
SIP Server Security with TLS: Relative
Performance Evaluation

Merima Kulin, Tarik Kazaz and Sasa Mrdovic
Faculty of Electrical Engineering

University of Sarajevo
Sarajevo, Bosnia and Herzegovina

{ mk15172, tarik.kazaz, sasa.mrdovic }@etf.unsa.ba

Abstract—VoIP (Voice over Internet) provides delivery of voice
information over unsecured IP-based networks like the Internet.
VoIP data, signaling and voice, needs to be secured in such an
environment. Security mechanisms take their toll on VoIP system
performance. SIP is dominant signaling protocol for VoIP. This
paper measures relative decrease in VoIP performance of system
with secured SIP signaling over one without it. It compares SIP
with authentication enabled over three transport protocols: UDP,
TCP and TLS. Peak throughput of concurrent calls, registration
request delay, session request delay, SIP server CPU and RAM
usage are measured. Testbed environment consists of Asterisk
IP private branch exchange (PBX) as a part of Elastix server,
several SIP user agents and SIPp traffic generator. Test results
show that performance of SIP over TLS based signaling is four
times lower than the SIP signaling over UDP in most metrics.

Index Terms—VoIP, SIPS, TLS, IP PBX, Elastix, Asterisk,
SIPp, Performance testing

I. INTRODUCTION

VoIP systems are becoming more widespread. In order to
ensure their full adoption it is necessary to provide acceptable
level of security. In conventional telephone system (PSTN) se-
curity is provided by physically restricted access to telephone
lines and private branch exchange (PBX). With VoIP systems,
voice and signaling data are packetized and sent through IP
network. Packets, on their way from caller to called party,
might pass through different systems that are not under the
control of either of the parties, their organization or ISP. Such
packets, if not protected, can be seen, changed, dropped or
new packets might be inserted.

VoIP system protocols separate signaling and media on
different channels. In most VoIP systems, Session Initiation
Protocol (SIP) protocol is used for signaling and the Real-Time
Transport Protocol (RTP) for media transport. Consequently,
appropriate security mechanisms must be provided for secur-
ing them. Secure media transport on VoIP communications is
realized using either IPSec or Secure RTP (SRTP). SRTP is
more efficient in terms of bandwidth [1]. SIP RFC3261 [2]
specifies several security mechanisms: Transport Layer Secu-
rity (TLS) at transport level, IPSec at network level, SIPS URI
Scheme for secure access to resources, HTTP Authentication
for authentication and S/MIME for SIP messages body end-to-
end confidentiality and integrity. Usually, only one or two of
these mechanisms are enough and are used in VoIP systems.

However, security comes at a cost. That cost is in additional
processing in all nodes. Additional processing lowers number
of calls that can be established and increases call establishment
delays. This is in part caused by increased CPU load and
memory usage of SIP servers.

This paper presents experimental performance study of
costs related to using SIP security. It compares three SIP
usage cases: over UDP with authentication, over TCP with
authentication and TLS. For each case the following metrics
are compared: peak throughput of concurrent calls, registration
request delay, SIP server processor load and consumed RAM
memory. We believe that these are the most representative
usage scenarios. We base our metrics on IETF RFC6076 [3]
recommendations. This study is conducted using Elastix Linux
distribution as widely deployed Asterisk implementation that
includes SIP server. During testing we had to tweak some of
the components. All changes are described in the paper. Our
results show relative cost of using TLS and are helpful for
design of future SIP networks.

The rest of the paper is organized as follows. Related work
is mentioned in section 2. Section 3 explains the practical
implementation of SIPS. Section 4 explains the used testbed
for performance testing. In section 5 the impact of TLS on SIP
server performance is compared to SIP over UDP and TCP.
Conclusion and discussion on future work are in section 6.

II. RELATED WORK

Ever since SIP was proposed as standard signaling protocol
for VoIP there was an interest in its performance. In 2002.
SIPstone project proposed simple set of metrics for evaluating
and benchmarking the performance of SIP servers [4]. Four
different implementations of SIP server functions were com-
pared in [5]. Transport protocol they used was UDP. Gurbani et
al. analyzed different SIP performance metrics including end-
to-end mean response times, availability and probability of loss
on a model they created [6]. They found limits on number of
call attempts that still provide acceptable mean response time.
Nahum et al. used OpenSER SIP server implementation and
SIPp call generator to evaluate SIP proxy server performance
[7]. Their conclusion was that performance varies by order
of magnitude depending on transport protocol used, TCP or
UDP, and if authentication was enabled or not. They report

throughput of hundreds to thousands operations per second.
Interesting findings were reported by [8]. They showed that
principal reason for OpenSER inferior performance using TCP
instead of UDP is server design. They argue that performance
using TCP could be made competitive to performance using
UDP with improvements on OpenSER architecture. In order
to provide a standard set of common metrics that will allow
interoperable performance measurements IETF recently issued
RFC6076 devoted to SIP performance metrics [3]. Voznak
at al. focused their research on creating a methodology that
would allow administrators to precisely measure the SIP
Server performance and compare it to other software and
hardware platform [9]. Their work resulted in best practice
document for SIP performance evaluation [10]. An interesting
branch of research of SIP performance is focused on overload
conditions. In order for SIP to be used effectively in production
environment it has to be able to handle overload condition
gracefully. Papers by Shen et al. [11], Hilt and Widjaja [12],
Noel and Johnson [13], and Abdelal and Matragi [14] led to
IETF RFC6357 on SIP overload control [15].

SSL/TLS adds a layer between application and transport
layer. This layer performs cryptographic operations and it
increases processing time. Cost of TLS processing was subject
of [16]. Their conclusion was that tested Web servers were
couple of orders of magnitude slower when serving pages
over TLS. Another paper [17] analyzed architectural impact
of SSL. They found that SSL increases computational cost
of the transactions by a factor of 5-7. Zhao et al. provided
detailed analysis of various cryptographic operations in SSL
[18]. They showed that major overhead incurred during SSL
processing lies in the session negotiation phase and about 70%
of the total processing time of an HTTPS transaction is spent
in SSL processing. Measurements made by Coarfa et al. show
that RSA computations are the most expensive of all TLS
operations and count for 20 to 58% time of web server [19].

All above papers analyzed influence of SSL/TLS on web
traffic and web servers. Influence of TLS on SIP server
performance was thoroughly tested in [20]. They compared
SIP over TLS with SIP over TCP and UDP. Their results
showed that SIP authorization has the biggest impact on total
cost while impact of SSL was rather small. It is different from
latter results by other researchers and might have something
to do with used hardware and software and rather small
volume of calls, 21 calls per second. Results of simulation that
measured SIP call setup delay of different security protocols
(TLS, DTLS and IPSec) using different transport protocols
(UDP, TCP and SCTP) showed that this delay doubles for
TLS compared to no SIP security scenario [21]. A possible
issue with results might be that they are product of simulation
and not a test of a real system. Test on real system was
performed by Sureshkumar and Dutta [22]. They measured
Call setup time, Mean number of calls, Memory utilization,
CPU utilization and queue size for four different scenarios:
UDP and TCP with no security, TLS-authentication and TLS-
encryption. They report increase of all measured parameters
for TLS vs. UDP to be less than 100% and even smaller

increase for TLS vs. TCP. The most relevant is work of
Shen et al. [23]. They did a very thorough testing. First,
they had four different deployment models: proxy chain,
outbound proxy, inbound proxy and local proxy. In addition
they tested various combinations of transport protocols (UDP,
TCP, TLS with 3DES and TLS with AES) with and without
authentication, for a total of eight. Further, they tested different
TLS configurations (e.g. with or without mutual authentication
or session resumption). Their testbed consisted of OpenSIP,
OpenSSL on Linux with Intel-based server hardware. That
paper provides detail analysis of costs on CPU and its causes.
They state that using TLS can reduce performance by up
to a factor of 17 compared to the typical case of SIP-over-
UDP. It must be pointed out that this factor is for the case
of TLS with mutual authentication compared to UDP without
authentication. We consider fewer cases that we believe are
more relevant but we test for more SIP to performance metrics
as per [3]. In fact, we measured the performance of SIP
server by monitoring the processor load and consumed RAM
memory. In comparison to the other mentioned papers, we
used Elastix as possibly the most powerful packaging of
a very powerful and popular telephony development tool-
kit, the Asterisk server. As opposed to [23] we measured
simultaneously the performance of SIP protocol. This was
evaluated using RRD and SRD metrics as defined in [3].

III. IMPLEMENTING SECURE VOIP COMMUNICATION

The key aspect of secure VoIP communication is the security
of the signaling path, which is provided by SIP protocol.
The main components for securing SIP communication are:
confidentiality and integrity of signaling messages and au-
thentication of parties. Several SIP security mechanisms are
specified in [4] as mentioned before. TLS is a widespread
and well-known transport protocol for secure communication.
It provides confidentiality and integrity of the transmission
channel for data exchanged between applications at higher
level. TLS makes use of X.509 certificates to associate a
public key with the certificate subject. This relationship is
confirmed by the digital signature of the certificate authority
(CA), which involves public key cryptography. TLS allows
both entities in a communication link to authenticate each
other. However, TLS with mutual authentication is impractical
and a challenging implementation due to problems with key
distribution. In [23] it is shown that using TLS with mutual
authentication can reduce performance by up to a factor of
17 compared to SIP-over-UDP. Further, TLS support is not
yet fully implemented in all currently available SIP UAC
softphone solutions. Some of them with TLS support are:
Blink, Bria, Linphone, MicroSIP and Yate. Not all support
mutual authentication using client certificates. For this reasons,
in our proposed VoIP security approach we used HTTP digest
authentication scheme for verifying the identity of users and
performing message authentication. On the other side, with
TLS clients authenticate the server using the server’s public
key associated with the server’s certificate. This assured SIP
mutual authentication. SIP message privacy protection is en-

abled using encryption with keys that are exchanged during
TLS handshake procedure. TLS message integrity is ensured
by sending additionally a keyed digest of the original message
using a secret key shared between the sender and receiver.

This paper is focused on relative performance evaluation
of SIP server in local proxy operation mode when using se-
cured SIP message transport (TLS) over non-secured transport
protocols (TCP/UDP).

IV. EXPERIMENT SETUP

In order to perform performance testing of SIP server and
measure some basic SIP performance metrics in different
cases, when using SIP/UDP, SIP/TCP and SIP/TLS, we used
the testbed shown in Fig. 1. Our testing platform consisted of
three main elements: a SIP server, a traffic generator and a
monitoring system. In addition, we used a DNS server based
on bind9 software that translated the domain name of the
Elastix server (centrala1.ntpmng.com) into its IP address.
All software we used is freely-available and Open Source.
We installed the particular software on virtual machines using
VirtualBox virtualization tool. Below we describe in detail the
hardware and software used in our experiments.

A. SIP server software

We used the latest stable release of Elastix server, 64-bit ver-
sion of Elastix 2.3.0, as SIP server. Elastix project begun as a
call report interface for Asterisk but today it includes multiple
features and functionalities (VoIP, Mail server, IM server, Fax
server etc.) all realized through Open Source tools compiled
together. However, we used the IP PBX functionality. The core
IP PBX represented Asterisk. The currently integrated version
of Asterisk in Elastix 2.3.0 is Asterisk 1.8.11.0-0, which is
a Long Term Support (LTS) release. Asterisk is built on
loadable components called modules. All of them are loaded
based on the /etc/asterisk/modules.conf file. For example,
Asterisk uses res_srtp module for SRTP support. Asterisk
supports TLS for SIP signaling encryption and SRTP for media
streams encryption. For this purpose the packages OpenSSL
(openssl-devel on CentOS) and LibSRTP (libsrtp-devel
on CentOS) must be installed. Elastix 2.3.0 includes both of
them and the RTSP module res_srtp is also compiled and in-
stalled. The main configuration files are extensions.conf and
sip.conf, which include variety of other files, all located in
the /etc/asterisk/ directory. The file sip_additional.conf

includes information about user extensions. We created 2000
user SIP peers, 1000 per side. This was effectively done by
importing a .csv file through Elastix Web User Interface.

The default transport protocol used in Elastix server is UDP.
We used target options in the sip.conf file to enable SIP
over TCP, and SIP over TLS. For TCP support the options
tcpenable and tcpbindaddr were set. Analogous, the global
options tlsenable and tlsbindaddr were set for TLS support.
Additionally, in the sip_additional.conf file for every user
extension the transport option was set to tcp or tls, depending
of the testing scenario. The next step was to generate a self-
signed certificate. This was done using the OpenSSL tool. A

Subnet: 192.168.1.0
Subnet mask: 255.255.255.0
Broadcast address: 192.168.1.255
Default gateway: 192.168.1.1

Asterisk Extensions: 11000-12999

centrala1.ntpmng.com

IP PBX

DNS server
192.168.1.5

192.168.1.1

SIPp UAC
Ext. 11xxx

SIPp UAS
Ext. 12xxx

Zabbix NMS

SNMP,
Zabbix

SIPS SIPS

Agent

Manager

Figure 1. Testbed diagram

CA certificate (ca.crt) and a server certificate (server.pem)
were generated. The ca.crt connects the identity of the CA
with its public key that the client uses to validate the server’s
certificate. Finally, we needed to point Elastix to the CA and
server certificate location using tlscertfile and tlscafile

options in the sip.conf file, respectively, after we had moved
both certificates to the appropriate locations in Elastix server.
The default path of the files is /var/lib/asterisk/keys/.
Lastly, the certificate authority (ca.crt) was attached to the
client machines, so they could validate the server certificate.
We installed Elastix server on a Guest OS CentOS 5.7 (File
Descriptor Limit=1024, Stack Size Limit=10240) with:

• 4x Virtual x64 Processor Core @ 2.4 GHz,
• 3430 MB Virtual RAM.

B. Traffic generator software

For the purpose of SIP server performance testing we
needed to generate hundreds of calls. It is difficult to achieve
quite a few established calls using softphones on both sides on
single physical machines. Consequently, we used a SIP load
generator, called SIPp (version 2.3 built with TLS support),
to simulate client sessions [24]. SIPp enabled the generation
of high SIP load to run performance tests and also the mea-
surement of delay parameters of individual SIP calls. SIP call
flows are defined in XML scenario files which are loaded when
running SIPp. SIPp supports TCP and UDP over multiple
sockets and advanced features like TLS, SIP authentication,
UDP retransmissions and SIP header field injection from
external CSV file to emulate live users. SIPp also allows
generation of RTP traffic, but does not support SRTP. On
the SIP UAC side we used multi socket mode in all cases
UDP/TCP/TLS to emulate user agents calling a SIP server. For
each new call a new socket was opened. UDP retransmission
followed the mechanism described in [2].

Since we wanted to test the performance of a relatively
busy SIP server, we needed to generate 1000 client sessions
on the calling party side. However, during testing we noticed
that SIPp is capable of creating about 250 simultaneous calls.

Therefore, due to the software limitations of SIPp we needed
to install 4 virtual machines each running a SIPp UAC to
achieve 1000 calls per second. Another issue with SIPp was
that when started it could act only as UAC or UAS, but not
both at the same time on the same machine. The problem
became clear after taking a look at the SIPp call flow diagram
of our desired testing scenario on the SIP UAS side shown
in Fig. 2. The calling client party acted as classical as SIP
UAC during register procedure and call setup procedures. It
sent SIP requests and waited for the corresponding answers.
However, it is required that the called party is registered with
Elastix server in order to be able to accept calls. Considering
Fig. 2 it is obvious that the called party must simultaneously
act as SIP UAC (when sending SIP REGISTER) and SIP UAS
(when receiving SIP requests from UAC). Running a separate
UAC-mode script for registering the SIP called parties is useful
only in UDP testing mode. In TCP and TLS mode after the
registration script is executed a TCP message with set FIN
flag is sent for each simulated client session. This caused
Elastix server to discard the registrations. For this purpose,
some VoIP platforms were useful (Yate, Linphone or PJSUA)
but were limited in terms of ineffective user accounts creation
or speed of processing incoming calls. Fortunately, modifying
the SIPp source code allowed us to run SIPp in a mixture
scenario of UAC and UAS mode concurrently. At [25] there
is a patch that was created by Matthew Briggs for this purpose.
It has to be mentioned that the first, UAC mode, script had run
long enough to enable finishing the execution of the second,
UAS, script. This was achieved by setting appropriate <pause>

message command at the end of the first script.
Below are the characteristics of the used SIPp UAC and

SIPp UAC/UAS virtual machines both with 20 GB HDD, File
Descriptor Limit 1024 and Stack Size Limit 8192.

SIPp UAC VM:
• Guest OS Ubuntu 12.04 x64 Server Edition,
• 2x Virtual x64 Processor Core @ 3.4 GHz,
• 1024 MB Virtual RAM.
SIPp UAC/UAS VM:
• Guest OS Ubuntu 12.04 x64 Server Edition,
• 4x Virtual x64 Processor Core @ 2.27 GHz,
• 2452 MB Virtual RAM.

C. Monitoring system software

In Fig. 1 the three principal components of network man-
agement architecture can be identified: a managing entity (the
manager), the managed devices called agent (Elastix server)
and a network management protocol. The function of the
managing entity was realized by Zabbix [26] network monitor-
ing application. Zabbix controlled the collection, processing,
analysis and display of network management information in
real-time. The values about the processor load and consumed
RAM were retrieved using the protocol specific for Zabbix
over TCP, whereas the number of concurrent calls using the
Simple Network Management Protocol (SNMP). Accordingly,
we installed and configured Zabbix agent and SNMP agent on

REGISTER

REGISTER/
WWW-Authenticate

INVITE

ACK

SIPp UAC Elastix IP-PBX SIPp UAC/UAS

401 Unauthorized

200 OK

 UAC
mode

INVITE

ACK
ACK

 UAS
mode

RRD

SRD

RTP session
Pause

the
script

BYE
BYE

REGISTER

REGISTER/

WWW-Authenticate

401 Unauthorized

200 OK

401 Unauthorized

INVITE/
WWW-Authenticate

180 Ringing

200 OK

200 OK

180 Ringing

200 OK

200 OK

Figure 2. MSC diagram for testing XML scenario

Elastix server and added Asterisk and Digium MIB files into
/usr/share/snmp/mibs directory on Elastix server.

D. Hardware and connectivity

The Elastix server hardware had Intel Core i5 2.4GHz
processor with 6GB RAM and 500GB hard drives. All 4 SIPp
UAC virtual machines were on the same host machine that had
Intel Core i7 3.4GHz processor with 8GB RAM and 720GB
hard drives. SIPp UAC/UAS virtual machine was on host
machine that has Intel Core i3 2.27GHz processor with 4GB
RAM and 320GB hard drives. The devices were connected
through 1 Gbit Ethernet cable with UBIQUITI AirRouter.

V. PERFORMANCE EVALUATION

The goal of our experiment was to analyze the ability
of VoIP PBX Elastix server to handle multiple simultaneous
registrations and call setups. We performed performance eval-
uation through testing hardware utilization of Elastix server
during the SIP scenario defined in Fig. 2 as well as some
standard metrics for measuring and reporting SIP performance.
It is important to emphasize that our test scenario did not
involve the exchange of media (RTP) traffic, because our
goal was to test the impact of SIP signaling protocol over
different transport protocols on the performance of VoIP PBX
server and VoIP service. Because of this after a call was
established in the SIPp scenario script we set a pause so that
the call remained active for some time. Processor load and con-
sumed RAM measuring was achieved using Zabbix network
monitoring system as described in the previous section. SIP
performance was evaluated using the proposed methodology

for testing and benchmarking SIP infrastructure in RFC6076
[3]. The metrics we chose for testing are: RRD (Registration
Request Delay) and SRD (Session Request Delay) [10]. RRD
is a measurement of delay in responding to a UA REGISTER
request. SRD is the time interval from when the first bit of the
initial INVITE message is sent by the originating user agent
to the intended destination agent, until the last bit of the first
provisional response is received (180 Ringing). Both, RRD and
SRD are illustrated on Fig. 2. We measured RRD and SRD as
specified in [3] at the originating SIPp UA just for successful
session setup. This was achieved using the ability of SIPp to
dynamically display statistics about running tests, including
response times. For this purpose we specified the start (with
start_rtd attribute) and the endpoint for two counters (with
rtd attribute), each one for RRD and SRD computation.

To dump the response times in an external .csv file the
-trace_rtt option was additionally used at the SIPp command
line. This allowed us to effectively analyze and process the
obtained results. Results for every single parallel SIP session
that are collected from all machines from which we generated
traffic were arithmetically averaged and as such are presented
in the following section.

A. Results

Depending on the transport protocols over which SIP sig-
naling is established, each figure has three corresponding
characteristic curves. For each of the protocols we used the
same scenario, but with different load level, or more precisely
with different rates for generating concurrent calls. Each tested
configuration regardless of the transport protocol has SIP
authentication enabled. During testing we used TLS with TLS-
AES chipper suite. The call generation rates were increased
until we noticed that SIPp enters in saturation. Saturation
occurs when SIPp starts to generate calls with rate less
than rate that we specified when starting the generator. This
problem was easily avoided by distributing the generation of
calls on multiple machines. Due to the limitations of available
equipment, the maximum achieved number of concurrent
calls was 1300, after the distribution of SIPp generator on
4 machines. For each protocol we measured peek throughput
of concurrent calls. Also for each scenario we measured RRD,
SRD, processor load, and consumed RAM memory.

Fig. 3 shows the peek throughput of concurrent calls de-
pending on transport protocol. As we expected SIP over UDP
gives the best SIP server performance, followed by SIP over
TCP and SIP over TLS respectively.

Fig. 4 and Fig. 5 show RRD and SRD respectively, for
different transport protocol configurations and call rates. Note
that TCP and TLS from the standpoint of RRD and SRD have
worse performance than UDP because of the time needed for
establishing connections. These results should be viewed rel-
atively, because SIPp needs extra time to create call statistics.
A better way to collect statistics would be to analyze packets
captured by a network protocol analyzer.

Fig. 6 and Fig. 7 show peek processor load and consumed
RAM memory, for different transport protocol configurations

and call rates. Higher call rates cause a greater processor load.
Again UDP has best performance. The graphics of consumed
RAM memory give interesting results. It should be noted
that the consumption of RAM memory for each protocol
individually is relatively constant regardless of the call rate.
Similar results are shown in paper [22]. However, TLS requires
more RAM memory in regard to TCP and UDP, which have
approximately the same demands on.

0

200

400

600

800

1000

1200

1400

UDP TCP TLS

Th
ro

u
gh

p
u

t
(c

p
s)

1275

604

321

Figure 3. Peak Throughput of concurrent calls

0,00

500,00

1.000,00

1.500,00

2.000,00

2.500,00

3.000,00

3.500,00

200 400 600 800 1000

UDP

TCP

TLS

R
e

gi
st

ra
ti

o
n

 R
e

q
u

es
t

D
e

la
y

(m
s)

Concurrent calls (cps)

Figure 4. Average Registration Request Delay vs. concurrent calls

0,00

500,00

1.000,00

1.500,00

2.000,00

2.500,00

3.000,00

3.500,00

4.000,00

4.500,00

200 400 600 800 1000

UDP

TCP

TLS

Se
ss

io
n

 R
e

q
u

e
st

 D
e

la
y

(m
s)

Concurrent calls (cps)

Figure 5. Average Session Request Delay vs. concurrent calls

VI. CONCLUSION AND FUTURE WORK

Securing the SIP signalization is one of the primary goals
when implementing secure VoIP networks. By using SIP over
TLS based signaling, SIP signalization is secured. However the

0,0%

2,0%

4,0%

6,0%

8,0%

10,0%

12,0%

14,0%

16,0%

18,0%

UDP

TCP

TLS

P
ro

ce
ss

o
r

 lo
ad

Concurrent calls (cps)

Figure 6. Peek processor load vs. Concurrent calls

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

UDP

TCP

TLS

C
o

n
su

m
e

d
 R

A
M

 m
e

m
o

ry
 (

G
B

)

Concurrent calls (cps)

Figure 7. Consumed RAM memory vs. concurrent calls

use of TLS brings additional overhead that affects performance
of VoIP service. In this paper we provided experimental
results, obtained by testing performance in our testbed environ-
ment. The results show noticeable decreases in performance of
VoIP service and higher demands on hardware when using SIP
over TLS based signaling. In most metrics the performance of
SIP over TLS based signaling are four times lower than the
SIP signaling over UDP. When we analyzed the consumption
of RAM memory, SIP over TLS based signaling has approx-
imately 1 GB greater need than SIP over UDP and SIP over
TCP signaling regardless of number of concurrent calls. Our
testbed environment was based on virtual machines. This is
justified by the fact that we observed relative performance.

In the future we plan to form a testbed environment based on
multiple hardware machines with higher performance. In this
way we expect to get the opportunity for generating higher
load. Also, we plan to extend the capabilities of SIPp tool
in order to provide support for generating SRTP protocol
traffic. After that we will be able to test, measure and compare
performances of VoIP services and server hardware for RTP
and SRTP protocol.

REFERENCES

[1] J. Bilien, E. Eliasson, J. Orrblad, and J. O. Vatn, “Secure voip: call
establishment and media protection,” 2nd Workshop on Securing Voice
over IP, Jun. 2005.

[2] J. Rosenberg, H. Schulzrinne et al., “Sip: Session initiation protocol,”
IETF RFC 3261, Jun. 2002.

[3] D. Malas and A. Morton, “Basic telephony sip end-to-end performance
metrics,” IETF RFC 6076, Jan. 2011.

[4] H. Schulzrinne, S. Narayanan, J. Lennox, and M. Doyle, “Sipstone
- benchmarking sip server performance,” 2002. [Online]. Available:
http://hdl.handle.net/10022/AC:P:29277

[5] M. Cortes, J. R. Ensor, and J. O. Esteban, “On sip performance,” Bell
Labs Technical Journal, vol. 9, no. 3, pp. 155–172, 2004. [Online].
Available: http://dx.doi.org/10.1002/bltj.20048

[6] V. Gurbani, L. Jagadeesan, and V. Mendiratta, “Characterizing session
initiation protocol (sip) network performance and reliability,” Service
Availability, vol. 3694, pp. 196–211, 2005.

[7] E. M. Nahum, J. Tracey, and C. P. Wright, “Evaluating
sip server performance,” SIGMETRICS Perform. Eval. Rev.,
vol. 35, no. 1, pp. 349–350, Jun. 2007. [Online]. Available:
http://doi.acm.org/10.1145/1269899.1254924

[8] K. K. Ram, I. C. Fedeli, A. L. Cox, and S. Rixner, “Explaining
the impact of network transport protocols on sip proxy performance,”
IEEE International Symposium on Performance Analysis of Systems and
software (ISPASS), pp. 75 –84, Apr. 2008.

[9] M. Voznak and J. Rozhon, “Approach to stress tests in sip
environment based on marginal analysis,” Telecommunication Systems,
pp. 1–11, 2011, 10.1007/s11235-011-9525-1. [Online]. Available:
http://dx.doi.org/10.1007/s11235-011-9525-1

[10] M. Voznak, “Evaluating the performance of sip in-
frastructure,” Geant - Terena, 2011. [Online]. Available:
http://www.terena.org/activities/campus-bp/pdf/gn3-na3-t4-cbpd163.pdf

[11] C. Shen, H. Schulzrinne, and E. Nahum, “Session initiation protocol
(sip) server overload control: Design and evaluation,” Principles, Sys-
tems and Applications of IP Telecommunications. Services and Security
for Next Generation Networks, vol. 5310, pp. 149–173, 2008.

[12] V. Hilt and I. Widjaja, “Controlling overload in networks of sip servers,”
IEEE International Conference on Network Protocols (ICNP), pp. 83 –
93, Oct. 2008.

[13] E. Noel and C. R. Johnson, “Novel overload controls for sip networks,”
21st Internationa Teletraffic Congress (ITC), pp. 1 –8, Sep. 2009.

[14] A. Abdelal and W. Matragi, “Signal-based overload control for sip
servers,” 7th IEEE Consumer Communications and Networking Con-
ference (CCNC), pp. 1 –7, Jan. 2010.

[15] V. Hilt, E. Noel, C. Shen, and A. Abdelal, “Design considerations
forsession initiation protocol (sip) overload control,” IETF RFC 6357,
Aug. 2011.

[16] G. Apostolopoulos, V. Peris, and D. Saha, “Transport layer security: how
much does it really cost?” 18’th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), vol. 2, pp. 717
–725, Mar. 1999.

[17] K. Kant, R. Iyer, and P. Mohapatra, “Architectural impact of secure
socket layer on internet servers,” International Conference on Computer
Design (ICCD), pp. 7 –14, 2000.

[18] L. Zhao, R. Iyer, S. Makineni, and L. Bhuyan, “Anatomy and perfor-
mance of ssl processing,” IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), pp. 197 –206, Mar.
2005.

[19] C. Coarfa, P. Druschel, and D. S. Wallach, “Performance analysis of tls
web servers,” ACM Trans. Comput. Syst., vol. 24, no. 1, pp. 39–69, Feb.
2006. [Online]. Available: http://doi.acm.org/10.1145/1124153.1124155

[20] S. Salsano, L. Veltri, and D. Papalilo, “Sip security issues: the sip au-
thentication procedure and its processing load,” Network, IEEE, vol. 16,
no. 6, pp. 38 – 44, Nov./Dec. 2002.

[21] E. C. Cha, H. K. Choi, and S. J. Cho, “Evaluation of security protocols
for the session initiation protocol,” 16th International Conference on
Computer Communications and Networks (ICCCN), pp. 611 –616, Aug.
2007.

[22] S. V. Subramanian and R. Dutta, “Comparative study of secure vs
non-secure transport protocols on the sip proxy server performance:
An experimental approach,” International Conference on Advances in
Recent Technologies in Communication and Computing, pp. 301–305,
Oct. 2010.

[23] C. Shen, E. Nahum, H. Schulzrinne, and C. P. Wright, “The impact of
tls on sip server performance: Measurement and modeling,” Networking,
IEEE/ACM Transactions on, vol. 20, no. 4, pp. 1217 – 1230, Aug. 2012.

[24] R. Gayraud and O. Jacques, “Sipp.” [Online]. Available:
http://sipp.sourceforge.net

[25] “Mail-archive on sipp.” [Online]. Available: http://www.mail-
archive.com/sipp-users@lists.sourceforge.net/msg05579.html

[26] R. Olups, “Zabbix 1.8 network monitoring,” PACKT Publishing Ltd.,
2010.

