
Weighted-function based Algorithm for Retrieving
Handwriting Trajectory from Off-line Data

Nermina Ahmic, Emir Sokic, Melita Ahic-Djokic
Faculty of Electrical Engineering, University of Sarajevo

Bosnia and Herzegovina
{nahmic1, esokic, amelita}@etf.unsa.ba

Abstract—Individuality of handwriting is the reason why it is
used as a common base element for detecting character traits of
the writer. It is believed that dynamic information improve the
accuracy of the analysis, but they are not contained in an off-
line handwritten text. In order to recover dynamic information, a
novel approach for handwriting trajectory recovery is proposed
in this paper. The procedure is based on computing the objective
function, which depends on parameters such as the angle of
movement, path length, air pen tip movements, etc. The analysis
is performed in MATLAB program package, using the text
samples from IAM-OnDB database. The experimental results
indicate that the average effectiveness of the proposed algorithm
is above 75%.

I. INTRODUCTION

Handwriting is a unique characteristic of human personality,
as it is a result of subconscious or a habit, just like other body
movements. The information about psychological condition
and emotions of a person who is writing are incorporated in
handwritten text by hand movements which enable transmit-
ting electrical impulses from brain to the writing hand. Despite
the handwriting uniqueness, there are some features that can
be used to determine the gender [1]–[5], handedness [3], or
even age and nationality of the writer [4].

Most common attributes for gender determination are writ-
ing speed, carefulness, neatness, size of the letters, number
of breaks, margins, spacing between the words and regularity
of written words or letters [5], [6], which can easily be
extracted if the on-line handwriting data is available. On the
other hand, off-line analysis explores only the image of a
handwritten text and cannot provide dynamic information that
are used in algorithms for detecting personal traits from on-line
handwriting, such as writing speed and direction, curvature
and log curvature radius, speed and acceleration in x- and
y-direction, or overall acceleration [3]. In order to enhance
the results of off-line text analysis, recovery of the dynamic
information is needed. The most valuable information that can
be recovered are pen pressure [7] and stroke order [8].

Handwriting strokes are mostly analysed in the algorithms
for handwriting recognition based on the properties of the
basic strokes that have been used to generate a character [9]
and in signature verification algorithms that analyses idiosyn-
cratic features of the strokes to characterize a signer and check
his identity [10]. Moreover, stroke analysis is performed in
neuroscience to characterize neurodegenerative processes like
Alzheimer [11] and Parkinson disease [12].

Mentioned studies usually conduct their analysis over the
static images of the handwritten text, captured with a scanner
or a camera device. The absence of dynamic information
causes lower accuracy of off-line recognition systems in
comparison with their on-line counterparts [9]. Psychology
researches suggest that the character recognition can be im-
proved by the humans’ perception of dynamic information
from static images [13]. Authors in [14] claim that the proper
trajectories recovery could significantly improve the perfor-
mance of automatic off-line handwriting recognition systems.
The most common approach used in papers related to recovery
of the stroke driving order is following continuity criteria,
which takes into account direction, length, and width of the
strokes [15], [16]. In contrast, stroke order recovery can be
made by searching a graph using the global and the local
criteria [17] and by applying a Kalman filter on the analysed
static image to follow the stroke trajectory [18]. Recovering
process is usually done on the single-stroke handwriting image
[16], [19], or on single characters (allographs), although it is
shown that handwritten words carry more individuality than
most allographs [20].

In this paper, a novel approach to recover a handwritten
text trajectory from a static image is proposed, based on
analysing handwritten words instead of characters or single-
stroke written text. This method is based on weighted objective
function that includes parameters relevant for the trajectory
recovery and is somewhat similar to [15], but includes more
computational parameters, such as path jumpiness and angle
of pen tip movement.

The paper is organized as follows: The procedure of recov-
ering the pen tip trajectory from a static image is described
in Section II. Section III presents the experimental results.
Conclusions and guidelines for future work are given in the
last section.

II. PROPOSED ALGORITHM

Quality of the handwriting static image largely determines
the performance of recovering writing trajectory. In order to
extract meaningful information, the image needs to be pro-
cessed prior to handwriting trajectory analysis, throughout two
steps: preprocessing and segmentation. Afterwards, trajectory
extraction can be performed.

The proposed algorithm is implemented using MATLAB
software. It is developed for the purposes of analysing any

Figure 1: Image preprocessing steps with corresponding examples of the results obtained by analysing an off-line image.

type of scanned images and is verified using the images
obtained from the IAM On-line Handwriting Database
(IAM-OnDB) [21]. This database consists of XML files. Each
word can be plotted as a single figure by linearly connecting
all the points recorded in the file. For the sake of testing the
algorithm, the figures were saved as images.

A. Image processing
1) Preprocessing: Images that are scanned or captured with

the camera device are often degraded by noise and need to
be processed in order to enhance their quality and recover
the desired information. Preprocessing includes data normal-
ization, noise reduction and morphological image processing.
Due to the usually small dimensions of analysed images, the
first step of the proposed algorithm is to resize the image to
larger resolution for ensuring better performance.

Data normalization is done by adjusting the contrast, which
enables easier noise reduction. Images obtained from on-line
databases are not occupied by noise, but it is a common
problem for off-line data.

For the purpose of noise reduction, techniques of adaptive
thresholding and average filtering are used. Afterwards, con-
version from grayscale to black and white image and color
inversion are done. This procedure is conducted in order to
simplify stroke extraction from the image.

Two consequent morphological operations are applied on
the image, using disk-shaped structuring element with a ra-
dius equal to 1. Dilation is done for the object thickening.
This operation results in bolded handwritten text and it is
particularly important if the text is written with a graphite
pencil or is very degraded by the scanning process. Drawback
of using this operation is that it can result in small loops
when thickened letters include small hollows, such as the letter
e. Afterwards, filling in the object contour was performed
using morphological closing operation. This operation helps
recovering the continuous trajectory of handwritten text that
was degraded by scanning.

The final step in preprocessing is thinning the contours of
the object presented in an image. Thinning, or skeletonization
process, was done using the improved Zhang-Suen
algorithm described in [22]. Resulting image represents
the approximation of original pen tip trajectory. Artefacts,
such as loops, are rarely present due to the image resizing
made at the beginning of the procedure. Preprocessing steps
with corresponding examples of results are shown in Fig. 1.

(a) (b)

Figure 2: Segmentation results. (a) Branching points detection; (b)
Branching points separation and detection of all characteristic points.

2) Segmentation: The most important process in text seg-
mentation is the detection of the characteristic points. There
are two types of points that need to be identified: endpoints
and branching points. The term of branching point refers to an
intersecting point of at least two writing segments. Endpoint
is a white pixel (a point that is a part of an illustrated object)
whose all neighboring pixels except for one belong to the
background of the image.

Branching points detection was done by singling out 3× 3
matrices and checking if they match one of the created
branching patterns. If there is a pattern matching, the central
pixel of analysed matrix is marked as a branching point, as
shown in Fig. 2 (a).

Handwritten text contour has to be separated into multiple
segments in order to predict the trajectory of the writing.
Separation of intersected segments is easily implemented by
inverting the color of each branching point and erasing its
closest neighboring points of the same color, as shown in
Fig. 2 (b). This process is followed by detection of newly
formed segment endpoints. Endpoints detection is made by
singling out 5 × 5 matrices around the pixels that represent
the branching points. Possible endpoints are positioned in the
first or the last row and in the first or the last column of
these matrices. If a row or a column includes more than
one pixel that belongs to an object, the one closer to the
center of matrix is chosen as an endpoint. The original contour
endpoints are detected by summing all the elements of each
3 × 3 singled out matrix with verification of the sum result.
The summation result equal to two implicates the existence of
only one neighboring point that is a part of an object and a
central point of the matrix is detected as an endpoint.

Line detection is done by fetching all the white pixels
between each pair of endpoints of contour segments. Each
of the N segments {sj}, j = 1, ..., N of the contour has a
defined set of four attributes {a(1)j , a

(2)
j , a

(3)
j , a

(4)
j } and a set of

points {pj,k}, k = 1, ...,Mj , where Mj is the total number of
points of j-th segment and pj,k = {ypj,k, xpj,k}, where ypj,k
is a value of the ordinate and xpj,k is a value of the abscissa
for k-th point of j-th segment. The attribute a(1)j indicates a
total length of the segment, computed according to relation
(1), while a(2)j stores the information about center of the mass
in an ordered pair {ycj , xcj}, where ycj and xcj are values on
ordinate and abscissa axis of the center of the mass for the
j-th segment, respectively.

a
(1)
j =

Mj∑
k=2

√
(xpj,k − xpj,k−1)2 + (ypj,k − ypj,k−1)2 (1)

The information about coordinates and branching of the char-
acteristic points are stored in an attribute a

(3)
j , where a

(3)
j,1

and a
(3)
j,2 contain pairs of point positions {y(3)j,1 , x

(3)
j,1} and

{y(3)j,2 , x
(3)
j,2}, respectively, in an analogous way as a(2)j , while

the relation (2) is applied to a(2)j,l , where l = 3, 4.

a
(3)
j,l =

{
1, if a(2)j,l−2 is branching

0, otherwise
(2)

Let the segment endpoints be numbered as 1 and 2. Possible
movement direction schemes are: 1-2, 2-1 (non-repeating
trajectories), 1-2-1 and 2-1-2 (repeating trajectories). The
attribute a4 contains a set of points for each of the listed paths.

Lines (segments) of contour are sorted in the ascending
order according to the attributes a(2)j and a(3)j . All of the listed
attributes are then used in process of trajectory extraction.

B. Trajectory extraction

Computation of the objective function is done for each
possible order of R successive segments and for each possible
movement direction by the same. After analysing the first set
of R segments {s1, s2, ..., sP , sP+1, ..., sR}, the other R are
singled out starting from the q-th one, where q = P +m(R−
P) and m is a number of iteration (m = 0, 1, ...,M − 1).
For the second iteration (m = 1), the objective function is
computed on a set {sP , sP+1, ..., sR, sR+1, ..., sP+R−1} and
a procedure of singling out the segments is carried out until
the total number of N contour segments is reached. If the
written word consists of smaller number of segments, or if
there are less than R segments left in the last iteration, the
greatest number of available segments is analysed. Value of
the objective function in the m-th iteration is given in (3).

fm = f(sm(R−P)+1, ..., sm(R−P)+R) (3)

Possible orders of segments are determined by computing
all permutations on R isolated segments. The reduction of
number of possibilities is made by excluding those permu-
tations that contain the orders with difference between the
indices of two neighboring segments greater than 4. This
number is chosen because the empirical results show that
one letter usually does not consist more than 5 segments.
Moreover, they indicate that the optimal values are R = 5
and P = 3.

Movement directions are determined by computing all com-
binations with repetition of the 4 schemes with repeating and
non-repeating trajectories. In order to reduce the running time
of the algorithm, combinations with at least two repeating
trajectories in a row are not considered, because of the small
possibility of repeating one point for 4 times when writing.

There are six factors relevant for choosing the right trajec-
tory. They are given as follows:
• w1: position of a starting point of the contour on the

x-axis,
• w2: boolean value of statement that the starting point of

the text (word) is a branching point,
• w3: angle of movement through the branching point,
• w4: path length,
• w5: path jumpiness (transitions between remote seg-

ments),
• w6: air pen tip movements.
Factor w1 considers position of both endpoints of the

segment, relative to the x-axis, as in (4).

w1 =

m(R-P)+R∑
j=m(R-P)+1

v1,1xcj +
v1,2 × v1,3
g(pj,1, pj,Mj

)
(4)

where g(pj,1, pj,Mj)=
√

(xpj,1− xpj,Mj)
2+(ypj,1 −ypj,Mj)

2.
Multiplicators v1,1 and v1,2 are chosen from a set of two
positive constants, as noted in Table I. A lower value of v1,1
is chosen when a(2)j < a

(2)
j+1, while a higher value from the set

is chosen otherwise. The factor v1,2 is chosen from the set in
a similar fashion, according to the inequality xpj,1 > xpj,Mj

.
Multiplicator v1,3 is equal to one for the starting segment of the
contour and is zero otherwise. Factor w1 has lower value for
the point closer to the coordinate origin. This is equivalent to
positioning the starting point more to the left, because writing
direction of Latin alphabet is from left to right.

The information about starting point branching is contained
in factor w2. Non-branching point is preferred. This factor is
relevant only for determination of the contour starting point,
so the multiplicator v2 in (5) is equal to 1 if the contour starts
from j-th segment and is 0 otherwise.

w2 = v2 ×

{
a
(3)
j,3 , if a(3)j,1 is the starting point

a
(3)
j,4 , if a(3)j,2 is the starting point

(5)

Factor w3 gives an information about the angle of movement
through the branching points. For each pair of singled out
neighboring contour segments, algorithm first checks the value
of a(3)j,l , (l=3 or l=4) to get the information about branch-
ing of the endpoint of previous and the starting point of
the next segment. If they both branch, virtual points whose
coordinates are equal to the arithmetic mean of the next L
points, relative to each branching point are created. Let the
distance between the branching point and the corresponding
virtual point of the first segment be noted as s, the same
distance for the next segment as t and the distance between
two virtual points as u. Angle between the movement direction
of segment lines is then computed according to relation (6),

where φ =
∣∣∣arccos(s2 + t2 − u2

2st

)
× 180

π

∣∣∣. Probability of
correct prediction is greater as the angle changes are smaller,
which is included by the constant v3.

w3 = v3 ×
{
180− φ, if φ ≤ 180
φ− 180, otherwise (6)

Path length is computed based on the total number of
segment pixels, as in (7), where l1, l2 ∈ {1, 2}, depend-
ing on which of the characteristic points is an endpoint
and which one is the starting point and g

(
a
(3)
j,l1
, a

(3)
j+1,l2

)
=√(

x
(3)
j,l1
− x(3)j+1,l2

)2
+
(
y
(3)
j,l1
− y(3)j+1,l2

)2
. Evaluation is done

corresponding to the gradient of line determined by two points
- observed pixel and the transit one. Result is stored in w4.
Multiplicator v4 has greater value for repeating trajectories
than for non-repeating ones.

w4 =

m(R-P)+R∑
j=m(R-P)+1

v4 × aj,1 + g
(
a
(3)
j,l1
, a

(3)
j+1,l2

)
(7)

Path jumpiness refers to a significant number of disconti-
nuities in handwritten text, which is an indicator of frequent
pen-from-paper detach. Shorter and continuous transition paths
should be the most probable. Therefore, the factor w5 de-
scribed with (8) is included in the objective function. Jumpi-
ness is allowed for the letters with dashes, such as t and f ,
which is accomplished by detecting the value of φ close to
90, as in relation (8).

w5 =

{
0, if |90− φ| ≤ 10

v5 × y(3)j+1,l2
+ g
(
a
(3)
j,l1
, a

(3)
j+1,l2

)
, otherwise

(8)
Factor w6 contains the information about air pen tip move-

ments and is computed according to relation (9). The first
step in computing the value of this factor is a detection
of pen lifting, which is achieved by comparing the shortest
distance of two neighboring segments with the threshold value
of the maximum distance between two segments generated
by separating the contours’ branching point in two points.
Afterwards, the distance between previous and possible next
segment, relative to the x-axis is computed. Closer and shorter
segments have higher probability, given by constants v6,2 and
v4. Position of the next segment relative to the y-axis is
also relevant. After lifting a pen from a paper, the common
direction of writing is from top to bottom and w6 has a
lower value for that case, which is taken into account through
positive multiplicator v6,1.

w6 =

m(R-P)+R∑
j=m(R-P)+1

v6,1 × y(3)j+1,l2
+
∣∣x(3)j,l1

− x(3)j+1,l2

∣∣
v6,2

+v4×a(1)j (9)

Weighting multipliers are determined by testing the impact
of each of the coefficients on a large set of handwritten text
samples. Values that showed optimal performances on the
largest number of samples are given in Table I.

Let the factors wr (r = 1, ..., rm) computed in the m-th
iteration be noted as wm,r. Considering that the value of fm

Table I: Empirically derived optimal values of weighting factors kr
and multipliers vr (r = 1, ..., 6).

Factor Value Factor Value Factor Value
k1 1 k6 1/3 v3 {0, 2}
k2 100 v1,1 {1, 3} v4 {1, 20}
k3 10 v1,2 {10, 500} v5 2
k4 1/10 v1,3 {0, 1} v6,1 8
k5 1/3 v2 {0, 1} v6,2 2

Figure 3: Predicted trajectory; dots indicate non-repeating trajectory
and circles indicate the repeating one.

is computed as fm =
rm∑
r=1

kr × wm,r, the final value of the

objective function is given by (10).

f =

M−1∑
m=0

min
{wm,r}

{fm} (10)

Trajectory that corresponds to the minimal value, computed
according to (10), is plotted in real-time with dots that indicate
non-repeating trajectory and circles that indicate the repeating
one. An example of a final result of analysing the written word
"would" is shown in Fig. 3.

III. EXPERIMENTAL RESULTS

In order to perform verification of the handwriting trajectory
prediction, random samples of handwritten words from IAM-
OnDB database have been analysed by the algorithm and
results are then compared to the original writing trajectory.
Comparison is made for each segment of analysed written
text, based on the segments order and movement direction.

All analyses were conducted on computer with Intel Core
2.50 GHz i3-3120M processor, 4 GB RAM and 64-bit Win-
dows 7 Professional operating system.

The analysis is conducted on 5 groups of words, each
containing 30 samples. Groups are formed according to the
number of segments. Words of the first group contain 3-5
segments, 6-7 segments are contained in the second one, 8-
9 in the third one, 10-12 in the fourth one and 13-17 in the
last one. Grouping and analysing the words that contain more
than 17 segments has not been conducted because of the very
uneven number of segments distribution in this case. Number
of analysed samples for each number of segments contained
is given in Table II.

Effectiveness of the algorithm is computed according to the
relation (11), where Nj represents the total number of samples
for Mj number of segments, oi is the number of correctly pre-
dicted segment orders and di is number of correctly predicted

Table II: Number of examined samples in the experimental analysis,
with a corresponding number of included segments per each sample.

Number of segments 3 4 5 6 7 8 9 10
Number of samples 8 11 11 15 15 16 14 10
Number of segments 11 12 13 14 15 16 17
Number of samples 10 10 5 11 4 5 5

5 10 15
40

60

80

number of segments

η
[%

]

Average effectiveness of the algorithm

rm=1
rm=2
rm=3
rm=4
rm=5
rm=6

Figure 4: Comparison of an average effectiveness of the proposed
algorithm and the results obtained when each of the relevant factors
is excluded.

movement directions for i-th sample in j-th subgroup of total
15 analysed segment numbers, as represented in Table II.

η =
1

15

15∑
j=1

Nj∑
i=1

oi × di
Mj ×N2

j

× 100% (11)

The experimentally obtained total average effectiveness of the
algorithm is 77.12%.

A. Effectiveness of the algorithm

For the task of examining the effectiveness of the algorithm
and the impact of individual factors on the accuracy of the
results, testing is conducted for the case when all six factors
are taken into account and when some of them are excluded.
Results of average effectiveness computation for each of these
cases are given in Fig. 4. It can be noticed that the effectiveness
is the highest when all six factors are included, while the worst
results are obtained when excluding all factors except for w1

(or w1 and w2, in this particular analysis, because the curves
overlap). The accuracy of prediction does not depend on the
number of samples, so the conclusion of effectiveness for the
5 created groups cannot be derived. Accuracy mostly depends
of the written letters and the performance of preprocessing
procedure.

The algorithm rarely produces errors when predicting the
order of analysed segments, while prediction of movement
direction can be wrong in case of analysing cursive letters
that have little loops, such as b and g. If these letters have
low roundness, the preprocessing steps cause connecting the
close parts of the written text, resulting in a line in one part
of the original loop. Aforementioned problem occurred when
the analysis of the word "would" was conducted. As can be
seen in Fig. 3, the line on the loop of the letter l appeared and

(a) (b)

Figure 5: Common issue in predicting the order of segments and
direction of movement: (a) Real pen tip trajectory; (b) Predicted pen
tip trajectory.

the wrong direction of movement by the loop segment was
predicted.

Predicted trajectory of pen tip movement is intuitively
possible for most of the analysed handwritten text samples,
but in some cases that results in multiple reordered segments
and incorrect prediction of direction of movement, which
reduces the effectiveness of the algorithm. An example of
this problem is shown in Fig. 5. Finding the starting point
of cursive letters with the circular structure, such as o and
a, is complex process, especially in cases where that point is
branching. This is a problem not only for computer analysis,
but also for graphologists, because the starting point of the
letter highly depends on handedness of the writer [3].

B. Execution time of the algorithm

Besides the effectiveness measurement, execution time of
the algorithm is measured for each of the analysed samples and
a set of included factors. Averaged results are shown in Fig.
6. It can be concluded that the average execution time mostly
depends on the number of segments, but there are some other
factors that are relevant, such as complexity of computing
the objective function. Even when all the relevant factors are
included, some of them are not calculated in specific cases. For
example, if the pen from a paper detach has not been detected,
factors w5 and w6 are not considered in the objective function
and less time is required for the execution.

It can be seen from the Fig. 6 that the lowest required time
is needed for analysing samples containing 3 and 4 segments,
while increasing the number of segments to 5 causes the
running time increase by more than double. Further increase
generally causes a slight climbing in the execution time curves,
but the changes are not sharp because the algorithm considers
5 segments when an analysed text has a length of 5 or
more segments, thus preventing an exponential growth of the
running time.

Execution time of the algorithm can be reduced by analysing
less than 5 segments in each iteration or reducing the number
of permutations for each possible segments order, lowering the
allowable difference between the indices of the segments from
4 to 3. Drawback of this solution is that effectiveness of the
algorithm will be degraded. If the analysis was conducted on
4 instead of 5 segments, the effectiveness would have been

5 10 15
0

20

40

60

80

number of segments

tim
e

[s
]

Average execution time of the algorithm

rm=1
rm=2
rm=3
rm=4
rm=5
rm=6

Figure 6: Comparison of an average computation time of the
proposed algorithm and the results obtained when each of the relevant
factors is excluded.

reduced, but it would not cause significant time reduction. It
is common that one letter is composed of 5 segments after the
thinning process. Those letters are mostly the ones that include
dashes, such as t and f , or the letters written in a way that there
are more cross-sections in the contour. For the purposes of
accurate prediction in these cases, allowed difference between
the indices of segments cannot be lowered.

IV. CONCLUSION

The experimental results show that the accuracy of pre-
diction of the handwritten text trajectory by the proposed
algorithm is averagely 77,12% and that it depends on the
content of the analysed text and not on the number of segments
contained in the contour that is being analysed. An important
trait of the algorithm is that the proposed trajectories are
intuitively possible, even if they are not correctly predicted.

Effectiveness of the algorithm can be improved by cor-
recting a text character skeleton, as proposed in [23], which
would result in smaller number of line segments, created by
merging segments located at the close distance. Given the
fact that the poor performance of skeletonization process is
mostly the cause of diminishing effectiveness of the proposed
algorithm, the biggest progress is expected by improvement of
this process. The other way to increase the effectiveness is to
implement a full data normalization procedure in preprocess-
ing, which includes baseline, skew and slant normalization.
This solution requires the initial state return of the analysed
text when the trajectory is proposed, which is a complex
procedure if the number of segments are not the same in the
initial and the normalized state.

The most significant improvement of the proposed algorithm
can be made by employing training methods, which can result
in higher prediction accuracy and lower required execution
time. Moreover, reducing computational burden will be con-
ducted as part of future work.

REFERENCES

[1] I. Siddiqi, C. Djeddi, A. Raza, and L. Souici-Meslati, “Automatic
analysis of handwriting for gender classification,” Pattern Analysis and
Applications, vol. 18, no. 4, pp. 887–899, 2015.

[2] E. Sokic, A. Salihbegovic, and M. Ahic-Djokic, “Analysis of off-line
handwritten text samples of different gender using shape descriptors,”
in Telecommunications (BIHTEL), 2012 IX International Symposium on.
IEEE, 2012, pp. 1–6.

[3] M. Liwicki, A. Schlapbach, P. Loretan, and H. Bunke, “Automatic
detection of gender and handedness from on-line handwriting,” in Proc.
13th Conf. of the Graphonomics Society, 2007, pp. 179–183.

[4] S. Al Maadeed and A. Hassaine, “Automatic prediction of age, gender,
and nationality in offline handwriting,” EURASIP Journal on Image and
Video Processing, vol. 2014, no. 1, pp. 1–10, 2014.

[5] V. Burr, “Judging gender from samples of adult handwriting: Accuracy
and use of cues,” The Journal of social psychology, vol. 142, no. 6, pp.
691–700, 2002.

[6] V. Kamath, N. Ramaswamy, P. N. Karanth, V. Desai, and S. Kulkarni,
“Development of an automated handwriting analysis system,” ARPN
Journal of Engineering and Applied Sciences Volume 6, no. 9, pp. 1819–
660, 2011.

[7] J. F. Vargas, M. A. Ferrer, C. M. Travieso, and J. B. Alonso, “Off-
line signature verification based on high pressure polar distribution,”
in Procedeeins of the 11th International Conference on Frontiers in
Handwriting Recognition, ICFHR 2008, 2008, pp. 373–378.

[8] V. Nguyen and M. Blumenstein, “Techniques for static handwriting tra-
jectory recovery: a survey,” in Proceedings of the 9th IAPR International
Workshop on Document Analysis Systems. ACM, 2010, pp. 463–470.

[9] R. Plamondon and S. N. Srihari, “Online and off-line handwriting
recognition: a comprehensive survey,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 22, no. 1, pp. 63–84, 2000.

[10] R. Plamondon, Progress in automatic signature verification. World
Scientific, 1994, vol. 13.

[11] A. Schröter, R. Mergl, K. Bürger, H. Hampel, H.-J. Möller, and
U. Hegerl, “Kinematic analysis of handwriting movements in patients
with alzheimer’s disease, mild cognitive impairment, depression and
healthy subjects,” Dementia and Geriatric Cognitive Disorders, vol. 15,
no. 3, pp. 132–142, 2003.

[12] J. Walton, “Handwriting changes due to aging and parkinson’s syn-
drome,” Forensic science international, vol. 88, no. 3, pp. 197–214,
1997.

[13] M. K. Babcock and J. J. Freyd, “Perception of dynamic information
in static handwritten forms,” The American journal of psychology, pp.
111–130, 1988.

[14] C. Viard-Gaudin, P.-M. Lallican, and S. Knerr, “Recognition-directed
recovering of temporal information from handwriting images,” Pattern
Recognition Letters, vol. 26, no. 16, pp. 2537–2548, 2005.

[15] G. Boccignone, A. Chianese, L. P. Cordella, and A. Marcelli, “Recover-
ing dynamic information from static handwriting,” Pattern Recognition,
vol. 26, no. 3, pp. 409–418, 1993.

[16] T. Huang and M. Yasuhara, “Recovery of information on the drawing
order of single-stroke cursive handwritten characters from their 2d
images,” IPSJ Trans, vol. 36, no. 9, pp. 2–132, 1995.

[17] H. Bunke, R. Ammann, G. Kaufmann, T. M. Ha, M. Schenkel, R. Seiler,
and F. Eggimann, “Recovery of temporal information of cursively
handwritten words for on-line recognition,” in Document Analysis and
Recognition, 1997., Proceedings of the Fourth International Conference
on, vol. 2. IEEE, 1997, pp. 931–935.

[18] P. M. Lallican and C. Viard-Gaudin, “A kalman approach for stroke
order recovering from off-line handwriting,” in Document Analysis and
Recognition, 1997., Proceedings of the Fourth International Conference
on, vol. 2. IEEE, 1997, pp. 519–522.

[19] Y. Kato and M. Yasuhara, “Recovery of drawing order from single-
stroke handwriting images,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 22, no. 9, pp. 938–949, 2000.

[20] B. Zhang and S. N. Srihari, “Analysis of handwriting individuality using
word features,” in null. IEEE, 2003, p. 1142.

[21] M. Liwicki and H. Bunke, “Iam-ondb-an on-line english sentence
database acquired from handwritten text on a whiteboard,” in Eighth
International Conference on Document Analysis and Recognition (IC-
DAR’05). IEEE, 2005, pp. 956–961.

[22] W. Chen, L. Sui, Z. Xu, and Y. Lang, “Improved zhang-suen thinning
algorithm in binary line drawing applications,” in Systems and Infor-
matics (ICSAI), 2012 International Conference on. IEEE, 2012, pp.
1947–1950.

[23] H. N. Vu, I. S. Na, and S. H. Kim, “Correction of text character skeleton
for effective trajectory recovery,” International Journal of Contents,
vol. 11, no. 3, pp. 7–13, 2015.

