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a b s t r a c t

Shape is one of the most important discriminative elements for the content based image
retrieval and the most challenging for quantification and description. Fourier descriptors
are a very efficient shape description method used in shape-based image retrieval tasks. In
order to achieve invariance under rotation and starting point change, most Fourier
descriptor implementations disregard the phase of Fourier coefficients, consequently
losing valuable information about the shape. This paper proposes a novel method of
extracting Fourier descriptors that preserve the phase of Fourier coefficients. We intro-
duce specific points, called pseudomirror points, and use them as a shape orientation
reference. They facilitate the extraction of phase-preserving Fourier descriptors which are
invariant under translation, scaling, rotation and starting point change. The proposed
descriptor was tested on four popular benchmarking datasets: MPEG7 CE-1 Set B, Swedish
leaf, ETH-80 and Kimia99 datasets. Performance and computational complexity measures
indicate that the proposed method outperforms other state-of-the-art phase-based
Fourier descriptors. In addition, it outperforms other state-of-the-art magnitude-based
Fourier descriptors, and many non-Fourier based shape description methods in terms of
performance – complexity ratio.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

The shape of the presented objects on images is an
important feature for image understanding. Thus, shape is
widely used as a discriminative element in the field of
content-based image retrieval (CBIR). In many applica-
tions, shape captures most of the perceptual information
of the observed objects on images, while color and texture
can often be omitted without affecting retrieval perfor-
mance. Unfortunately, shape may be subject to significant
changes, such as deformation, scaling, changes in orien-
tation, noise, and partial concealment. Hence, accurate
jicija, Phase preservin
5), http://dx.doi.org/10
description of the shape remains a challenging technical
problem.

A variety of shape description techniques have been
developed over the years [1]. Best shape descriptors are
typically described using the following attributes: com-
pact, easy to compute, informative, discriminative, tolerant
to geometric transformations, efficient. It is very hard to
satisfy all these requirements. The aim of many research-
ers in this field is to improve descriptor performance and
reduce computational costs.

Shape description methods usually belong to one of the
following four classes: (1) global, (2) local, (3) combined
global and local methods, and (4) post-processing/learning
shape similarity methods.

Global methods capture the object's global shape
information and are relatively fast to compute and
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compare. Although they are robust to noise, they exhibit
poor performance when it comes to discriminating
occluded shapes or do partial matching. In contrast, local
techniques precisely represent local shape features. How-
ever, they are sensitive to noise and often more compu-
tationally complex than global techniques. The choice
between local and global descriptor is context-dependent.
Recently, a palette of so-called “rich” (as called by Wang
et al. [2]) descriptors has been proposed. These descriptors
combine both local and global shape characteristics.
Therefore, they obtain good retrieval rates on popular
benchmark datasets, at a cost of more complicated
descriptor computation and matching. The last group of
shape descriptors consists of those that use either training
sets and machine learning techniques to “learn” shape
similarity, or use information about other shape retrievals
in order to increase the retrieval rate.

In this paper, Phase-including Fourier Descriptor (PIFD)
is introduced. It is a novel global, spectrally hierarchical,
information-preserving, contour-based shape description
technique. Development of PIFD is inspired by the work on
magnitude-based Fourier descriptor (FD) by Zhang and Lu
[3–5] and by a recent work of Sokic and Konjicija [6]. We
use the term magnitude-based FDs to denote FDs which
use only the magnitude of Fourier coefficients. Magnitude-
based FD is established as very compact, efficient and
effective global shape descriptors. We propose to improve
the retrieval performance of FD even more, while attaining
the same computational complexity. This is obtained by
preserving the phase of the Fourier coefficients. In order to
achieve invariance of the Fourier coefficients under rota-
tion and starting point change, we propose to use so-called
pseudomirror points for determining the nominal orienta-
tion of the shape. Obtained experimental results demon-
strate that PIFD is superior to other Fourier descriptor
based methods in terms of retrieval performance and
discrimination ability. Although being a global technique,
experiments confirm that PIFD is also comparable to other
state-of-the art shape description methods, while having
much lower computational complexity.

The main contributions of this paper are

� introduction of a novel method for determining nom-
inal shape orientation(s),

� development of a versatile phase-preserving Fourier
descriptor which is invariant under translation, rotation,
scaling, starting point change and optionally mirror
transformations,

� development of a shape descriptor with one of the best
retrieval performance- computational complexity ratios.

The rest of the paper is organized as follows. A brief review
of related work is given in Section 2. In Section 3, Phase-
including Fourier Descriptor (PIFD) is introduced. Experi-
mental results are demonstrated and discussed in Section
4. Concluding remarks and future research directions are
given in the last section.
Please cite this article as: E. Sokic, S. Konjicija, Phase preserving
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2. Related work

Shape description methods may be classified into two
groups: region based and contour based [1,7]. Region
based techniques use the boundary of the shape as well as
the interior of the shape, while contour based techniques
take into account only the contour of the shape. Contour
based approaches are generally more compact, faster and
sometimes perform better than region based methods. On
the other hand, contour based methods find it difficult to
identify shapes which consist of disjoint parts, such as
trademarks, logos and characters [8].

The contour of the shape is commonly described using
shape signatures. They are one-dimensional functions
which capture most of the perceptual features of the shape
[9]. Shape signatures are sensitive to noise and distortions
and often dependent on rotation, translation and scaling.
To overcome these problems, different transformations are
conducted over shape signatures.

Fourier descriptors (FD) are obtained by applying the
discrete Fourier transform (DFT) over a shape signature
[3]. By disregarding phase information, descriptors
become invariant under rotation, translation, scale and
change of the starting point of the contour. They also show
good retrieval accuracy, compactness, insensitivity to noise
and have a hierarchical representation in spectral domain.

Magnitude-based Fourier descriptors have been
derived from several shape signatures: Complex coordi-
nates [6], Centroid/Radial distance, Tangent angle [5],
Curvature function, Area function, Triangle-area repre-
sentation [10], Triangular centroid area, Chord length [4],
Polar coordinates, Farthest point distance [11], Perimeter
area function [12], Improved arc-height function [13],
Rectangle centroid distance [14] and many others.

Apart from being a global shape description technique
and having hierarchical representation only in spectral
domain, there are essentially two main disadvantages of
magnitude-based Fourier descriptors.

Fourier descriptors are not information-preserving,
which means that the original shape cannot be recon-
structed from descriptor coefficients. Therefore, they are
not suitable for shape evolution problems or shape
retrieval tasks where rotation invariance is not desirable
(e.g. traffic signs recognition [15]). However, information-
preserving property is not always a required attribute of a
CBIR system, hence the usability of the descriptor is not
significantly limited. Moreover, this drawback is compen-
sated by their compact notation and simple matching.

The most important drawback of magnitude-based
Fourier descriptors is that they disregard phase informa-
tion in order to obtain invariance under rotation and
starting point change. Using this simplistic approach,
valuable information contained in shape description is
lost. To illustrate this fact, two completely different shapes
with equal magnitudes of Fourier coefficients are depicted
in Fig. 1. Interestingly, Oppenheim and Lim [16] in 1981.
showed that phase contains a lot of valuable information
about the shape and that even, with specific initial
assumptions, images may be reconstructed using the
Fourier descriptor for shape-based image retrieval, Signal
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Fig. 1. Reconstruction of shapes with equal FD magnitudes: (a) shape
reconstructed with the original phase content, (b) shape reconstructed
with different phase content.
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phase information only. Nevertheless, there exist only few
papers that considered preserving the phase of the Fourier
coefficients.

Arbter et al. [17] proposed to exploit the phase of FD
with their Affine-Invariant Fourier descriptor (AFD), which
is inherently invariant under affine transformations. The
invariance of AFD to starting point change is essentially
deduced from the estimate of the starting point shift, by
using phase differences of selected harmonics. A low order
estimate is actually based on the first and second harmo-
nic, while for higher orders an appropriate Diophantine
equation needs to be solved.

There were several authors that also used the first
harmonic for phase normalization, such as Persoon and Fu
[18] (similar approach to Kuhl and Giardina [19]), Li et al.
[20] and Fieguth et al. [21]. Li et al. [20] used a two-
dimensional Fourier descriptor, but also exploited first
harmonic's phase for normalization. Fieguth et al. [21]
proposed a generalization, in a sense that the desired
rotation and starting point change invariance are achieved
using the phase of the most dominant harmonic. In prac-
tice, this usually leads to phase normalization using the
first or second harmonic, since the latter have the largest
magnitude.

In their work, Bartolini et al. [22] used the Fourier
coefficients in order to normalize the contour scale and
position. They proposed to normalize the phase of the
harmonics using the nominal phase of the first order
harmonic as a reference. Instead of matching Fourier
descriptors in spectral domain, Bartolini et al. suggested to
use Constrained Dynamic Time Warping (CDTW) of the
contours in spatial domain, whereas Fourier descriptors
are only used for contour normalization. CDTW is a more
computationally demanding similarity measure, but unlike
the Euclidean distance, it allows constrained stretching of
the contour.

It is noticeable that the usage of the first harmonic's
phase is a relatively common method of phase normal-
ization. Unfortunately, if the first harmonic has a neglect-
able magnitude or noise is present, these methods usually
fail. Normalization with the first harmonic is an ill-
conditioned task, because negligible errors in the compu-
tation of first order harmonic's phase may cause large
variations of phase of higher orders normalized harmonics.
As Larsson et al. noted in [15], using first order harmonics
for phase estimation depends on the type of the first
harmonic locus. For the elliptic harmonic locus this
method performs well, whereas for a circular harmonic
locus it might accidentally create arbitrary orientation.
Please cite this article as: E. Sokic, S. Konjicija, Phase preservin
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Furthermore, very thin and lengthy structures are more or
less invisible to the first order harmonic, but have a huge
impact on the spatial orientation estimation.

Instead of normalizing the phase, Larsson et al. pre-
served the phase of FD without previous normalization
and used cross-correlation for shape matching [15]. Our
method of preserving phase is similar to the work of
Larsson et al. [15], but instead of using L2-norm during
scale normalization, we have adopted L1-norm. Moreover,
we use a modified City-block distance in spectral domain
instead of cross-correlation in spatial domain. The method
presented in [15] is based on finding the best possible
match between the two shapes using every possible
rotation (shift) of one shape. This is not an optimal pro-
cedure, since it may affect the discriminability among
shapes. For example, certain shapes from the same class
may be de-rotated for different angles in order to align
with another query shape. Therefore, shapes from the
same class are compared to others using different orien-
tations. This nonuniformity leads to a lower discrimin-
ability among shapes, and consequently to lower perfor-
mance of the descriptor. Instead, we introduce a novel
method to determine nominal orientation(s) of the shape.
These orientations are inherent to the shape, embed some
shape semantics in Fourier descriptors and consequently
contribute to better discriminability.

Apart from FD-based methods, other important contour
based techniques are multiscale-based [23,24], Curvature
Scale Space (CSS) approaches [25,26], Multiscale Convexity
Concavity (MCC) [27], and Curve Edit Distance [28].

Popular structural methods that recently appeared are
Shape tree [29], Hierarchical Procrustes Matching (HPM)
[30], Contour Flexibility [31], Shape Context [32] followed
by Inner-Distance Shape Context [33] and Height functions
[2]. These methods are based on “rich” shape descriptors.
At a cost of a higher computational complexity, they
achieve exceptionally good results on a popular MPEG7
CE-1 Set B dataset [34]. In addition, most of these techni-
ques require complex matching schemes and often use
non-symmetrical similarity measures.

Recently, a number of context-sensitive methods
appeared in CBIR. Context-sensitive or contextual similar-
ity methods [35–38] try to learn pairwise similarities
among the database (context) and use this context to infer
semantic similarities between shapes against the database.
Methods such as Label Propagation (LP), Locally Con-
strained Diffusion Process (LCDP), Meta Similarity (MS),
Contextual Dissimilarity Measure (CDM) are developed, to
name just a few. Using these techniques, Donoser and
Bischof [39] obtained a first time ever 100% Bull-Eye score
on MPEG7 CE-1 Set B. CBIR systems based on these
methods achieve the best retrieval performance results,
but they require either additional specific knowledge of
the dataset, or prior training of the retrieval system.
3. Phase-Including Fourier Descriptor (PIFD)

The shapes that are analyzed in this paper are outline
shapes, which can be described as single plane closed
(discrete) curves. First, in preprocessing stage, the
g Fourier descriptor for shape-based image retrieval, Signal
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coordinates of the shape boundary are extracted from the
image. In order to apply a shape description method, the
contour of the shape is re-sampled with a fixed number of
points (N) using equal arc-length sampling [5].

For subsequent analysis, it will be assumed that a shape
contour is given with N boundary points Pn ¼ ðxn; ynÞ
where n¼ 0;1;…;N�1. The contour points Pn ¼ ðxn; ynÞ
will be represented in the form of complex numbers:

Zn ¼ xnþ jyn; ð1Þ
for which the Discrete Fourier Transform may be com-
puted as in the following equation:

ak ¼
1
N

XN�1

n ¼ 0

Zne� j2πnk=N ; ð2Þ

where k¼ 0;1;…;N�1. Fourier coefficients ak are used to
derive Fourier descriptors. The coefficients ak must be
additionally transformed to be invariant under translation,
rotation, scale and starting point change.

It can be easily shown that invariance under rotation
and starting point change is obtained using only the
magnitude of the Fourier coefficients, while the invariance
under translation is achieved by disregarding the DC
component (coefficient a0). In order to introduce scale
invariance, all earlier implementations ([5,11–13,22] and
many others), have used Sc¼ ja1j as the scale normal-
ization coefficient. Sokic and Konjicija [6] have shown that
using a different scaling coefficient:

Sc¼
XN�1

i ¼ 1

jaij; ð3Þ

yields a better retrieval performance. A scale normal-
ization approach given in [6] is similar to the one pre-
sented in [15]. The authors in [6] propose to use L1-norm
of the Fourier descriptor (Eq. ((3)) for scale normalization
and City-block distance as similarity measure, whereas the
authors in [15] propose to use L2-norm for scale normal-
ization and Euclidean distance as a metric. Experimental
results showed that using L1-norm and City-block distance
yields a more efficient descriptor, therefore we adopted
the scaling coefficient given with (3) in the further
analysis.

Although Normalized Complex Coordinates (NCC) FD
presented in [6] have promising performance and com-
pactness vs. computational time ratio, they suffer from the
same problems of all magnitude-based FD – the informa-
tion contained in the phase is discarded.

Therefore, we start with the following translation and
scaling invariant descriptor:

FTS ¼
a�M=2

Sc
;…;

a�1

Sc
;
a1
Sc
;
a2
Sc
;…;

aM=2

Sc

� �
; ð4Þ

where ai and Sc are computed using (2) and (3), and M is
the number of Fourier coefficients needed for representa-
tion. NumberM is usually small (r30Þ and independent of
the number of points N. Note that the DFT is a periodic
sequence with period N ða�m ¼ aN�mÞ.

Descriptor given with (4) is invariant under translation
and scaling, which is easy to demonstrate as in [6]. Unlike
NCC FD (4), the FTS descriptor is information preserving, so
Please cite this article as: E. Sokic, S. Konjicija, Phase preserving
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the initial shape could be hierarchically reconstructed for a
different number of Fourier coefficients (M).

In order to use information contained in the phase of
Fourier coefficients, one must obtain their invariance
under starting point and orientation change. This could be
easily achieved if a nominal orientation and the starting
point of the shape contour are known. Methods based on
using landmarks in spatial domain (such as the axis of
least inertia [40] or the point with maximum radius [19],
to name just a few) are methods sensitive to noise, shape
deformations, spurious peaks etc. In addition, approaches
based on aligning shapes using the first harmonic (see
Section 2) showed to perform well on objects with domi-
nant 1st harmonic and elliptic locus, but rather poorly on
other shape types.

In the following subsection, we introduce a novel
method for determining the nominal orientation of the
shape, which achieves the desired phase invariance.

3.1. Nominal orientation based on pseudomirror points

It is clear that the derived descriptor FTS given by (4) is
not invariant under rotation and starting point change.
Without the loss of generality, it may be assumed that the
rotation of the shape is always conducted around the
centroid of the shape: ZC ¼ ð1=NÞPN�1

n ¼ 0 Zn. The Fourier
coefficients of the shape with the starting point Pm, rotated
for an angle ϕ, are given by

aðnewÞ
k ¼ ejϕej2πkm=NaðoldÞk ; ð5Þ

where kAMind, Mind ¼ f�M=2; �M=2þ1;…; �2;
�1;1;2;…;M=2�1;M=2g. The set Mind contains all indices
of the M low frequency Fourier coefficients. The coefficient
a0 contains no relevant information about the shape other
than the position of shape centroid. In order to obtain the
invariance under translation the coefficient a0 is dis-
regarded, thus the set Mind does not contain zero.

It is noticeable from relation (5) that shape rotation
affects the phase of all harmonics equally with a constant
amount (ϕ), while the change of the starting point man-
ifests as de-rotating the kth harmonic for the angle of
ð2π=NÞkm. Since the phase is computed as 2π-modulus, it
is impossible to uniquely identify the unknowns m and ϕ
just by observing aðnewÞ

k for jkj41.
On the other hand, if a starting point is known, this

point could be set to have a specific predetermined argu-
ment by de-rotating the shape (e.g. zero). This actually
means that for the shape with the predefined starting
point, rotation invariance of FD is constructed without
much effort. An example of shape with several arbitrary
orientations and indicated starting points is given in Fig. 2.
For each chosen starting point Pm, the contour is rotated by
an angle �argðZmÞ, so that the starting point is always
located on the real axis. Once a starting point is uniquely
determined for a shape, then the shape becomes invariant
under starting point change and rotation, thus the Fourier
descriptor given in (4) may be used for shape description.
One simplified approach would be the derivation of
Fourier descriptor for each shape point considered to be a
starting point. Consequently, matching of the shapes may
Fourier descriptor for shape-based image retrieval, Signal
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Fig. 2. Several arbitrary orientations of the “Classic car” shape. Starting
points are marked with symbol ○.
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be achieved by finding the best match between the FD
vector from one shape and all other (rotated) FDs from the
other shape. Nevertheless, this would lead to a large
dimensionality of the descriptor and to a computationally
expensive descriptor matching scheme. Hence, in order to
obtain effectiveness and efficiency while preserving com-
pactness, the vertical dimension of the descriptor needs to
be reduced.

What may not be noticed at first glance, is that redu-
cing the number of possible starting points would actually
improve the intra-class similarity and reduce the cross-
class similarity. If one shape is compared to all possible
rotations of another shape, it will yield the best possible
match between shapes, even if they do not semantically
correlate on these nominal orientations.

We propose the method for finding point(s) with spe-
cific geometrical and shape discriminative meaning. For
each contour point chosen as a starting point, the contour
is de-rotated around the centroid of the shape, so that the
starting point lies on the positive real axis. This contour
will be marked C1. Then another, “mirrored” contour is
created. The “mirrored” contour C2 is derived by con-
jugating all C1-contour points and changing the direction
of encircling. The whole process is illustrated in Fig. 3.

Let Pm be arbitrarily chosen as a starting point. For the
original contour C1 and for the “mirrored” contour C2, FDs
að1Þk and að2Þk are derived, respectively. If ak are the coeffi-
cients corresponding to the nominal orientation and
nominal starting point, then the coefficients extracted
from contour C1 are

að1ÞkðmÞ ¼ e� jargðZmÞej2πmk=Nak: ð6Þ
Fig. 3. Determining pseudomirror points: (a) original and “mirrored” contour
omitted for clarity), (b) original and “mirrored” contour with the same directio
nominal orientations for which C1 and C2 are very similar (potential pseudomi
marks the end point.

Please cite this article as: E. Sokic, S. Konjicija, Phase preservin
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The corresponding points of the mirrored contour C2 are

C2¼ e� jargðZmÞfZm; Zm�1;…; Z0; ZN�1; ZN�2;…Zmþ1g; ð7Þ
where Z denotes conjugate complex value of Z. It can be
shown that

að2ÞkðmÞ ¼ e� jargðZmÞ 1
N

Xm
n ¼ 0

Zm�ne� j2πnk=N

"

þ 1
N

XN�1

n ¼ mþ1

ZNþm�ne� j2πnk=N

#

¼ e� jargðZmÞ e� j2πmk=N1
N

XN�1

r ¼ 0

Zrej2πrk=N
" #

¼ e� jargðZmÞe� j2πmk=Nak

¼ ejargðZmÞe� j2πmk=Nak

¼ að1Þ
kðmÞ: ð8Þ

We introduce the following objective function for deter-
mining the starting points:

f ðmÞ ¼
XN�1

k ¼ 1

jað1ÞkðmÞ �að2ÞkðmÞj: ð9Þ

Objective function given by (9) describes the similarity of
the original and mirrored shape in terms of phase-
preserving Fourier descriptors. It is easy to show that

f ðmÞ ¼ 2
XN�1

k ¼ 1

����Im að1ÞkðmÞ

n o����; ð10Þ

where Imfg denotes imaginary part. We propose to use a
point Pm that corresponds to the global minimum of the
objective function f ðmÞ as a starting point. Apart from the
global minimum, the function f ðmÞ may have several local
minima. All of these local minima should also be con-
sidered as potential starting points. They will be called
pseudomirror points.

Typical representation of f ðmÞ is given in Fig. 4(a). In
accordance with the given shape, several local minima and
several corresponding pseudomirror points can be found.
The proposed method does not search for symmetry/mir-
ror axis but rather for points. Each pseudomirror point
usually has its own complementary (“mirrored”) version.
Thus, there are usually at least four points that could be
used as the starting points for the phase-preserving FD.
for an arbitrary starting point are depicted (part of the closed contour is
n (part of the closed contour is omitted for clarity), (c) one of the derived
rror point). Symbol ○ marks the starting point, while the triangle symbol ▵

g Fourier descriptor for shape-based image retrieval, Signal
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Experiments have shown that these points are typically
located N/4 points apart along the contour, but due to
specific contour shapes, transformations, noise or inade-
quate sampling, the relative positions of these points may
differ. The corresponding nominal orientations of the
shape for the determined pseudomirror points in Fig. 4
(a) are depicted in Fig. 4(b).

Pseudomirror points are inherent to the shape and may
hold some shape semantics. First, in the case of symme-
trical objects, these points determine a line which coin-
cides with the axis of symmetry. If there are many axes of
symmetry, there will be many local minima of the function
f ðmÞ, hence several pseudomirror points may be deter-
mined. However, pseudomirror points may be determined
in the pre-processing stage instead of the matching stage,
which results in a simpler shape matching procedure.

We recommend that the number of chosen pseudo-
mirror points is bounded by a parameter Q during
descriptor extraction. If the number of local minima is
larger than Q , then the local minima with the smallest
values are chosen as pseudomirror points. However, if the
number of local minima is smaller than Q , then we pro-
pose that the points with the lowest value of f ðmÞ are
appended to this set. They are usually located near the
local minima. Their inclusion in this set improves retrieval
performance for a coarser sampling of the contour.
Fig. 4. Determining local minima of f ðmÞ: (a) objective function, (b)

Fig. 5. Determining local minima of f ðmÞ using sub-sampling: (a) obje

Please cite this article as: E. Sokic, S. Konjicija, Phase preserving
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Before proceeding to the extraction algorithm of the
phase-preserving FD, there are some technical imple-
mentation issues that need to be addressed. As illustrated
in Fig. 4(a) and (b), when using a smaller number of con-
tour points N, the gradient of f ðmÞ computed in points
close to the centroid tends to be large, so the exact mini-
mum of f ðmÞ could be located between m and mþ1,
leading to smaller errors. This means that for a smaller
number of points, perfect “alignment” may not be
achievable. A simple workaround is to extrapolate and
sub-sample the discrete contour to a finer discretization
scheme in a neighborhood of m, therefore the function
argðZmÞ can be computed on a finer grid. This allows us to
search for a more exact local pseudomirror point within a
range ½m�S;mþS�, where Pm is assumed to be a pseudo-
mirror point and S is a predefined integer parameter
(usually not larger than S¼ 2). The described procedure
has two advantages: it enables computing a more exact
local pseudomirror point and it facilitates establishing a
hierarchical computation scheme, if complexity needs to
be further reduced. The function m-argðZmÞ is approxi-
mated in this local neighborhood by a function (linear,
cubic, spline or similar) mss-gðmssÞ, where mssA
½m�S;mþS�. The effectiveness of sub-sampling is demo-
nstrated in Fig. 5.

Experimental results show that another small mod-
ification of the objective function can improve retrieval
corresponding pseudomirror point based shape orientations.

ctive function, (b) pseudomirror point based shape orientations.
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accuracy. It is well-known that low frequency Fourier
coefficients used for shape description usually have much
larger magnitude than Fourier coefficients that correspond
to higher frequencies. Thus, it is possible to sort the
magnitude values of ak in descending order as

jaK1 jZ jaK2 jZ⋯Z jaKR jZ⋯Z jaKM j; ð11Þ
where KiAMind. Harmonics with larger magnitude con-
tribute to the coarse description of the shape, while the
ones with smaller magnitude usually contain subtle intra-
class variations, details and noise. Therefore, if a smaller
number of coefficients M are used for computation of f ðmÞ
(given by relation (10)), the normalization may be less
accurate. In contrast, if all of the coefficients are used, then
the alignment of different shapes from the same class
could also be less accurate, because of the details present.
Experiments on all datasets have shown that the compu-
tation of the objective function f ðmÞ using only first R
largest magnitude harmonics:

f ðmÞ ¼ 2
X

kARind

jImfakðmÞgj; ð12Þ

where R is determined as the maximal integer value for
which the inequality

PR
i ¼ 1 jaKijr0:95

PM
i ¼ 1 jaKij is satis-

fied, improves retrieval performance while reducing
computational time. Thus, only 10–15 harmonics are
usually needed to determine the pseudomirror points.

3.2. PIFD extraction procedure

The PIFD extraction procedure may be summarized
through the following steps:

1. Each point Pm of the shape is considered to be the
starting point of the shape. The shape is de-rotated so
that the starting point is always located on the real axis.

2. Fourier descriptors akðmÞ and objective function f ðmÞ are
computed for every starting point in the previous step.

3. Best Q local minima of the objective function f ðmÞ are
found. These minima define potential pseudomirror points.

4. (Optionally) Function f ðmÞ is subsampled near the
potential pseudomirror points and finer pseudomirror
points are computed.

5. Fourier descriptors computed in finer pseudomirror
points are used to form the PIFD descriptor.

Now, a more formal description of the PIFD extraction
procedure shall be given.

1. The initial contour of the shape is denoted as
fZin

0 ; Z
in
1 ;…; Zin

N�1g. In order to increase efficiency and
avoid repetitive normalization under translation and
scale, the initial contour is firstly translated to the
origin and scaled in space domain using relation
fZ0; Z1;…; ZN�1g ¼ ðfZin

0 ; Z
in
1 ;…; Zin

N�1g�ZCÞ=Sc where
Sc¼ PN�1

i ¼ 1 jaij is the scaling coefficient,
ak ¼ ð1=NÞPN�1

n ¼ 0 Z
in
n e

� j2πnk=N are Fourier coefficients of
the initial shape and ZC ¼ ð1=NÞPN�1

n ¼ 0 Z
in
n is the cen-

troid (or DC component) of the shape.
2. The Fourier coefficients are sorted in descending order

jaK1 jZ jaK2 jZ⋯Z jaKR jZ⋯Z jaKM j, where KiAMind.
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Maximal R that satisfies
PR

i ¼ 1 jaKijr0:95
PM

i ¼ 1 jaKij is
found. An array of indices is collected in a set
Rind ¼ fK1;K2;…;KRg. The set Rind is used only for
computing the objective function f ðmÞ in Step 5 and
Step 8.

3. The first point of the contour fZ0; Z1;…; ZN�1g has to be
de-rotated to zero argument, therefore the contour
e� jargðZ0ÞfZ0; Z1;…; ZN�1g is formed. The Fourier trans-
form of the resulting contour is computed as akð0Þ ¼
e� jargðZ0Þð1=NÞPN�1

n ¼ 0 Zne� j2πnk=N ¼ e� jargðZ0ÞðSc � akÞ (for
kAMind)

4. For each mAf1;2;…;N�1g the initial contour is shifted
(changing the starting point) and the contour is de-
rotated so that the first contour point Pm has the
argument of zero degrees. Using this procedure a
contour e� jargðZmÞfZm; Zmþ1;…; ZN�1; Z0; Z1;…; Zm�1g is
obtained. Fourier transform does not have to be com-
puted again, but akðmÞ may be computed by coefficient
multiplication akðmÞ ¼ e� jargðZmÞej2πmk=NejargðZ0Þakð0Þ, for
kAMind. This signifies that for each contour point Zm

used as starting point, a descriptor akðmÞ is computed.
5. Then, for each mAf0;1;2;…;N�1g function

f ðmÞ ¼ 2
P

kARind
jImfakðmÞgj is computed. Note that the

f ðmÞ is now computed on a smaller set
Rind ¼ fK1;K2;…;KRg, instead of Mind ¼ f�M=2;
�M=2þ1;…; �2; �1;1;2;…;M=2 �1;M=2g proposed
with relation (10).

6. Let Q be defined as a number of chosen pseudomirror
points. The goal is to find Q best local minima of f ðmÞ
using the following procedure:

(a) sort pairs ðm; f ðmÞÞ by value of f ðmÞ in ascending order
into two sets:
(i) Set f LM which contains the points that correspond to

the local minima, obtaining corresponding indices
fmj0;mj1;…mjðLM�1Þg (mj0 being the index of the
global minimum, LM is the number of local minima),

(ii) (optionally) Set f NON� LM which contains the rest of
the points that are not local minima, but sorted in
ascending order: fml0;ml1;…mlðN�1�LMÞg.

(b) choose the first minðQ ; LMÞ pseudomirror points Pq

from set f LM where qAfmj0;mj1;…;mjðminðQ ;LMÞ�1Þg
(c) optionally: if one wants to keep a predefined

descriptor size and Q4LM, append the rest of the
pseudomirror points from first Q�LM points from set
f NON�LM and form pseudomirror points Pq, where
qAfmj0;mj1;…;mjðLM�1Þ;ml0;ml1;…;mlðQ � LM�1Þg. This
is a useful feature which improves retrieval accuracy,
especially for a coarser sampling of the contour
(when N is small).

7. The resulting Pq are potential starting (pseudomirror)
points.

8. For each pseudomirror point PmsAfPqg found in the
previous steps, function argðZmS Þ is interpolated on the
interval ½ms�S;msþS� with gðmsÞ, where S is a positive
integer (usually S¼ 1 or S¼ 2) and gðmsÞ is a linear or
cubic interpolation function. Now the coefficients are
computed as:

akðmÞ ¼ e� jgðmÞej2πmk=NejargðZ0Þakð0Þ ð13Þ
and the global minimum of the function f ðmÞ ¼
2
P

kARind
jImfakðmÞgj is found using discretization
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Table 1
Similarity measures.

Mirror non-invariant dðP1 ; P2Þ ¼minði1 ;i2 Þ
P jP1ði1 ; : Þ�P2ði2 ; : Þj

Mirror invariant dðP1 ; P2Þ ¼minði1 ;i2 Þ minfP jP1ði1 ; : Þ�P2ði2 ; : Þj;
P jP1ði1 ; : Þ�P2ði2 ; : Þjg

h i
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structure m¼msþrΔm (where r¼ �S=Δm;…; S=Δm).
These minima are located in mfine

s .
9. For each discrete pseudomirror candidate point ms, a

finer pseudomirror candidate point mfine
s A ½ms�S;

msþS� is found. Instead of a set of points Pq, the corre-
sponding Pfine

q is determined, hence deriving the corre-
sponding descriptors as in (13).

0. Finally, the descriptor is formed as:

PIFDQ�MðS;ΔmÞ ¼

fakðqfine0 Þg
fakðqfine1 Þg

⋮
fakðqfineðQ � 1ÞÞ

g

2
666664

3
777775
qi Aq;kAMind

: ð14Þ

It is interesting to note that PIFD is actually a general-
ization of many other Fourier-based methods. If Q ¼ 1, the
modulo of PIFD is equal to NCC FD ðjPIFDQ ¼ 1j-NCCÞ [6].
Also, the minimum of f ðmÞ is often close to
minðmÞ jImfað1ÞKðmÞgj

n o
, where K is the dominant harmonic

(harmonic with the largest magnitude). For shapes with a
dominant first harmonic, solution of f ðmÞ ¼ 2jImfað1Þ1ðmÞgj ¼ 0
(a special case of (10)) may be used to align shapes using
only the first harmonic, resulting in a normalization
method that is widely adopted in [19,22] and many others.

3.3. Similarity measures

It is clear that the relative positions of the proposed
pseudomirror points are mirror-invariant, which means
that the points will be positioned at the same locations on
the shape, even if the shape contour is mirrored over an
arbitrary axis. One of the advantages of PIFD is that it is
simple to introduce mirror invariance in shape description.
It is easily noticeable from relation (8) that mirrored
shapes have conjugated PIFDs.

Suppose that two different shapes are described by PIFDs
P1 and P2. We propose two similarity measures, given in
Table 1. The distance is essentially the minimum of all City-
block distances computed between corresponding FDs.

3.4. Computational complexity

As for the computational complexity of the PIFD
descriptor, there are two elements to consider. The first is
the computational complexity of the descriptor extraction
and the second is computation of the similarity measure.

Computational complexity which corresponds to the PIFD
extraction procedure is given by OðN log NÞþOðN log NÞ
þOðN �MÞþOðN �M2ÞþOðN log NÞþOððS=ΔmÞ � N �M � Q ÞÞ,
which is equivalent to OðN log NÞ. The overall complexity is
actually determined by the computational complexity of FFT
Please cite this article as: E. Sokic, S. Konjicija, Phase preserving
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and the sorting algorithms. As in the previous sections,
variables N,M,Q and S=Δm denote the number of contour
points, the number of Fourier coefficients chosen for repre-
sentation, the number of pseudomirror points and the
number of subsampled points around a pseudomirror point,
respectively.

The computation of the similarity measures is equal to
determining the minimum of previously computed Q2 or
2 � Q2 City-block distances (for mirror non-invariant or
mirror invariant similarity measure, respectively). Since Q
is usually fixed within the interval [4,20], the computa-
tional complexity of the similarity measure is equivalent to
the computational complexity of City-block distance.
Although the computational time is increased to a limited
extent, the computational complexity of the proposed
similarity measure remains linear ðOðNÞÞ.
4. Experimental results and discussion

The presentation of experimental results is organized
as follows.

First, the functionality and importance of pseudomirror
points were presented and discussed. Pseudomirror points
were compared to competitive methods for determining
nominal orientation and starting point of a shape contour.

In order to illustrate the effectiveness and efficiency of
the phase-preserving Fourier descriptor based on pseu-
domirror points (PIFD), the retrieval performance and
computational complexity were analyzed.

In the paper, four image databases were used for per-
formance analysis:

� MPEG7 CE-1 Set B database [34],
� Swedish Leaf database [41], binarized and preprocessed

by Xu et al. [13],
� ETH-80 dataset [42],
� Kimia99 dataset [43].

The experiments on the MPEG7 CE-1 Set B database
discuss four aspects:

1. the influence of the different parameters on PIFD
performance,

2. PIFD performance against phase-preserving Fourier
descriptors,

3. PIFD performance against magnitude-based Fourier
descriptors,

4. PIFD performance against other non-Fourier based
descriptors.

Computational complexity of the algorithms is analyzed in
two different stages: descriptor extraction and descriptor
matching. It is important to note that almost all Fourier
Fourier descriptor for shape-based image retrieval, Signal
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descriptor implementations share the same computational
complexity as PIFD. Therefore, PIFD is compared to com-
petitive Fourier-based methods using only retrieval per-
formance measures. In contrast, other state-of-the-art
shape retrieval methods which are not based on the
Fourier transform have different computational complex-
ity. Thus, the trade-off between accuracy and computa-
tional complexity is emphasized when PIFD is compared
with other non-Fourier based shape descriptors.

The experimental results and suitable discussions are
given in the following subsections of the paper.
Fig. 6. The capability of pseudomirror points to determine nominal orientati
marked using symbols □ (most important point – global minimum), ○ (less
minima).

Fig. 7. Comparison of competitive methods for determining nominal orientatio
cross-correlation, moments) with pseudomirror points. The determined startin
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4.1. Pseudomirror points as orientation landmarks

In order to demonstrate the usefulness of pseudomirror
points for determining nominal shape orientation, two
illustrations are provided.

Fig. 6 presents how nominal orientation and starting
points are determined for different shapes belonging to
different classes (“Glass”,“Cow”,“Fork” and “Jar”, all
extracted from MPEG7 CE-1 Set B). Up to eight pseudo-
mirror points are extracted from each shape. In order to
increase the visibility of different pseudomirror points,
they were divided into three groups denoted with □;○ and
on and starting point of the shape contour. The pseudomirror points are
important points – local minima) and � (least important points – local

n and starting points (point with maximal radius, phase of first harmonic,
g points are marked with a circle symbol.
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� , respectively. The point that corresponds to the absolute
minimum of the cost function f ðmÞ is marked with a
square symbol. The pseudomirror points that correspond
to the low-valued local minima, but do not represent a
global minimum, are marked with a circle symbol. The rest
of the determined pseudomirror points, that corresponds
to less important higher-valued local minima, are marked
with an x-mark. It is noticeable from the results in Fig. 6
that pseudomirror points are able to properly align dif-
ferent shapes and locate a common starting point of the
contour. In addition, the same groups of pseudomirror
points tend to appear in similar locations within a single
shape class. Therefore, affine and non-rigid transforma-
tions of the shape may affect the position of several
pseudomirror points on the shape contour, but usually the
rest of the pseudomirror points preserve their relative
position. The robustness of pseudomirror points is based
on the fact that often these preserved contour points can
be used for accurate shape alignment.

The superiority of pseudomirror points to other com-
petitive methods for determining nominal orientation is
presented in Fig. 7. A suitable pair of similar shapes that
needed to be aligned was chosen to point out the dis-
advantages of the competitive methods. The results of the
alignment obtained using the point of maximal radius [19]
and our proposed method of the “Bone” shape are illu-
strated in the first column of Fig. 7. Non-rigid transfor-
mations of the shape contour (e.g. arisen by inadequate
contour extraction) significantly affect the position of the
centroid and the point of maximal radius, therefore the
nominal orientation of the shape is incorrectly deter-
mined. On the other hand, pseudomirror points exhibit
enough robustness under limited shape deformations.
Methods that use alignment schemes based on the phase
on first harmonic [19,18,22] fail in cases of noise, circular
harmonic locus or first harmonics with neglectable mag-
nitude. An example of such case is presented in the second
column in Fig. 7, where pseudomirror points clearly
achieve a more accurate alignment than first-harmonic
based method. As stated earlier, cross-correlation based
techniques [15] attempt to find the best possible con-
currence among shapes during matching stage. This may
result in an inadequate nominal shape orientation, as
shown in the third row in Fig. 7. Finally, orientation
methods based on moments or the axis of least inertia,
unlike the pseudomirror point based orientation, may fail
Table 2
Bulls-Eye scores achieved on MPEG-7 dataset, computed for different PIFD para

N 64 128

(M¼16, Q¼8) 81.24 81.47

M 6 8 10 12

(N¼256, Q¼8) 76.04 78.52 79.99 80.70

Q 1 4 6 8 1

(N¼256, M¼18) 55.57 81.32 81.79 81.90 8
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in cases of rounded or horseshoe-like objects, as presented
in the last row in Fig. 7.

4.2. MPEG-7 CE-1 Set B database

Initial experiments were conducted on the MPEG7 CE-1
Set B shapes dataset [34]. Representative elements of
MPEG7 CE-1 Set B dataset are illustrated in Fig. 9(a).
MPEG7 CE-1 Set B consists of 1400 shapes representing
real life objects, classified into 70 classes with 20 similar
shapes for each class. This database is widely used for
shape retrieval testing purposes. It includes rotation,
scaling, skew, stretching, defection, indentation and
articulation of shapes which may be used to test robust-
ness of the shape descriptors.

Typical measure of retrieval performance in CBIR are
the precision and recall (PR) diagrams [5,11–13]. Precision
is defined as the ratio of the number of the relevant shapes
to the total number of retrieved shapes, while recall is
defined as the ratio of the number of retrieved relevant
shapes to the total number of relevant shapes in the entire
database. Average precision for all recall values for all
query shapes in the database is computed and presented
by PR diagrams. If an image retrieval algorithm has better
precision than another one, for same recall values, it is
generally considered better.

Another widely adopted performance measure is Bulls-
Eye score [29,30,33]. Unlike PR diagrams, Bulls-Eye score is
a scalar, so the comparison of retrieval performance
between different algorithms is simpler. Bulls-Eye score is
defined as the percentage of relevant results in the first
2 � K retrieved results of a query, where K is the number of
shapes in the query class. Average Bulls-Eye score is
computed after all elements in the dataset have been used
as a query. Thus, the best possible rate is 100%. As opposed
to PR diagrams which demonstrate precision across all
recall values, Bulls-Eye scores favor algorithms which
provide higher precision for top retrieval results.
4.2.1. Evaluation of PIFD descriptor
In order to investigate the scalability of PIFD, retrieval

performance on MPEG-7 dataset was determined for dif-
ferent values of the following parameters: number of
points ðNÞ, number of coefficients ðMÞ and number of
pseudomirror points ðQ Þ. During the experiments, one
parameter was variable, while the other two were fixed.
meters.

256 512 1024

81.50 81.51 81.58

16 18 20 24 32

81.50 81.90 81.83 81.60 81.50

0 12 16 20 24 32

1.90 81.93 81.94 81.91 81.91 81.60
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Table 3
Bulls-Eye score for MPEG-7 dataset.

Method Bulls Eye
score

CC extracting CC matching

Height functionsþSC [2] 90.35 OðN2Þ OðN3Þ
Locally affine invariant

descriptors [44]
89.62 OðN2Þ OðN3Þ

Shape tree [29] 87.70 OðN2Þ OðN4Þ
HPM [30] 86.35 OðN2Þ OðN3Þ
IDSCþDP [33] 85.40 OðN3Þ OðN3Þ
Planar graph cuts [45] 85.00 OðN log NÞ OðN2 log NÞ
MCCþSC [27] 84.93 OðN2Þ OðN3Þ
PIFD 82.03 O(N log N) O(N)
Generative Model [46] 80.03 OðN2Þ OðN2Þ
MCSS [23] 78.8 OðNÞ OðNÞ
Curve Edit [28] 78.17 OðNÞ OðN2logNÞ
Shape Context [32] 76.51 OðN2Þ OðN2Þ
Visual parts [34] 76.45 OðN log NÞ OðN2Þ
NCCn [6] 75.75 OðN log NÞ OðNÞ
CSS [25,34] 75.44 OðN2Þ OðNÞ
CPAFn [12] 74.47 OðN log NÞ OðNÞ
IARHn [13] 73.52 OðN log NÞ OðNÞ
CRFDn [15] 72.57 OðN log NÞ OðN log NÞ
FPDn [11] 65.54 OðN2Þ OðNÞ
WARPn [22] 58.50 OðN log NÞ OðN2Þ
FHAFDn [18–21] 51.34 OðN log NÞ OðNÞ
AFDn [17] 41.08 OðN log NÞ OðNÞ

E. Sokic, S. Konjicija / Signal Processing: Image Communication 40 (2016) 82–9692
All the retrieval results were compared using Bulls-Eye
score. The obtained results are given in Table 2.

For all the experiments the variation of the remaining
parameters (S;Δm, interpolation type) does not affect the
results by more than 0.1%, as long as SZ1 and
ΔmrN=512.

The maximal Bulls-Eye score achieved by PIFD on the
MPEG7 CE-1 Set B dataset was 81.98 for N¼ 512;M¼ 18
and Q ¼ 8. Using 1024 points it can reach 82.03.

Although capturing more details with finer sampling
clearly improves shape recognition, it is clear that the
number of points does not significantly affect the retrieval
performance, since interpolation around pseudomirror
points is used. Satisfactory results are obtained with
N¼ 256 points, while the best results in terms of perfor-
mance vs. computational cost are obtained with 512
points. The points are chosen to be a power of two, so that
FFT could be computed.

Like all Fourier descriptor based techniques, the
descriptor is compact and only few low-frequency com-
ponents are enough for adequate discrimination between
shapes. This implies that M does not need to be large. The
lowest coefficients provide the rough estimate of the
shape and its principal characteristics, while the higher
harmonics carry information about details and, eventually,
noise. If a very large value for M is chosen, more details are
included in the descriptor. These details help distinguish-
ing among classes, but introduce errors when some intra-
class variations (or noise) are present. Thus, the value of
M¼ 18 has proved to be optimal on the MPEG7 CE-1 Set B.

It is noticeable that the best results are obtained for 6–16
pseudomirror points Q . Increasing the number of pseudo-
mirror points negatively affects retrieval performance. This
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occurs due to the fact that a larger number of pseudomirror
points diminish the discriminability between objects that do
not share nominal orientation. Eight pseudomirror points
ðQ ¼ 8Þ should achieve optimal results on most datasets.

PIFD is a parameter based descriptor, which means that
tuning parameters for different datasets may provide
better results. Nevertheless, parameters N¼ 512, M¼ 20
and Q ¼ 8 will obtain promising results for almost all
applications, while keeping the descriptor compact and
efficient. In all the following experiments, except in
Table 3, parameters N¼ 512, M¼ 18 and Q ¼ 8 are used.
The Bulls-Eye score presented in Table 3 is achieved with
N¼ 1024.

4.2.2. Evaluation of PIFD descriptor against other phase-
preserving Fourier descriptors

It has been shown in the previous sections that PIFD is
actually a phase-preserving Fourier descriptor. Therefore,
PIFD is first evaluated against other implemented phase-
based Fourier shape description methods: The Correlation
based FD by Larsson et al. (CRFD) [15], WARP FD proposed
by Bartolini et al. (WARP) [22], The Affine FD proposed by
Arbter et al. (AFD) [17] and FHAFD (First Harmonic Aligned
FD) – actually PIFD with Q ¼ 1 and aligned only using the
phase of the first order harmonic (as proposed by [18–21]).

In order to compare algorithms in a fair environment,
all phase-preserving Fourier-based techniques use the
same number of points ðN¼ 512Þ and Fourier coefficients
ðM¼ 18Þ. The PR diagrams for MPEG7 CE-1 Set B are given
in Fig. 8(a) and Bulls-Eye scores as a part of Table 3.

As it may be seen, PIFD outperforms other comparable
techniques by a large margin. It is important to note that all
other methods share the same computational complexity in
extraction stage as PIFD, while CRFD and WARP have higher
computational complexity in the matching stage.

To the best of the authors' knowledge, PIFD is the first
FD implementation for which the phase was effectively
and directly used in shape-based image retrieval, while
obtaining worth-mentioning results. Moreover, it is the
first time these descriptors (CRFD, WARP, AFD) were tested
on the whole MPEG7 CE-1 Set B.

It is interesting to note that CRFD performs relatively
well on the MPEG7 CE-1 Set B, but unlike our proposed
method it implicitly uses correlation in spatial domain.
This procedure, due to possible contour transformations,
may more often lead to false matching and inadequate
comparisons.

The inadequate scaling coefficient and first harmonic
alignment used by the WARP method cause large variation
of starting point positions. Consequently, the descriptor
retrieval performance is significantly reduced.

4.2.3. Evaluation of PIFD descriptor against other
magnitude-based Fourier descriptors

In contrast to the phase-preserving Fourier descriptors,
magnitude-based Fourier descriptors are considerably
more popular. This may be explained by two facts:
magnitude-based FD achieve the desired invariance
without much difficulty (by simply ignoring the phase
content) and magnitude-based FD usually exhibit higher
retrieval performance.
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Fig. 8. PR diagrams obtained on MPEG-7 dataset (a) PIFD compared to phase-preserving FDs, (b) PIFD compared to magnitude-based FDs.

Fig. 9. (a) MPEG7 CE-1 Set B dataset representative shapes (70 classes with 20 variations per class), (b) Leaf dataset representative shapes (15 classes with
75 variations per class), (c) ETH-80 dataset (8 classes with 10�41 variation per class), (d) Kimia99 dataset (9 classes with 11 variations per class).
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To illustrate this fact, we compared PIFD with our
implementation of several best performing state-of-the art
Fourier descriptors based solely on magnitude of Fourier
coefficients, using the following shape signatures: Furthest
point distance (FPD) [11], Improved arc-height function
(IARH) [13], Combined perimeter area function (CPAF) [12]
and Normalized complex coordinates (NCC) [6].

All magnitude-based Fourier descriptors are extracted
from the same number of points ðN¼ 512Þ and have the
same number of Fourier coefficients ðM¼ 18Þ as PIFD. The
PR diagrams for MPEG7 CE-1 Set B are given in Fig. 8
(b) and Bulls-Eye scores are given as a part of Table 3.

PIFD clearly outperforms all other magnitude-based
FDs, without any additional increase in computational
complexity. It is notable that the inclusion of phase in PIFD
descriptor significantly improves the retrieval
Table 4
Classification score for Leaf dataset.

Method Score

TSLA [48] 96.53
Shape tree [29] 96.28
PIFD 95.47
MDSþSCþDP [33] 95.33
NCCn [6] 94.53
IDSCþDP [33] 94.13
sPACT [49] 90.77
Fourier descriptors (result from [33]) 89.60

Table 5
Performance score for ETH-80 dataset.

Method Score

Decision tree (multi-cue method) [42] 93.02
PIFD 91.64
Symbolic representation [50] 90.28
Height functionsþSC [2] 89.73
Height functions [2] 88.72
IDSCþDP [33] 88.11
NCCn [6] 87.01
MDSþSCþDP [33] 86.80
SCþDP [42] 86.40
SC greedy [42] 86.40
PCA masks [42] 83.41
PCA gray [42] 82.99
Mag-lap [42] 82.23
Dx-Dy [42] 79.79
Color histogram [42] 64.85

Table 6
Performance score for Kimia99 dataset.

Method 1st 2nd 3rd 4th

Height functions [2] 99 99 99 99
Shape tree [29] 99 99 99 99
IDSCþDP [33] 99 99 99 98
Shock Graph [43] 99 99 99 98
Path similarity [51] 99 99 99 99
MDSþSCþDP [33] 99 98 98 98
PIFD 97 96 96 97
Generative Model [46] 99 97 99 98
Shape Context [32] (from [43]) 97 91 88 85

Please cite this article as: E. Sokic, S. Konjicija, Phase preservin
Processing-Image Communication (2015), http://dx.doi.org/10
performance and discriminability of the existing
magnitude-based Fourier descriptor.

Experimental results demonstrate that many phase-
preserving Fourier descriptors under-perform regular
magnitude-based FDs. This is due to the fact that total
exclusion of the phase introduces less error than an
inappropriate phase normalization procedure.

4.2.4. Evaluation of PIFD descriptor against other state-of-
the-art shape description methods

More than a dozen of widely known non-FD-based
state-of-the-art shape description methods have been
chosen and compared with PIFD on the MPEG7 CE-1 Set B.
It is not justified to expect that a global, relatively simple
shape description method such as PIFD, yields good results
as other more complex and application-specific algo-
rithms. Nevertheless, PIFD has one of the best performance
vs. computational complexity ratios of all compared
algorithms.

Some of the best Bulls-Eye scores for non-supervised
shape description techniques reported in the literature are
given in Table 3. Asterisk indicates that we have imple-
mented the method ourselves. Our proposed method does
not excel on MPEG7 CE-1 Set B, but has comparable per-
formance with other shape descriptors. Nevertheless, all
the methods presented in Table 3 that outperform PIFD
have higher computational complexity and “rich” shape
descriptions. Most of them are able to perform partial
shape matching. In addition, many descriptors that
underperformed PIFD also have higher computational
complexity. In the 2nd and 3rd columns of Table 3,
extraction and matching computational complexity of over
20 state-of-the-art methods are listed. It is clear that our
method has the best performance vs. computational
complexity ratio.

It is important to note that the Bulls-Eye scores in
Table 3, as well as other performance scores presented in
the following sections of the paper are achieved with the
optimal setups of the corresponding methods reported by
the authors. In order to reach the best possible perfor-
mance scores, most of the reported results are obtained
using different number of contour points, number of
parameters or descriptor size. Therefore, the Bulls-Eye
score achieved by PIFD on MPEG-7 CE-1 Set B corre-
sponds to the following parameters: N¼ 1024, M¼ 18 and
Q ¼ 8. A reduced number of contour points ðN¼ 512Þ is
used on the other datasets.
5th 6th 7th 8th 9th 10th

98 99 99 96 95 88
99 99 99 97 93 86
98 97 97 98 94 79
98 97 96 95 93 82
96 97 95 93 89 73
97 99 97 96 97 85
88 87 83 74 68 57
96 96 94 83 75 48
84 77 75 66 56 37
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4.3. Leaf dataset

The Swedish leaf dataset is challenging because of its
high inter-species similarity. Leaf database consists of 15
species of leafs, with 75 leaves per species, illustrated in
Fig. 9(b). Contour-based differences between species are
very small. It is notable in Fig. 9(b) that the 7th and 8th
class are almost identical.

According to the available papers based the on Leaf
dataset, Bulls-Eye score is rarely used to evaluate
descriptor performance (only in [47]). Instead, many
authors demonstrate the classification ability of their
proposed descriptors by randomly selecting 25 training
images from each species (25�15 images in total) and
classify the remaining 50�15 images using the 1-nearest
neighbor (1NN) approach. The percentage of correct clas-
sifications is used as a performance measure. This para-
meter better describes the discriminative ability of the
descriptor.

Score obtained by PIFD is compared to other perfor-
mance scores available in the literature and presented in
Table 4.

Note that our method performs comparably to the best
reported methods on this dataset. It is interesting that
PIFD even outperforms IDSC based methods presented in
[33], although the computational complexity of PIFD is
much lower ðOðN log NÞ compared to OðN3ÞÞ. Because of its
local hierarchical structure IDCS performs better than PIFD
on MPEG7 CE-1 Set B, but the Leaf dataset results indicate
that, in contrast, PIFD has promising classification abilities.
It is also interesting to note that PIFD performance is
comparable to the performance of TSLA [48], although the
latter is specifically developed for leaf classification.
Nevertheless, the improvement of PIFD over NCC on Leaf
dataset is not substantial. This could be explained by the
fact that leaves’ contours are usually smooth and contour
changes (tops, peduncles) usually appear in similar places,
hence the difference in phase of Fourier coefficients is not
that important for shape discrimination.

4.4. ETH-80 dataset

The ETH-80 data set [42] contains 10 categories of
8 objects. Each object has 41 color images captured from
different viewpoint. Thus, there are 3280 images in this
database. Some of the instances for every objects are given
in Fig. 9(c). Only the contours of the shapes are used
during classification. As proposed in [42], the descriptors
are tested using leave one object out cross-validation. This
means that each shape in the dataset is removed from the
dataset and afterwards the removed shape is classified
using all others as training shapes. Recognition is con-
sidered successful if the object is assigned to the correct
category label. As presented in Table 5, our method is
outperformed only by Decision tree [42], which is a multi-
cue method where the color information is exploited
during classification. Moreover, it outperforms many
methods with considerably higher computational com-
plexity (such as Height functions and IDSC).
Please cite this article as: E. Sokic, S. Konjicija, Phase preserving
Processing-Image Communication (2015), http://dx.doi.org/10.
4.5. Kimia99 dataset

This dataset contains 11 images in 9 categories, which
are presented in Fig. 9(d). Because of the existing occlu-
sions, missing parts and articulation, this dataset is parti-
cularly difficult for shape-based retrieval. Performance
score on Kimia99 dataset is computed in the following
way: every shape is considered as a query, and the
retrieval result is summarized as the number of top1 to
top10 closest matches in the same class, excluding the
query shape itself. The best possible result is 99 for each of
the ranking. The results are presented in Table 6.

It is clear that PIFD does not perform well on the
Kimia99 dataset as it does on other, mostly curvature-
based shape datasets. PIFD is essentially a global contour-
based shape descriptor, hence it is unable to perform
partial matching, recognize articulations of a silhouette or
compare heavily occluded shapes. However, it still exhibits
solid performance and outperforms more complex shape
descriptors (e.g. Generative Models [46] or Shape Context
[32]). Other Fourier-based shape description methods fail
to achieve any significant performance on this dataset.
5. Conclusion and future work

As we presented in the paper, PIFD has proved to be a
versatile and flexible shape descriptor that performs well
on many different datasets. PIFD is characterized by simple
extraction and matching, which makes it convenient for
usage in real-time applications. Additionally, it has pro-
mising classification abilities.

Pseudomirror points proved to be valuable for deter-
mining the nominal shape orientation. They may be used
to improve shape description methods wherever starting
point and rotation invariance are needed. Combined with
the normalization of scale and translation based on Fourier
coefficients, they may be used to normalize the contour in
order to apply other more complex shape description
techniques.

Experimental results pointed out the future directions
for the improvement of PIFD. Although PIFD outperforms
many other state-of-the-art shape description methods on
curvature based datasets such as ETH-80 or Leaf dataset, it
fails in scenarios that contain articulations, large artifacts
or missing parts. This explains the lower average retrieval
performance on MPEG-7 CE-1 Set B and Kimia99 datasets,
where it was outperformed by hierarchical structural-
based methods and methods that allow partial matching.
Similar to many other contour based descriptors, PIFD fails
in region-based shape-retrieval tasks.

As a part of future research, PIFD should be improved in
two directions: it should exploit certain hierarchical
structure in spatial domain in order to perform partial
(local) matching of the shape and it should be extended to
a region based descriptor, perhaps similarly as Zhang
proposed to extend his FD into 2D Generic FD [52].
Fourier descriptor for shape-based image retrieval, Signal
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