during
descriptor extraction, and O(n) during matching. The com-
plexity is the same as for the most of the magnitude-based
FD (NCC, CPAF and many others). The complexity of PIFD
is also lower than of WARP and PDAFD (which is O(n2) in
the matching stage), and CRFD (O(nlogn) in the matching
stage).

It is worth pointing out that PIFD and all other tech-
niques addressed in the paper are global techniques, so they
exhibit low performance when articulations of the shape
are present. Thus, PIFD is slightly outperformed by struc-
tural, rich and hierarchical shape descriptors such as: Shape
tree (BE = 87.70) [14], Hierarchical Procrustes Matching
(HPM) (BE = 86.35) [12], Inner-Distance Shape Context
(BE = 85.40) [15], Height functions (BE = 90.35) [16]
etc. They achieve exceptionally good Bulls-eye scores on the
MPEG-7 dataset, but because they are “rich” descriptors, con-
sequently suffer from higher computational complexity (rang-
ing from O(n2) to O(n4)). Moreover, PIFD outperforms
many descriptors that have higher computational complexity
(O(n2)), such as Generative Models (BE = 80.03) [17],
Shape Context (BE = 76.51) [18], Curvature Scale Space
(CSS) (BE = 75.44) [19] etc. In addition, PIFD achieves a
solid 95.47 classification score on the Leaf dataset (almost as
Shape tree [14]), and 91.64 on ETH-80 dataset (better than
Height functions [16]), while slightly underperforms on the
Kimia99 dataset which contains many shape articulations. A
comprehensive evaluation of PIFD’s retrieval performance on
different datasets is not given in this paper due to the space
limit.

4. CONCLUSION AND FUTURE WORK

Experiments have demonstrated that PIFD is a versatile global
contour-based shape descriptor, characterized by solid per-
formance, simple extraction and matching. Moreover, pseu-
domirror points proved to be promising shape orientation ref-
erence. They may be used wherever starting point and ro-
tation invariance are needed. Combined with the scale and
translation invariance of the Fourier descriptors, they can be
used to normalize the contour in order to implement other
more complex shape description techniques.

However, experimental results pointed out the main draw-
backs of PIFD. It exhibits lower performance in scenarios
with significant articulations, large artifacts or missing parts.
Moreover, as many other contour based descriptors, it fails
in region-based shape-retrieval tasks. As a part of future re-
search, PIFD should be improved in two directions: it should
exploit certain hierarchical structure in spatial domain in or-
der to perform partial (local) matching of the shape, and it
should be extended to a region-based descriptor.



Table 2. Performance of different Fourier-based methods
on MPEG-7 dataset. Notation “method” refer to: “magni-
tude” (only magnitude is used), “phase” (phase is preserved),
“phase+matching” (phase is preserved but phase normaliza-
tion is done implicitly during matching).

Method Bulls Eye score method
PIFD 82.03 phase
PDAFD [11] 76.38 phase+matching
NCC [3] 75.75 magnitude
CPAF [2] 74.47 magnitude
CRFD [4] 72.57 phase+matching
WARP [8] 58.50 phase+matching
FHAFD [5] 51.34 phase
AFD [9] 41.08 phase
VBMFD [6] 28.89 phase
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