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DashReStreamer: Framework for Creation of Impaired Video Clips under
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The continuous rise of multimedia entertainment has led to an increased demand for delivering outstanding user experience of
multimedia content. However, modelling user-perceived Quality of Experience (QoE) is a challenging task, resulting in efforts for better
understanding and measurement of user-perceived QoE. To evaluate user QoE, subjective quality assessment, where people watch and
grade videos, and objective quality assessment in which videos are graded using one or many objective metrics are conducted. While
there is a plethora of video databases available for subjective and objective video quality assessment, these videos are artificially infused
with various temporal and spatial impairments. Videos being assessed are artificially distorted with startup delay, bitrate changes, and
stalls due to rebuffering events. To conduct a more credible quality assessment, a reproduction of original user experiences while
watching different types of streams on different types and quality of networks is needed. To aid current efforts in bridging the gap
between the mapping of objective video QoE metrics to user experience, we developed DashReStreamer, an open-source framework
for re-creating adaptively streamed video in real networks. The framework takes inputs in the form of video logs captured by the client
in a non-regulated setting, along with an .mpd file or a YouTube URL. The ultimate result is a video sequence that encompasses all the
data extracted from the video log. DashReStreamer also calculates popular video quality metrics like PSNR, SSIM, MS-SSIM and VMAF.
Finally, DashReStreamer allows creating impaired video sequences from the popular streaming platform, YouTube. As a demonstration
of framework usage we created a database of 332 realistic video clips, based on video logs collected from real mobile and wireless
networks. Every video clip is supplemented with bandwidth trace and video logs used in its creation and also with objective metrics
calculation reports. In addition to dataset, we performed subjective evaluation of video content, assessing its effect on overall user
QoE. We believe that this dataset and framework will allow the research community to better understand the impacts of video QoE
dynamics.
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1 INTRODUCTION

Multimedia entertainment represents the dominant type of traffic carried on today’s networks. Video streaming
dominates the Internet, accounting for almost 66% of all Internet traffic in 2022 [65]. Streamed content can vary from
live events, (e.g., big sports events, video games or cultural events) and on-demand content (e.g., movies and TV shows),
with applications such as YouTube, Netflix, Amazon Prime, Disney+, Tik Tok and Apple+ dominating overall traffic
share [65].

The main streaming approach for content delivery is the HTTP adaptive streaming (HAS) technique. HAS allows
seamless content quality adaptation to the varying network conditions by splitting the video content into multiple
fixed-duration segments. Each segment is encoded in multiple qualities (e.g., 200, 500, 1000, 4000 kbps). At the client
side, the player stores downloaded segments in the playback buffer for decoding. Typically, all the intelligence for
segment quality selection is at the client side. Player estimates the available network bandwidth and requests the
segment with maximum quality minimising stalling or rebuffering events. Over the years, many HAS algorithms have
been developed [8]. Traditionally, these algorithms can be classified based on the methods available network resources
are estimated: rate-based, buffer-based, and hybrid-based. The rate-based algorithms estimate available resources by
measurement of available throughput for segment quality decision [33]. The buffer-based algorithms track changes in
the playback buffer levels and map them to segment quality [66]. However, most state-of-the-art algorithms combine
both approaches when making the decision [15, 32, 74, 95]. Also, many authors employ different approaches when
designing algorithm’s adaption logic, including machine learning [46], control theory [15], and optimisation [91].

With the increasing popularity of streaming services, user demand for high Quality of Experience (QoE) has become
a cornerstone in design of HAS system. By definition, QoE represents the magnitude of annoyance or the delight
of a user’s experience with an application or service [10]. Due to its subjective intrinsic component, measuring and
modelling user QoE is a formidable task. The overall QoE in HAS comprises of impairments including initial delay,
average quality, stall events, switching frequency, and video duration [42]. Minimising and finding optimal combination
of these impairments represents a challenging task. Typical approach consists of performing subjective studies devising
weights for each of the impairments [17, 42, 56]. The derived QoE models become an objective function in designing
adaptation logic of adaptive algorithms [90, 91]. On the network side, vendors usually rely on network metrics, such as
packet loss and utilisation, to map to user QoE.

There are two main approaches in the evaluation of QoE: subjective and objective evaluation of QoE. In the objective
video evaluation the video sequence is graded automatically without user interaction. Further, the objective evaluation
can be classified into three groups: No Reference (NR) approach, where original video sequence is not available for
comparison with the distorted one. Some popular NR models are Video-BLIINDS [64] and no-reference edge-based
blur metric [47]; Reduced Reference (RR) models, where the original video sequence is partly available. Some
popular RR models are SRR [35], ST-RRED [73] and LOW BANDWIDTH RR VQ [54]; Full Reference (FR)) approach
where the original video sequence is fully available for comparison with the distorted video sequence. The most
popular FR models are Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM) [84], multi-scale SSIM
(MS-SSIM) [85] and Multimethod Assessment Fusion (VMAF) [1]. However the subjective evaluation of QoE represents
a foundation for better understanding and modelling user experience. To estimate subjective experience, researchers
design a few test sequences containing video impairments. Typically, these impairments are added artificially to the
video sequence [42, 76]. Few studies perform both subjective and objective QoE evaluation [17, 20, 24, 42, 69].
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DashReStreamer: Framework for Creation of Impaired Video Clips under Realistic Network Conditions 3

The main limitation with subjective evaluation of QoE represents the artificial design of video impairments, which
does not reflect realistic network conditions. There is a diverse set of distortions that can occur in streaming session
and streamed video sequences are very diverse in terms of content type and quality. It is very important for researchers
to create and use realistic-based impaired video sequences datasets in order to improve the adaptation algorithm’s
logic. In the literature there are many datasets with bandwidth traces collected in various mobile environments under
different wireless technologies [38, 60]. These datasets can be used to obtain objective performance of adaptation
algorithms, including rate distribution, stall duration, and stall occurrence. Generating test video sequences based
on realistic video logs complements the current literature on QoE. To the best of our knowledge, there are only few
datasets generated based on real traffic patterns available to the research community [5, 21, 22]. However, only some of
them are supplemented with network traces, and none of them is supplemented with video logs and framework that
can reproduce or expand them.

Motivated by this observation, we offer a framework for creating video sequences based on video logs collected either
in real network or based on realistic bandwidth traces. This work is an extension to our previously published work [28].
Furthermore, we provide 234 video sequences based on video logs analysed over different bandwidth profiles collected
from various wireless networks [67]. Video logs were generated by HAS streaming algorithms under bandwidth profiles
from different networks, resulting in a realistic snapshot of decisions algorithms made, including bitrate decisions
(giving us rate distribution) and stall events (number and duration of stalls). Our contributions are summarised as
follows:

• We present DashReStreamer 1, a framework for generating test video sequences with encoded stall and rate
changes. The framework supports different Media Presentation description (MPD) or manifest profiles, making
it suitable for various types of HAS video content.

• In addition to the generated video sequences, the framework provides objective FR metrics calculation for the
distorted video. These metrics include PSNR, SSIM, MS-SSIM and VMAF allowing the design of QoE models
with both subjective and objective metrics.
• The framework supports the creation of impaired videos from YouTube links. This contribution allows for

creating a more diverse set of video sequences from different genres and user generated content. Content type
and user preference for video content can have high relevance in video quality assessment tests as authors
discovered in [62]. This can be utilised to additionally investigate it and use it to improve visual quality
assessment studies.

• We provide an extensive dataset containing video sequences created over 3G, 4G and WiFi networks. In total,
324 video sequences were generated with a duration of 1 to 5 minutes2. The dataset contains video logs and
bandwidth traces used for the generation of video sequences with audio included. These video sequences are
suitable for subjective QoE evaluation and can aid in the better understanding of user experience in different
scenarios. To the best of our knowledge, our QoE dataset is the first publicly available dataset that contains
video sequence, logs, FR metrics, Spatial/Temporal information, bandwidth traces, and subjective testing results.

• We performed subjective evaluation with 28 participants, quantifying impact of 196 impaired video content
on overall user QoE. Our key findings include the importance of user engagement and abandonment rate on
perceived user experience.

1https://github.com/khodzic2/DashReStreamer
2https://shorturl.at/dtISV
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The remainder of this paper is organised as follows. Section 2 describes related work regarding similar datasets and
QoE-related video metrics. The overview and key features of proposed framework are explained in Section 3, while
Section 4 provides an overview of the dataset generated by DashReStreamer. Section 5 outlines performed subjective
evaluation. In Section 6 we layout future work, while Section 7 outlines our conclusion.

2 BACKGROUND AND RELATEDWORK

The main goal of HAS algorithms is maximising user perceived QoE. This daunting task relies on accurate representation
of the subjective impact of video impairments on the user QoE through mapping objective QoE metrics at client side
(e.g., initial delay, average bitrate, rebuffering events, and switching frequency) or metrics measured at the network such
as utilisation and packet-loss rate. Also, the majority of the proposed HAS algorithms in the literature relies on using
QoE models to quantitatively compare their performance to existing state-of-the art HAS algorithms. Furthermore, QoE
models expressed as linear combination of impairments, as depicted in (1), represent a suitable candidate for designing
a HAS algorithm that maximises a given QoE model. A typical approach includes the modeling of the QoE model as the
utility function of the optimisation problem [7, 90, 92].

A typical template equation used for deriving QoE model is [17, 42, 56]:

QoE𝑠 = 𝑤𝑜 · QoE𝑚 − (𝑤𝑡 · 𝐼𝑡 +𝑤𝑣 · 𝐼𝑣) + 𝑓 (𝐼𝑡 , 𝐼𝑣), (1)

where 𝐼𝑡 represents temporal impairment factor, and𝑤𝑡 represents its weight. Temporal quality impairments indicate
degradation due to initial delay and stall performance (stall number and stall duration). While initial delay has a minor
negative effect on QoE (up to 16 seconds), stall events have the highest negative impact on overall user experience [70].
𝐼𝑣 , and𝑤𝑣 represent visual quality impairment factors and its weight, respectively. The average bitrate and switching
behaviour represent visual quality impairments. Similar to stall performance, bitrate quality amplitude has a significant
effect on QoE [31], unlike switching between different qualities while retaining the same resolution [31]. However,
switching between different resolutions can influence user experience [2]. QoE𝑚 depicts the maximum (initial) value
(score) for QoE or growth factor depending on the QoE model, and𝑤𝑜 denotes a weight for the QoE𝑚 score. Some QoE
models take into account impairments that occur simultaneously. In these scenarios, aggregate subjective effect is not
a direct sum of each impairment [42]. The role of function 𝑓 (𝐼𝑡 , 𝐼𝑣) is to compensate for this effect. However, these
impairments (i.e., metrics) are mutually contradictory. High bitrate increases the chance of buffer underflow resulting
in stall events, while streaming at low bitrate quality has a severe negative impact on perceived user experience.

To capture the mapping between user perceived experience and objective metrics, many studies use subjective
evaluation. This evaluation relies on the assessment of the video quality by participants in a controlled lab environ-
ment [13, 42, 56, 71]. Each participant rates a video sequence on a 100-point scale (denoted as 𝑅, where some studies
use 5 or 10-point scale). The procedure is repeated for a series of test sequences. Each test sequence is embellished
with one or more impairments. Finally, for each test sequence and given score R, the impairment impact is calculated
as 100-R. Subjective evaluation is an expensive, time-consuming process performed with a limited number of human
subjects (usually around 30) restricting the statistical validity of collected results. Alternatively, some studies opt for
a crowd-sourcing approach, where a large number of users rate video sequences online in an uncontrolled environ-
ment [17, 36, 76]. Subjective studies published up to 2014 are reviewed in [23]. The most recent subjective studies
are depicted in Table 1, with details on datasets used, type of subjective testing, number of participants and whether
subjective testing is supplemented with objective assessment.
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Table 1. Subjective VideoQuality Assessment (VQA) overview

Year/Paper Dataset Type Participants Objective VQA

2014 [49] LIVE Mobile Stall Laboratory 54 no
2016 [6] LIVE-NETFLIX Laboratory 56 yes
2017 [24] LIVE Mobile Stall II Laboratory 54 yes
2017 [97] BVI-HD Laboratory 86 yes
2017 [29] KoNVid-1k Crowdsourcing 642 no
2018 [49] LIVE-NFLX-II Laboratory 55 yes
2019 [39] Waterloo IVC 4K Laboratory 66 yes
2020 [94] LIVE Wild Compressed Laboratory 40 yes
2020 [93] LSVQ Database Crowdsourcing 6300 yes
2020 [48] KoSMo-1k Crowdsourcing 1800+ yes
2020 [44] LIVE-YT-HFR Laboratory 84 yes
2020 [49] LIVE-SJTU (A/V-QA) Laboratory 35 yes
2020 [22] Waterloo SQoE-III Laboratory 34 yes
2020 [71] LIVE-APV Livestream Laboratory 40 yes
2022 [72] LIVE HDR Laboratory 66 no
2022 [94] ETRI-LIVE STSVQ Laboratory 34 yes
2022 [20] Waterloo SQoE-IV Laboratory 97 yes

The main challenge for subjective evaluation is the augmentation of the test video sequences with particular
impairments. Typically, these impairments are artificially created and added to video clips. However, artificially created
impairments do not necessarily reflect impairments observed in real network conditions, either their frequency (e.g.,
number of rate switches, number of stalls), or duration (e.g., stall duration). There are plethora of video quality assessment
datasets in the literature. We provide details for the most recent datasets, as shown in Table 2.

Other researchers conducted large-scale studies on the impact of stalling and bitrate switches on user QoE. Unfor-
tunately, their datasets are not available for public use. In [36], the authors use an analytic plugin on the client side
to collect more than 23 million video playbacks from 6.7 million unique users. A similar approach with client-side
instrumentation is used in [19] to collect information from more than 2 million unique views from over 1 million
viewers [41] where the authors measured startup delays and buffering ration from more than 200 million video sessions.
In [58] crowdsourcing campaign was run to determine the QoE of each implementation in order to determine the
current state-of-the-art for MPEG-DASH systems within real-world environments.

Datasets from Table 2 modelling adaptively streamed videos are: LIVE Mobile Stall, LIVE Mobile Stall II, LIVE-
NETFLIX where distortions are synthetically inserted using predefined patterns and, LIVE-NFLX-II, Waterloo SQoE-III
and Waterloo SQoE-IV with authentically obtained distortions as stalling and bitrate changes. In [77], authors use
predefined stall event patterns; however, the dataset is not publicly available.

Motivated by the lack of video sequences with the impairments based on real network conditions, and a plethora
of bandwidth datasets collected in real networks availability in literature [38, 57, 60] that can reflects real conditions
observed in networks, we designed a tool for creating video sequences with impairments collected from video sessions
collected over realistic bandwidth traces.

There are many tools and frameworks found in the literature that are designed for subjective video QoE assessment.
Some of these frameworks are limited to the creation of testing scenarios when deriving QoE models [30]. These

Manuscript submitted to ACM



261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6

Table 2. VQA datasets overview

Dataset Year Original/distorted Resolutions/duration Distortions

EPFL-PoliMI [16] 2010 6/78 360p/10s H.264/AVC, error-prone network sim
ECVQ, EVVQ [80] 2012 8/90 360,480p/10s H.264/AVC,MPEG-4 compression

MCL-V [40] 2014 12/96 1080p/6s compression and image size scaling
ReTRiEVED [83] 2014 8/184 570p/7-9s Packet loss, jitter, delay, throughput

BVI-HFR [43] 2015 22/88 1080p/10s same video different fps
LIVE Mobile Stall [49] 2016 24/176 360-720p/29-134s simulated stalls and startup delays
MCL-JCV Dataset [83] 2016 30/1650 1080p/5s H.264/AVC compression

LIVE-NETFLIX [6] 2016 14/112 1080p/60s+ compression and rebuffering
LIVE Mobile Stall II [24] 2017 24/174 360-720p/29-134s systematically inserted stall patterns

BVI-HD [97] 2017 32/384 1080p/5s HEVC compression
KoNVid-1k [29] 2017 1200 720-1080p/8-30s in the wild distortions

LIVE-NFLX-II [5] 2018 15/420 adaptive/25s rebuffering, resolution changes
Waterloo IVC 4K [39] 2019 20/1200 540-2160p/10s AVC, HEVC, VP9, AVS2, AV1

LIVE WC [94] 2020 55/3740 360-1080p/10s in-capture, compression
LSVQ Database [93] 2020 39095 92%1080p/5-12s in the wild distortions

KoSMo-1k [48] 2020 30/1350 1440p–>540p/8s frame interpolation
LIVE-YT-HFR [44] 2020 16/480 1080,2160p/10s compression , frame rate adjustment

LIVE-SJTU (A/V-QA) [49] 2020 14/336 1080p/8s audio, video compression, scaling
Waterloo SQoE-III [22] 2020 20/450 240-1080p/13s stalls, resolution changes

KonVid-150k [27] 2021 150k 720p/5s in the wild distortions
LIVE-APV Livestream [71] 2021 33/315 1080,2160p/7s aliasing, judder, flicker, framedrops

AVT-VQDB-UHD-1 [59] 2019/22 16/300 360p-2160p/8-10s H.264 , HEVC, VP9 compression
LIVE HDR [72] 2022 31/310 540p-2160p/7-10s compression and aliasing

ETRI-LIVE STSVQ [94] 2022 15/437 540p-2160p/5-7s space-time subsampling, compression
Waterloo SQoE-IV [21] 2022 5/1350 180p-2160p/34s stalls, resolution changes

frameworks include Amazon Mechanical Turk3, Microtask 4, Microworkers 5, and Quadrant of Euphoria [11].
The main drawback of proposed frameworks is their limitation to web-based assessment, excluding mobile and PC
implementations.

Other frameworks employ a more active approach, collecting various objective Quality of Service (QoS) metrics
at client side (e.g., initial delay, average bitrate, rebuffering events, and switching frequency) for the QoE model
derivation [18, 25]. Bitstream-based Quality Prediction Software (BiQPS) is a machine-learning based framework
proposed for prediction of the overall quality of the HAS sessions [79]. Nam et al. [50] propose YouSlow, a Chrome
plug-in designed to detect various playback events (start-up latency, rebuffering, bitrate changes, video-loaded fraction,
and location) while a video is being played. The authors used the proposed framework to collect more than 400,000
YouTube views to evaluate various QoE metrics by analysing video abandonment rates on YouTube. Similarly, Chen
et al. [12] proposed QoE Doctor, a tool that runs on the Android mobile device and uses UI control techniques to
drive Android apps to automatically replay user behaviour traces, while collecting the corresponding QoE data for
offline analysis. Another Android-based application, YoMoApp (YouTube Performance Monitoring Application) [82],
passively monitors various metrics (i.e., player state/events, buffer, and video quality level) while streaming YouTube
video on end-user smartphones. The authors extended YoMoApp with a cloud dashboard to openly share the full
raw measurements retrieved by YoMoApp on registered devices [86]. Unlike client-based, some researchers propose

3https://www.mturk.com/
4https://microtask.com/
5https://www.microworkers.com/
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DashReStreamer: Framework for Creation of Impaired Video Clips under Realistic Network Conditions 7

server-based solutions to maximise user QoE by recommending the best encoding scheme depending on the time and
user location [34]. Similar, cloud-based framework is proposed for evaluating HAS performance under various network
conditions, followed by derivation of Mean opinion score (MOS) score from the P.1203 model [76, 78]. Recently, there
have been efforts to design a conceptual generic and extensible framework for model training, model deployment, and
re-evaluation in encrypted video streaming [52, 63]. We conclude that, although there are many tools and frameworks
used in the field of adaptive streaming and VQA, there is no similar framework published in the literature as the one we
present in this paper.

Next, we utilised the fact that our tool can provide every original and impaired video sequence to implement some
FR objective models that compare the original video sequence with the distorted video sequence [75]. Some popular FR
models that are automatically calculated are PSNR, one of the oldest metrics for image comparison in decibel signal
scale that is commonly used as reference for other video quality assessment methods. PSNR is later upgraded with
SSIM [84], multi-scale structural similarity index MS-SSIM [85] and VMAF [1]. Some of the earlier works covering
surveys of objective quality video assessment methods are published by: Olsson et. al. [51], Winkler et. al. [87, 88],
Wu et. al. [89], S. Chikkerur et. al. [14], and Zhou et. al. [98]. Other popular objective VQA methods are Motion-based
Video Integrity Evaluation (MOVIE) index [68] that evaluates dynamic video fidelity of spatial and temporal aspects of
distortion assessment, and MOSp [9], the perceptual metric based on the spatial texture content and cognition-based
factors to identify parts of a video attracting users attention. In [53], authors suggested Full-Reference Video Quality
Assessment (FR-VQA) method that analyses the “worst” scores along the spatial and temporal dimensions of a video.
In [81], authors explained a an adaptive spatial/temporal pooling strategy based on the observed distribution which is an
extension of the most apparent distortion (MAD) index implemented and explained in [37]. Flow similarity index [45]
is FR-VQA metric based on distortions in local optical flow statistics. In [3] authors described FR-VQA metric that
predicts distortion visibility taking into account models of luminance adaptation, spatiotemporal contrast sensitivity
and visual masking. In [96], authors presented a VQA perception-based hybrid model that simulates the human visual
system perception process by adaptively combining distortion and blurring artifacts using an enhanced nonlinear
model. Bampis et. al. [4] suggested two improvements to the VMAF metric mentioned earlier, called spatio-temporal
VMAF and ensemble VMAF, based on perceptually-motivated space-time features calculated at multiple scales.

The key challenge in subjective evaluation lies in augmenting test video sequences with particular impairments. These
impairments are typically artificially generated and then incorporated into the video clips. However, these artificially
generated impairments may not always accurately represent the impairments experienced in real network conditions.
This discrepancy can apply to factors like frequency (such as the number of rate switches or stalls) and duration (for
example, the duration of stalls). Recognizing the lack of video sequences that replicate impairments based on real
network conditions and the plethora of bandwidth data available in existing literature from real network scenarios,
we developed a tool for creating video sequences with impairments gathered from video sessions conducted under
realistic bandwidth traces. While there are numerous tools and frameworks available in the literature for subjective
video Quality of Experience (QoE) assessment, it is worth noting that no similar framework to the one presented in
this paper has been published. Furthermore, we leveraged the capability of our tool to provide both the original and
impaired video sequences. This enabled us to implement particular Full-Reference (FR) objective models that compare
the original video sequence with the distorted video sequence. We believe this framework and dataset are unique in the
existing literature and that they will aid in ongoing research to better understand factors affecting user experience.
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3 DASHRESTREAMER OVERVIEW

DashReStreamer is an open-source multiplatform framework that enables the reproduction of network effects on video
player performance by creating video clips that include all resolution and bitrate changes and rebuffering events. It can
be used on different types of content including the content that is stored on some server and prepared for adaptive
streaming by splitting into chunks of a different resolutions and described in regular or byterange .mpd files. Besides of
that, the framework can be also used to re-create YouTube videos, by providing only a video Uniform Resource Locator
(URL) instead of an .mpd. This functionality opens up many possibilities for a researchers to investigate an impact of all
distortions caused by adaptively streaming algorithms on a different video genres, including a wide spectrum of user
generated content. As content type and user preference for video content can have high relevance in video quality
assessment tests as authors discovered in [62], it can be utilised to additionally investigate it and use it to improve
visual quality assessment studies. Objective VQA metrics are very important in evaluating and improving the quality of
video content. For example, metrics like PSNR, SSIM, MS-SSIM or VMAF can be used for creation of a more complex
video quality prediction models or for the development or improvements of video codecs and streaming protocols. We
took advantage of our framework functionality to gather original videos for reference and implemented automatic full
reference objective metrics calculation per segment.

The implementation of DashReStreamer is done using the Python programming language and the FFmpeg6 library.
FFmpeg is a cross-platform multimedia framework that can be used to perform various operations on a wide range of
media formats including video and image. These operations include transforming, e.g., encoding, decoding, transcoding,
multiplexing, demultiplexing, streaming, and filtering.

DashReStreamer main functionality is achieved through the use of video logs generated by the client during the
original content stream in an uncontrolled environment (i.e., a real production network). These logs contain information
related to HAS QoS metrics, such as segment bitrate, resolution, duration, and stall information. A video log format is
shown in Table 3.

Table 3. Sample output from the video log

Type Description Unit
Seg_# Streamed segment number int
Seg_Dur Segment duration ms
Arr_Time Arrival time ms
Del_Time Time taken to receive the segment ms
Seg_fps Segment FPS int
Stall_Dur Stall duration ms
Rep_Level Representation Quality kbps
Del_Rate Delivery rate kbps
Act_Rate Actual rate kbps
Byte_Size Size of segment byte
Buffer_Level Buffer level ms

DashReStreamer requires three key pieces of information in order to generate video clips:

6https://www.ffmpeg.org/
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• Segment number: index representing the position of each segment.
• Segment bitrate: this is used to map specific subsets of segments used during playback with their representations

described in an .mpd file.
• Stall events: the occurrence and duration of stall events are used to add stalls, which involve duplicating the

last frame of a segment, at the end of segments that have been affected by rebuffering events.
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Fig. 1. DashReStreamer workflow

Figure 1 depicts DashReStreamer workflow in creating video impairment content. DashReStreamer starts by parsing
video log file, which can be stored in .csv (comma-separated values) or tabular format, where all relevant information
about streamed segments are identified for further processing. Logs are parsed and results are stored in python
dictionaries. Every segment’s index and bitrate are stored in one dictionary. Position and duration of each stall are
stored in the other dictionary. The next step includes filtering only a subset of streamed segments. Segments can be
stored locally or remotely on a web server. In the first case, all needed audio and video segments and their initialization
segment files are copied from a location where they are locally stored to an output location. The initialization segment
file contains information required to initialize the video decoder. In the latter case, an .mpd file or a youtube link is
used for downloading the streamed segments from the server to the local machine. This procedure is similar to the
behaviour of traditional HAS client (without actual decoding of the data). If a youtube link is passed as a parameter
instead of an .mpd url then youtube-dl library7 is used to download the different video representations (identified when
parsing video logs) of a video clip from a given url. The video clips are then split into segments of a given duration,
followed by transfer of all the segments needed to the output location for further processing. Python-mpegdash8 library
is used for parsing .mpd files. When the regular .mpd file is recognised, it is parsed and the urls of the necessary audio
and video segments are saved into a dictionary and then downloaded to the local destination. For a byterange .mpd
representation type, file is simultaneously parsed and byte ranges of needed segments are downloaded to the local
destination. The pseoudocode od these functions is shown in Algorithm 1.

After initialization, audio and video segments are prepared, DashReStreamer proceeds with combining segments
with init file (originally segments are in an .m4s format). The output of this operation are new audio and video segments
(in an .avi9 and an .mkv10 format respectively) which can be played independently. These functions pseudocode is
shown in Algorithm 2.

Next, if objective metrics calculation is required and they need to be calculated for a YouTube movie, highest
resolution video representation is downloaded and splitted into a segments of a needed duration. Those segments are
then later used as reference segments for objective metrics calculation. If objective metrics calculation is calculated for
regular/byterange .mpd described video, then maximum parsed resolution saved in dictionary is used to download

7https://youtube-dl.org/
8https://github.com/sangwonl/python-mpegdash
9Audio Video Interleave
10Matroska Multimedia Container
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Algorithm 1 Video log parsing and local/youtube/mpd segments preparation

1: procedure read_replevels_stalls_log(𝑝𝑎𝑡ℎ, 𝑙𝑜𝑔_𝑐𝑜𝑙𝑢𝑚𝑛_𝑛𝑎𝑚𝑒𝑠, 𝑑𝑒𝑙𝑖𝑚𝑖𝑡𝑒𝑟 )
2: parse_file(csv or tab)
3: 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ← 𝑖𝑛𝑑𝑒𝑥, 𝑏𝑖𝑡𝑟𝑎𝑡𝑒, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑠𝑡𝑎𝑙𝑙,

4: end procedure
5: procedure prepare_local_segments(𝑝𝑎𝑡ℎ_𝑡𝑜_𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑒𝑠)
6: find_and_copy_audio_init_file()
7: find_and_copy_video_init_file()
8: copy_video_segments()
9: copy_audio_segments()
10: end procedure
11: procedure download_youtube_movies(𝑝𝑎𝑡ℎ,𝑢𝑟𝑙, 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦)

for 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 in 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦
12: youtube-dl(movie)
13: 𝑦𝑡_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ← 𝑣𝑖𝑑𝑒𝑜_𝑛𝑎𝑚𝑒

14: end procedure
15: procedure youtube_split(𝑝𝑎𝑡ℎ, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦)

for𝑚𝑜𝑣𝑖𝑒 in 𝑦𝑡_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦
16: ffmpeg_split(movie,segment_duration)
17: copy_needed_segments(dictionary)
18: end procedure
19: procedure parse_mpd(𝑚𝑝𝑑_𝑢𝑟𝑙, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)
20: MPEGDASHParser.parse(mpd_url)
21: 𝑎𝑢𝑑𝑖𝑜_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ← 𝑎𝑢𝑑𝑖𝑜_𝑢𝑟𝑙𝑠
22: 𝑣𝑖𝑑𝑒𝑜_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦 ← 𝑣𝑖𝑑𝑒𝑜_𝑢𝑟𝑙𝑠

for 𝑎𝑢𝑑𝑖𝑜_𝑢𝑟𝑙 in 𝑎𝑢𝑑𝑖𝑜_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦
23: download_segment(audio_url,destination)

for 𝑣𝑖𝑑𝑒𝑜_𝑢𝑟𝑙 in 𝑣𝑖𝑑𝑒𝑜_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦
24: download_segment(video_url,destination)
25: end procedure
26: procedure parse_byterange(𝑚𝑝𝑑_𝑢𝑟𝑙, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)
27: calculate_byterange(mpd_url) ⊲ For all needed audio and video segments and init files
28: download_byterange(destination) ⊲ Download specific bytes of a byterange for every file
29: end procedure

Algorithm 2 Prepare audio and video files with init

1: procedure prepare_init(𝑝𝑎𝑡ℎ)
2: find_init(destination) ⊲ Finds audio and video init files in the destination

for 𝑎𝑢𝑑𝑖𝑜_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 in 𝑝𝑎𝑡ℎ𝑎𝑢𝑑𝑖𝑜_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦
3: combine_with_init()

for 𝑣𝑖𝑑𝑒𝑜_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 in 𝑝𝑎𝑡ℎ𝑎𝑢𝑑𝑖𝑜_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦
4: combine_with_init()
5: end procedure

maximum resolution segments, and combine them with initialization file, in order to be used as reference segments in
metrics calculation. When all reference segments are prepared, then every original segment is scaled to a maximum
resolution in order to be able to achieve different metrics calculation. After that we use Netflix libvmaf 11 library using
11https://github.com/Netflix/vmaf/tree/master
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ffmpeg for objective metrics calculation to calculate PSNR, SSIM, MS-SSIM and VMAF metrics. For VMAF metric, the
user can send a url file where different pretrained models are stored. By default, currently last model version (in the
time of writing this paper that was v0.6.1) is used if no other is provided. The default VMAF model is trained to predict
the quality of videos displayed on a 1080p HDTV in a living-room-like environment. VMAF is also calculated with 4k
and phone model versions. The subjective experiment used to train phone model uses similar video sequences as the
default 1080p HDTV model, except that they were watched on a cellular phone screen. 4k model predicts the subjective
quality of video displayed on a 4KTV and viewed from the distance of 1.5 times the height of the display device. In total
4 .csv files (1080p - tv, 4k - tv, 1080p - mobile, and 4k -mobile) with different VMAF version in addition to PSNR, SSIM
and MS-SSIM are calculated for every streamed video segment. These functions pseudocode is shown in Algorithm 3.

Algorithm 3 Prepare and scale segments then calculate objective metrics

1: procedure download_yt_segments(𝑝𝑎𝑡ℎ,𝑢𝑟𝑙, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛)
2: youtube_dl(𝑝𝑎𝑡ℎ,𝑢𝑟𝑙 ) ⊲ Download max resolution video representation
3: ffmpeg_split(𝑝𝑎𝑡ℎ, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ⊲ Split video into a segments of a given duration
4: end procedure
5: procedure download_maxres_segments(𝑝𝑎𝑡ℎ, 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

getmaxres_helper(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) ⊲ Find maximum resolution segment and save it as a variable
6: 𝑚𝑎𝑥_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ←𝑚𝑎𝑥𝑟𝑒𝑠

for 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 in 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦
7: download_segment(𝑠𝑒𝑔𝑚𝑒𝑛𝑡,𝑚𝑎𝑥_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)
8: init_segment(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)
9: end procedure
10: procedure scale_segments(𝑝𝑎𝑡ℎ, 𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦)
11: getmaxres_helper(𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) ⊲ Find maximum resolution segment and save it as a variable
12: 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ←𝑚𝑎𝑥𝑟𝑒𝑠

for 𝑖𝑛𝑖𝑡𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 in 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛
13: ffmpeg_scale(𝑖𝑛𝑖𝑡𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ,𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)
14: end procedure
15: procedure calculate_metrics(𝑝𝑎𝑡ℎ,𝑚𝑜𝑑𝑒𝑙𝑝𝑎𝑡ℎ,𝑚𝑜𝑑𝑒𝑙𝑝𝑎𝑡ℎ4𝑘)

for 𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 in 𝑝𝑎𝑡ℎ

16: calculate_psnr(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 )
17: calculate_ssim(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 )
18: calculate_msssim(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 )
19: calculate_vmaf(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑠𝑒𝑔𝑚𝑒𝑛𝑡,𝑚𝑜𝑑𝑒𝑙𝑝𝑎𝑡ℎ,𝑚𝑜𝑑𝑒𝑙𝑝𝑎𝑡ℎ4𝑘)
20: save_to_csv(𝑝𝑠𝑛𝑟, 𝑠𝑠𝑖𝑚,𝑚𝑠𝑠𝑖𝑚, 𝑣𝑚𝑎𝑓 _𝑛𝑜𝑟𝑚𝑎𝑙, 𝑣𝑚𝑎𝑓 _𝑛𝑜𝑟𝑚𝑎𝑙_𝑝ℎ𝑜𝑛𝑒, 𝑣𝑚𝑎𝑓 4𝑘, 𝑣𝑚𝑎𝑓 4𝑘 − 𝑝ℎ𝑜𝑛𝑒)
21: end procedure

Next, if video segments merging is required, we combine the individual pairs of audio and video segments, using the
FFmpeg library. In this step, combined segments can also be rescaled to a different resolution if that is indicated by
a parameter. For YouTube video, this step is skipped as YouTube segments are already combined with audio. These
functions pseudocode is shown in Algorithm 4.

To produce a video sequence that includes all bitrate/resolution changes and stall events, we follow a specific process.
Initially, we generate stall-induced segments, which involves using the duration of the stall and the segment just before
it starts. We then take the last frame of the identified segment and append it to the end of the segment for the duration
of the stall. Next, we overlay a .gif12 showing stalling event on top of the stall-induced segments. Once all segments are
12Graphics Interchange Format
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Algorithm 4 Create final merged video

1: procedure concat_segments_final(𝑝𝑎𝑡ℎ, 𝑔𝑖 𝑓 𝑝𝑎𝑡ℎ, 𝑠𝑡𝑎𝑙𝑙𝑠_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦, 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦𝑝𝑎𝑡ℎ_𝑓 𝑖𝑛𝑎𝑙)
for 𝑠𝑡𝑎𝑙𝑙 in 𝑠𝑡𝑎𝑙𝑙𝑠_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦

2: ffmpeg_sseof(𝑚𝑒𝑟𝑔𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑠𝑡𝑎𝑙𝑙 .𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛) ⊲ create jpg picture from the stalled segments last frame
3: ffprobe(𝑚𝑒𝑟𝑔𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ) ⊲ use ffprobe to get segment audio and video details
4: 𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑖𝑛𝑓 𝑜 ← 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡, 𝑓 𝑝𝑠, 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 𝑠𝑎𝑚𝑝𝑙𝑒_𝑟𝑎𝑡𝑒, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑙𝑎𝑦𝑜𝑢𝑡, 𝑐𝑜𝑑𝑒𝑐_𝑛𝑎𝑚𝑒

5: 𝑠𝑡𝑎𝑙𝑙𝑒𝑑_ 𝑗𝑝𝑔← 𝑓 𝑓𝑚𝑝𝑒𝑔_𝑙𝑜𝑜𝑝 (segment_info,stall.duration) ⊲ create new segment of a stalled part - jpg of
the stall duration

6: 𝑠𝑡𝑎𝑙𝑙𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡 ← 𝑓 𝑓𝑚𝑝𝑒𝑔_𝑓 𝑖𝑙𝑡𝑒𝑟_𝑐𝑜𝑚𝑝𝑙𝑒𝑥 (merged_segment,stalled_jpg, gifpath) ⊲ concat original
segment and stalled part + add stalling gif animation

7: segment_dictionary.add(𝑠𝑡𝑎𝑙𝑙𝑒𝑑_𝑠𝑒𝑔𝑚𝑒𝑛𝑡

8: ffmpeg_merge(𝑠𝑒𝑔𝑚𝑒𝑛𝑡_𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦, 𝑝𝑎𝑡ℎ_𝑓 𝑖𝑛𝑎𝑙 ) ⊲ merge all segments including stalled ones into one
movie and save it to a required path

9: end procedure

ready, we merge them into a final .mkv video file. Finally, if it is indicated by an input parameter, all intermediate files
that are created in a process are deleted except the final .mkv video.

The main limitation of the proposed framework lies in its reliance on external video logs to create impaired video
sequences. While this approach is suitable for the ’offline’ generation of impaired video sequences, it could be extended
to an “online” approach where video sequences are streamed directly to end-users over a real network. In this case,
video logs and impaired video sequences would be generated on the fly. This approach eliminates the need for a
data-driven testbed. Furthermore, the framework currently only supports locally stored video content or the YouTube
platform. While proposed framework relies on the creation of video sequences with realistic impairments, the addition
of artificial impairments would be beneficial for conducting fine-grained subjective studies aimed at assessing the
impact of particular impairments.

4 QOE DATASET OVERVIEW

In this section, we provide a brief summary of the dataset13 that was utilized to generate a variety of video sequences
under different wireless conditions. The majority of the video sequences within this dataset includes at least one
instance of rebuffering, as these cases are particularly relevant for modelling adaptive streaming QoE.

4.1 Video Logs Generation

For the creation of the video sequences, we rely on video logs produced by experiments described in [67]. The video
logs are generated based on bandwidth traces collected from real operational networks. Figure 2 illustrates a generalised
testbed used for producing video logs.

The experimental setup involves a server machine, an intermediate device (such as a wireless access point), and
one or more wireless-enabled end devices (like mobile devices). The server machine serves as both a web server for
video content and a traffic shaper for the connection between the server and intermediate device. To simulate different
network conditions, the traffic shaping process uses tools like Linux traffic control (tc) and bandwidth logs. Values
are extracted from the bandwidth log and applied to a bottleneck link (i.e., constrained link) using tc tool. Following a
specific time interval, determined by the granularity of the bandwidth log, this value is replaced with the next value

13https://shorturl.at/dtISV
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Video Player Web Server

Traffic Shaper: Trace Driven

Wireless Technologies

Fig. 2. The data-driven generation testbed.

from the log. The intermediate device connects to the end devices via a WiFi channel. The end devices stream content
from the server through a constrained link, resulting in the creation of a video log once the streaming is complete.

The video content stored on the server is an animation clip encoded in 4K resolution using the H.264/AVC codec. The
clip is encoded at thirteen different bitrates, ranging from 235 Kbps to 40 Mbps, and across eight different resolutions.

To shape the traffic, bandwidth logs were collected from three wireless technologies: 3G, 4G, and WiFi. The logs
included various mobility patterns such as static, pedestrian, car, bus, and tram.

Table 4 depicts a summary of the statistics, including the average and standard deviation of measured bandwidth,
for the 3G, 4G, and WiFi logs [67]. 3G logs exhibit the lowest average bitrate when compared to 4G and WiFi. The
relatively high standard deviation in 3G bandwidth logs negatively affects the video QoE metrics. To illustrate, Table 7
reveals that video logs based on 3G bandwidth data exhibit a higher number of quality switches, stalls, longer stall
durations, and lower average quality bitrates compared to the other two technologies. Conversely, with the highest
average bitrate, WiFi logs have the least detrimental impact on video QoE metrics, as demonstrated in Table 7.

Table 4. Throughput Statistics for collected bandwidth logs

Technology Average (Mbps) Standard Deviation (Mbps)
3G 1.26 0.97
4G 11.32 13.17
WiFi 18.71 17.73

4.2 Video Sequences Generation

For the first part of our dataset, we used the video logs described in section 4.2 and our proposed tool (discussed
in Section 3) to create 234 impaired video clips. As for the video content, we selected three open-source clips from
paper [55]. Video information is shown in Table 5.

Table 5. Dataset I info

Video clip Type Duration Max resolution / fps avg si/ti metric

Big Buck Bunny (BBB)14 animated characters with a simple background 10m:34s 3840x2160 / 60 30 / 5.6
Sintel15 complex animated characters and scenery 4m:48 s 3840x2160s / 24 28.3 / 9.6

Tears of Steel (TOS)16 real actors with superimposed digital effects 12m:14s 3840x2160s / 24 29.8 / 9.6

Each of the selected clips is encoded at thirteen different bitrates and eight different resolutions, as shown in Table 6
and sourced from paper [55]. Additionally, all clips include audio for a duration of five minutes plus the total stall
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duration. We chose 27, 25, and 26 video logs generated from 3G, 4G, and WiFi network traces, respectively. Table 7
provides the video quality-of-service metric statistics for the selected logs.

Table 6. Ladder for the average encoding rate, and resolution for the used dataset

No. Bitrate Resolution
13 40 Mbps 3840x2160
12 25 Mbps 3840x2160
11 15 Mbps 3840x2160
10 4.3 Mbps 1920x1080
9 3.85 Mbps 1920x1080
8 3 Mbps 1280x582
7 2.35 Mbps 1280x582
6 1.75 Mbps 720x328
5 1.05 Mbps 640x292
4 750 kbps 512x234
3 560 kbps 512x234
2 375 kbps 384x174
1 235 kbps 320x146

Table 7. Average QoS metrics for selected video logs

Network Bitrate (Mbps) Num. Switches Num. Stalls Stall Dur. (s)
3G 1.6 19.6 3.4 53.9
4G 5.8 18.8 0.96 14.3
WiFi 6.3 12.5 0.77 1.95

For the second part of our dataset we have chosen 2 popular YouTube videos per category (movie, animated,
documentary, gaming, sport, music and news). We made sure that the videos were uploaded using CC (Creative
Commons) YouTube license type. Information about videos is given in Table 8

Figure 3 depicts boxplot of measured throughput for WiFi, 3G, and 4G technologies. On average WiFi logs shows
highest throughput values compared to 3G and 4G. This result is intuitive asWiFi logs are collected in static environment.
Also, 4G exhibits highest variation in measured throughput with values ranging up to 50000 Kbps. Overall 3G depicts
lowest measured throughput. This leads to highest number of stalls and stall duration for 3G traces, followed by 4G and
WiFi network traces. This result is intuitive and aligns with the throughput statistics presented in Table 4.

High throughput values for WiFi and 4G result in a low number of stall events compared to 3G, as outlined in Table 4.
The time when stall occurs is shown in Figure 4. According to the Figure 3, most of the stall events for 4G and WiFi
occur in the first 200 seconds of the video sessions. Further analysis of stall events is depicted in Figure 5a and 5c,
showing the time when stall occurs and its duration. Most of the stalls for 4G happen at the beginning of the session,
with very few stalls taking place toward the end of the session. However, for the WiFi, stall events are more evenly
spread over the duration of the session. We believe this observation is due to nature of collection of WiFi logs. WiFi
logs are collected in static environment, limiting fluctuation in wireless channel thus having less negative impact on
video QoE metrics.
Manuscript submitted to ACM



729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

DashReStreamer: Framework for Creation of Impaired Video Clips under Realistic Network Conditions 15

Fig. 3. Throughput distribution across different wireless technologies

Fig. 4. Distribution of stall occurrence across different wireless technologies

(a) WiFi (b) 3G (c) 4G

Fig. 5. Distribution of stall events and stall duration across video sessions

Manuscript submitted to ACM



781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16

Table 8. YouTube dataset information

Video clip Category Duration Number of views avg si/ti metric

HIGHLIGHTS | Valencia 1-3 Real Madrid | Spanish Super Cup 17 Sport 2m:29s 4.2M+ 26.4 / 11.4
THANK YOU, C. RONALDO | Real Madrid Official Video18 Sport 6m:36s 59M+ 32.9 / 12.5

LES TWINS | World of Dance CHAMPIONS | WE MADE IT19 Music 5m:18s 3.9M+ 20.5 / 3.7
Real Madrid official music video | If You Create The Noise20 Music 2m:59s 6.5M+ 15.8 / 10.2

EVERTON STADIUM UPDATE | Stadium Being Brought To Life21 News 5m:30s 27k+ 31 / 4.7
Vivek Ramaswamy on Fox News 6.29.2322 News 5m:30s 44k+ 68.1 / 3.3

Dark Souls III - Opening Cinematic Trailer | PS4, XB1, PC23 Gaming 3m:35s 6.1M+ 16.6 / 2
Pocket Champs | Official Trailer | 2022 24 Gaming 0m:52s 68M+ 12.9 / 6

TERMINATOR 7: End Of War (2022) Official Trailer Teaser25 Movie 1m:21s 16M+ 10.9 / 5.7
Wrong Number Mr Bean! | Classic Mr Bean26 Movie 10m:45s 21M+ 19.7 / 7.4

F-35B in action27 Documentary 9m:49s 7.3M+ 15.6 / 3.9
SUPERSPREADER - Documentary Trailer - Faith Forward28 Documentary 1m:0s 1M+ 29.7 / 11.1

Teen Titans Go! to the Movies -Alan Walker - Spectre 29 Animated 0m:52s 82M+ 33.3 / 7.3
Turn That Crown Upside Down - Pencilmation 30 Animated 4m:38s 68M+ 29.6 / 5.6

For the 3G logs, most of the stall events occur after 150 seconds of video session, as depicted in Figure 4. Figure 5b
depicts that most of the stalls occur at the beginning and end of the video sessions. One reason for this observation can
be attributed to the presence of diverse mobility patterns within the collected 3G logs. These logs include routes such
as metros, ferries, and trains, where the bandwidth values tend to decrease as users move farther away from the base
station. Previous analysis shows limitations of modelling stall events arbitrarily, as the distribution of stall events is
heavily dependent on environment in which users stream video content.

Finally our dataset consists of the following features:

(1) Video sequences encoded with the impairments based on a real bandwidth logs collected in 3G, 4G and WiFi
environments.

(2) Objective video metrics ((VMAF, SSIM, MS-SSIM, PSNR)) and metrics related to compression difficulty [61] (i.e.,
Spatial Information and Temporal Information) calculated for each video sequence.

(3) Bandwidth logs containing measured throughput captured in 3G, 4G, and WiFi networks under different
mobility patterns.

(4) Video log files containing information for each segment bitrate, bitrate switching behavior and stall events
obtained based on collected bandwidth logs.

5 SUBJECTIVE EVALUATION OF IMPAIRED VIDEO SEQUENCES

We complement our dataset with a subjective study conducted in a controlled laboratory environment. We use YouTube
videos for subjective testing. The video dataset consists of a total of 98 videos, with 14 videos representing each of the
seven categories: sports, music, news, gaming, movies, documentaries, and animated content, as depicted in Table 8.
Video lengths vary from 50 seconds to 330 seconds, depending on the video genre.

Subjective testing was conducted in a controlled environment using the modified AVRate Voyager, an open-source
online testing platform [26]. The entire experiment took place on the same PC in a controlled laboratory environment,
using a 32” 4K monitor for viewing.

Before each session, users received a brief explanation of how the testing would be conducted, including the meanings
of the terms listed in the questionnaire. During the training stage, each user was provided with an example of a short
Manuscript submitted to ACM
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video and a questionnaire. Following the training stage, a demographic form was administered, followed by seven
videos randomly chosen from each category.

After watching each video, users rate quality on a scale 1-5, as depicted in Table 9. In addition to the overall rating,
users can mark all degradations that have negatively affected the rating. These degradations include stalling, resolution
switches, low quality (including artifacts and pixelation), and uninteresting content. Finally, users can indicate whether
they would normally stop watching the video. In total, 28 subjects participated with 189 video sequence rankings.

Table 9. Evaluation criteria for video sequences

Quality
Evaluation Description

5 Excellent experience
4 Minor impairments
3 Noticeable impairments
2 Clearly impairments
1 Annoying experience

The average quality rating is 3.18 across all videos, with distribution for each rating depicted in Table 10. Majority of
the user felted that videos had minor or major visual impairments.

Table 10. Throughput Statistics for collected bandwidth logs

Rating Percentage (%)
1 5.3
2 27
3 23.8
4 32.1
5 11.6

The leading impairments for video with annoying experience (1) were low quality and switching frequency (45.2%)
followed by the stalling events. Similarly, low quality impairment was leading factor for videos rated as 2. For the
remaining ratings, switches were the dominant impairment in deciding overall user experience.
Observation #1: Overall, switching frequency has a significant effect on user experience across all ratings. While
previous studies show that stalling events and low quality are the main driver for the user experience [31, 70], the use
of 4K large screen exaggerates the impact of switches on the user QoE.

Out of 98 video sequences, 22% were encoded with the stall events. In 95% of them, user ranked stalling events as the
dominant factor negatively affecting the overall user QoE.

In our analysis we introduced the possibility of users to mark if they find content interesting. Our hypothesis is that
the lack of interest in the video content, would result in lower overall user QoE. The average rating for content that
users found interesting is 3.28. However, for uninteresting content, average rating drops to 2.88.
Observation #2: User engagement plays a key role in user QoE, resulting in 13% decrease of average user QoE for the
uninteresting content. Furthermore, 25% of the user would stop watching the video due to low user engagement.

Another important aspect is the analysis of the abandonment rate. The abandonment rate represents percentage of
video content which user would stop watching. In our study 36% of video content would be abandoned. Dominant factor
for abandoning the content is low quality (33.8%), followed by frequency of switches (28%) and stall events (12.5%).
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Observation #3: The abandonment rate represents one of the key factors for overall user QoE. However, the majority
of QoE models only predicts overall QoE score of the content, they omit modelling of the abandonment rate.

Similar to previous studies, our study shows that quality, switching frequency and stall events play a dominant role
in overall user QoE. However, engagement of the user is a factor that needs to be included when deriving objective
QoE model. Finally, modelling of the abandonment rate and its effect on QoE model represents exciting open venue for
future research.

6 FUTUREWORK

Future work will include extended subjective testing evaluation of a dataset created with DashReStreamer and quantify-
ing impact of user engagement and abandonment rate on overall user QoE. Based on the subjective evaluation, future
work will focus on deriving novel objective QoE model that incorporates probability of user abandoning content due to
different impairments.

For the DashReStreamer, future work will include extending the framework with arbitrary addition of impairments
to analyse in detail effect on each impairment. As for the bandwidth traces, we plan to collect a set of a 5G mobile
network traces and use them to complement existing dataset.

7 CONCLUSIONS

The paper describes a framework called DashReStreamer, which is an open-source and cross-platform tool for repro-
ducing adaptively streamed video from real operational networks. With DashReStreamer, it is possible to recreate
video clips with all the bitrate/quality changes and stall events that occur in the network. The tool employs video logs
generated by adaptive streaming algorithms to mimic their behaviour and selects bitrates based on realistic time-varying
conditions observed in the network. It also supports different full reference objective metrics calculation automatically,
and also scaling video clips to a required resolution. We supplement the framework with 332 video clips that mimic the
behaviour of various adaptive streaming algorithms under different wireless technologies (3G, 4G, and WiFi), creating a
dataset with realistic bitrate changes and stall events. We believe that the dataset and subjective evaluation results will
be useful for researchers to better understand the factors affecting user experience for adaptive streaming multimedia
technologies and to aid in both objective and subjective quality of experience evaluations.
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A DASHRESTREAMER: EXAMPLE OF USE

There are several options available to run DashReStreamer, either directly through the command line or using a
configuration file. For command line use, Table 11 depicts the supported options for running the framework.
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Table 11. Options for running QoE framework

Parameter Description
parameter_type Flag indicating use of command line arguments

or config file
path_to_log Location of video log
rep_lvl_col Column name used in video log for bitrate
seg_index_col Column name used in video log for segment

index
stall_dur_col Column name used in video log for stall dura-

tion
chunk_dur_col Column name used in video log for segment

duration
height_col Column name used in video log for resolution

height
log_separator Separator used in video log (example: tab)
config_path Location of config file
path_video Location of video segments
path_audio Location of audio segments
gif_path Location of gif file
log_location Flag indicating location of segments (local or

remote)
dest_video Locationwhere to save intermediate files during

processing (segments)
final_path Location where final concated video is saved
auto_scale Options for enabling auto-scaling of segment

resolution
scale_res Rescaling segments to predetermined resolution

(example: 1080p)
calculate_metrics True or false flag indicating whether objective

metrics should be calculated
merge_video True or false flag indicating whether separate

segments should be merged into final video
cleanup True or false flag indicating removal of interme-

diate files (segments)

Case #1: For segment files stored locally, the command outlined in Listing 1 produces a video file based on the video
log file, calculates objective metrics and deletes all intermediate files.

The depicted example in Listing 1 utilises the open-source movie Sintel, filters segment qualities used by adaptation
algorithm outlined by video log file (video_log.log file), re-creates video sequence adding stall events (with the rebuffering
image) and saves the output to the final folder. This command retains native resolution for each segment causing a visual
change in the aspect ratio when the segments of the video switch from one resolution to another. Alternatively, we can
mandate that all segments have the same output resolution through the option of autoscaling. We support two types of
autoscaling: scaling to the highest resolution observed in the log file, or scaling to predetermined resolution given by
parameter scale_res. The Listing 2 example shows how to create an output video file with a fixed 1080p resolution for
all segments, where objective metrics are not calculated and intermediate segments are not deleted.

1 # python video_log_merger.py −−path_to_log video_log.log
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2 −−rep_lvl_col Rep_Level

3 −−seg_index_col Chunk_Index

4 −−log_separator tab

5 −−stall_dur_col Stall_Dur

6 −−path_video ./sintel/DASH_Files/full/

7 −−dest_video ./tmp_files/

8 −−path_audio ./sintel/DASH_Files/audio/full/

9 −−gif_path ./gif.gif

10 −−final_path ./final/ −−parameter_type path

11 −−merge_video True

12 −−calculate_metrics True

13 −−cleanup True

Listing 1. Example of creating video from local segments

Case #2: Creating video file with same predetermined resolution is depicted in Listing 2.

1 # python video_log_merger.py −−path_to_log video_log.log

2 −−rep_lvl_col Rep_Level

3 −−seg_index_col Chunk_Index

4 −−log_separator tab

5 −−stall_dur_col Stall_Dur

6 −−path_video ./sintel/DASH_Files/full/

7 −−dest_video ./tmp_files/

8 −−path_audio ./sintel/DASH_Files/audio/full/

9 −−gif_path ./gif.gif

10 −−final_path ./final/ −−parameter_type path

11 −−scale_resolution 1080p

12 −−auto_scale 2

13 −−merge_video True

14 −−calculate_metrics False

15 −−cleanup False

Listing 2. Example of creating video with same resolution for all segments

Similar to Listing 1, we recreate an output video clip from the video log file, with the difference that we scale each
segment to a Full HD resolution. This option is achieved by setting auto_scale to 2 (where we have three supported
values 0, 1, 2), and setting scale_res to 1080p.

The DashReStreamer framework also supports the use of a configuration file as input to the python script. Listing 3
illustrates an example of a configuration file. Note that all the input parameters are the same as the parameters used for
the command-line input.

[parameters]

parameters = config

path_to_log = <path>

rep_lvl_column = Rep_Level
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chunk_index_column = Chunk_Index

stall_dur_column = Stall_Dur

height_col = Height

log_separator = tab

path_audio = <path to audio segments>

path_video = <path to video segments>

dest_video = <where to save/download segments>

gif_path = <path to gif file>

final_path = <where to save final video>

mpd_path = <url for mpd file>

auto_scale = 0

calculate_metrics = True

merge_video = True

log_location = local

Listing 3. Example of config file

When calculate_metrics parameter is set to true, then supported objective metrics are calculated for every video
segment separately. Table 12 shows an example of a table exported as a result of this calculation.

Table 12. Objective metrics calculation example

Segment PSNR SSIM MSSSIM VMAF_norm VMAF_4k VMAF_norm_phone VMAF_4k_phone
0 27.625 0.880 0.870 65.87 63.87 64.81 61.47
1 24.132 0.816 0.847 4.96 4.56 3.96 5.42
2 22.532 0.868 0.854 6.88 6.13 5.82 5.55
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