
An Implementation of Secure Key Exchange by
Using QR Codes

Damir Omerasevic1, Narcis Behlilovic2, Sasa Mrdovic2
1 PBH Technologies PrinTec Group of Companies

Sarajevo, Bosnia and Herzegovina
2 Faculty of Electrical Engineering University of Sarajevo

Sarajevo, Bosnia and Herzegovina
d.omerasevic@printec.ba

Abstract—This paper describes an implementation of secure
RICA (Robustness, Integrity, Confidentiality and Authentication)
key exchange protocol.

Integrity, confidentiality and authentication are the base for
secure message exchange. We propose adding robustness in order
to ensure better availability of the system.

Robustness of presented implementation is due to Quick
Response (QR) code properties. QR codes are resistant to a
certain level on errors.

We used GNU1 Privacy Guard (GnuPG or GPG), version
for Windows operating system, for signing and encrypting the
message, as a base for secure key exchange protocol.

Keywords—RICA; QR codes; Error correction; Steganog-
raphy; Key Exchange; GnuPG; GPG; GNU Privacy Guard;
GPG4Win; OpenPGP; PGP; RSA

I. INTRODUCTION

This paper comes as a result of our research on open
questions in our previous papers [1] [2]. In [1] we proposed
using multimedia files as a source of cryptographic keys. Prior
to secure message exchange, parties need to agree on a set
of files to be used as key source. Encrypted messages have
headers that specify index of the file used as key source and
starting position in the file. The message format in [1] assumes
that there are maximum of 256 files in set. Position is defined
with four bytes that allows for 232, over 4 billion, positions.

In [2] we concluded that the best option from all of tested
media file types is to use Flash Video (FLV) files or an open
web media (WEBM) files. These files should be used as key
generators.

Security of proposed encryption method in [1] is in secrecy
of a set of files used. The set of files might be considered as a
master key or some sort of key encryption key, while the bits
of files used to encrypt messages have a role of session keys.
Key size of this master key is practically limitless since the
number of possible file sets is practically limitless. However,
in implementation described in this paper, we limit the size of
the set to 256.

Main open question in [1] was how to securely exchange
information on data set. Therefore, our work in this paper is
oriented towards defining a protocol for agreement on both
sets and ordering of files.

1”GNU” is a recursive acronym for ”GNU’s Not Unix!”.

The implementation described in this paper proposes that
the data set (i.e. sets and ordering of files) is first encrypted
by GPG. We use GPG, for signing and encrypting the message,
as a base for secure key exchange protocol. GPG is compliant
with RFC 4880 [3]. GPG-signed and encrypted message is
embedded into QR code.

QR code was invented in 1994 by Denso/Toyota [4], for
tracking automotive information and depending on the version
set, can store up 4,296 alphanumeric characters [5].

A QR code is made of darker coloured square dots (mod-
ules), inside the square with lighter coloured background, or
vice versa, according to ISO/IEC18004 standard [6]. What is
important here is that contrast between background and square
dots is good enough.

There are four error correction levels used for QR codes.
Each correction level is appropriate for certain amount of
damage, and therefore has different amount of additional data
for correcting:

1) Level L up to 7% of damage
2) Level M up to 15% of damage
3) Level Q up to 25% of damage
4) Level H up to 30% of damage
QR codes provide an opportunity to visualise initial data for

key exchange process. Visualisation enables data conversion to
different visual/video/picture formats, without loosing original
message embedded.

Moreover, error correction levels embedded into QR code
are used for improving robustness of our secure information
(on data set).

The QR code can be recognised/read by some kind of imag-
ing device (like camera) and after that decoded by using Reed-
Solomon error correction, until decoding is properly finished.
Reed-Solomon error correction allows correct reading, even if
a certain part of QR code is damaged.

The decoding speed of the QR code can be made 20 times
faster than that of other matrix symbols [4]. QR decoders can
be easily implemented in hardware.

There is also a very large usage of QR codes in mobile
phones industry [5].

The rest of the paper is organised as follows:
Related work is addressed in section 2. Section 3 explains

our idea on how to use GPG with QR code. Testing results



are presented in section 4. Conclusion and discussion, as well
as directions for future research work, are in section 5.

II. RELATED WORK

To the best of our knowledge, we did not find any work
related with QR codes and robustness, and therefore we briefly
describe work which is the closest and related to QR codes
and security in global, and after that we describe recent attacks
on GPG.

In the last few years we experienced a very large applica-
tion of QR codes in steganography, authentication and video
watermarking.

In [7], QR code and image processing techniques are used
to construct a nested steganography scheme. A lossless data
is embedded into a cover image. The data do not have any
distortion, when compared to the extracted data and original
data. Since the extracted text is lossless, the error correction
rate of QR encoding must be carefully designed. Authors of
the paper found that 25% error correction rate is suitable for
the goal. This scheme is also robust to Joint Photographic
Experts Group (JPEG) attacks. This paper is related to our
work because it shows that we need to carefully design the
error correction rate.

In [8], authors proposed a geo-location based QR code
authentication scheme using mobile phone, to defeat against
man-in-the-middle phishing attacks. The proposed scheme
provides convenience, mobility, and security for the user. This
paper is also related to our work because it shows that QR
codes could be easily implemented in mobile phones.

Paper [9] proposes a video watermarking with text data
(verification message) by using QR code. QR code is prepared
to be watermarked by SVD (Singular Value Decomposition)
and DWT (Discrete Wavelet Transform). In addition to that,
logo/watermark gives the authorized ownership of video doc-
ument. This paper is related to our work because it shows that
QR codes could be easily implemented in video watermarking
schemes.

In [10], authors proposed another algorithm for the analysis
and correction of the distorted QR code, by combining Canny
edge detection with contours finding algorithms. This paper is
related to our work because it shows that QR codes could be
corrected in different ways.

GPG could use Rivest-Shamir-Adleman (RSA) cryptosys-
tem and therefore we briefly describe both RSA and recent
attacks on GPG.

PhD work of Tromer [11] in 2007 presented how to break
1024-bit RSA keys with hardware-based cryptanalysis tools.

According to [12], RSA 4096-bit keys should be secure after
year of 2031.

However, a very recent research of Genkin, Shamir and
Tromer [13] [14] showed that it was possible to make an attack
on specific versions of GPG, which can extract whole 4096-bit
RSA keys during approximately of one hour, by using acoustic
emanations from CPU of targeted/tested laptops.

Regardless of this recent side channel attacks, which are
bound to specific versions of GPG, RSA still remains secure.

A research of Chong and Quisquater [15] proposed a direction
to construct efficient countermeasures to both side channel
analyses and fault attacks on RSA.

In the next section we explain how to use GPG with QR
code to prepare information on a file set for secure exchange.

III. HOW TO USE GPG WITH QR CODE (HOW TO PREPARE
INFORMATION ON A FILE SET FOR SECURE EXCHANGE)
In this paper, we used the formal model and the message

structure from our work in [1] as a reference. We propose a
solution to the issue, recognised in [1], of distribution of this
”master” key.

The best source for FLV/WEBM files is YouTube. However,
there are some legal restrictions in usage of YouTube files
[16]. Therefore, an implementation presented here, which uses
YouTube web site, is for the proof of concept only.

All YouTube video files could be accessed by the following
Uniform Resource Locator (URL) syntax:

http://www.youtube.com/watch?v=key

where key is 11-alphanumeric YouTube video identification
(YouTube Video ID), like, for example, ”voLNA8LdcCw”
(without quotes).

Our initial message format assumes that there are 256 files
in a set, i.e 256 file set is described with 256 lines of 11-
alphanumeric YouTube Video ID.

By using YouTube Video ID, we could access all video
file formats from one place and, depending on device and
appropriate web browser, automatically show the best fitted
video format for device which is currently used.

In order to get specific video format from specific
YouTube Video ID, we need to parse HyperText Markup
Language (HTML) code, and identify exact URL locations
for FLV/WEBM files, for each of 256 YouTube Video IDs
separately.

Considering the fact that we have all information about
complete file set in one initial message, there is no need in
this implementation to have separate messages for file sets and
orders.

In Fig.1 we describe secure exchange process, initiated from
sender side.

The process from sender side consists of eight steps:
1) Prepare initial message by sender,
2) Sign and encrypt initial message with GPG,
3) Prepare/encode QR code,
4) Send QR code to receiver,
5) Receive QR code by receiver,
6) Decode QR code,
7) Decrypt and verify signature with GPG, and
8) Prepare/calculate identical copy of initial message.
Initial message file consist of 256 lines. Each line is 11-

alphanumeric YouTube video identification (ID), plus addi-
tional end of line characters, line feed (LF) and carriage return
(CR). The total of 3,328 bytes is used.

In Fig.2 we describe secure exchange process, finalized
from receiver side.



The process from receiver side consists of six steps:
1) Sign (identical copy of) initial message with GPG,
2) Prepare/encode QR code,
3) Send QR code to sender,
4) Receive QR code by sender,
5) Decode QR code, and
6) Verify signature with GPG.

A. Testing procedure

We first describe operating system and platform used for
testing. Then we present the results of testing.

1) Operating System and Platform for Testing: The plat-
form on which we tested our system is Microsoft Windows
7.

We used GPG4Win command-line utility gpg.exe, together
with appropriate parameters, for signing and encrypting of
initial message. The initial message has complete file set, one
file in each line, described by 11-alphanumeric YouTube ID,
for implementation presented in this paper. For this test we
chose YouTube Video ID manually.

For QR code generation, we used Microsoft Studio 2005,
Visual C# part of the Studio, and adopted source code from
[17] to create command-line applications. We prepared addi-
tional batch scripts for easier usage. Scripts include parameters
needed for command-line application to achieve efficiency and
performance improvement of overall measurement process.

Using command-line tools we created QR codes in JPEG,
Portable Network Graphics (PNG), 24-bit Bitmap (BMP) and

Fig. 1. Secure Key Exchange with QR code (sender side)

Fig. 2. Secure Key Exchange with QR code (receiver side)

Graphics Interchange Format (GIF).
We used Microsoft Paint to transform initial 24-bit BMP to

monochrome BMP files.
It is possible to use three error correction levels for QR

codes (L, M and Q) in our proposed implementation. Due to
the length of our message for QR code, we could not use level
H for error correction.

We also scaled every bit of QR code, by using scales from
one to four, while encoding QR code, and testing results in
correlation with all tested error level codes and all tested
graphic formats.

IV. TESTING RESULTS

Considering the fact that we used 256 file names, which are
described with 11-alphanumeric YouTube Video ID, we had
constant length of input secret message/file.

Therefore, it was enough to make a test with one combina-
tion of files, because other combinations of files, due to the
same length of initial message/file, would have almost similar,
if not the same, results.

From initial message size of 3,328 bytes sender used, sender
gets 1,415 bytes after signing and encrypting message.

Comparing QR codes, depending of the level of error
correction and tested graphic formats, we got results in size
of bytes, for the same signed and encrypted message (i.e. the
same initial secret message of 1,415 bytes), in the following
tables.

The best result for every level of error correction is one for
a graphic format with the smallest length in bytes.

Table I shows comparison of results for QR code with error
level correction L and tested graphic formats.

Table II shows comparison of results for QR code with error
level correction M and tested graphic formats.

Table III shows comparison of results for QR code with
error level correction Q and tested graphic formats.

TABLE I
RESULTS FOR QR CODE IN DIFFERENT PICTURE FORMATS, WITH ERROR

LEVEL CORRECTION L

JPEG
(bytes)

PNG
(bytes)

Mono BMP
(bytes)

GIF
(bytes)

QR Code
scale

11.815 5.333 2.078 3.347 1

41.128 14.506 8.094 7.225 2

84.856 26.270 18.110 12.105 3

92.626 35.754 32.126 17.931 4

TABLE II
RESULTS FOR QR CODE IN DIFFERENT PICTURE FORMATS, WITH ERROR

LEVEL CORRECTION M

JPEG
(bytes)

PNG
(bytes)

Mono BMP
(bytes)

GIF
(bytes)

QR Code
scale

14.702 6.728 2.902 4.020 1

51.971 18.492 10.250 8.970 2

107.757 33.450 23.806 15.150 3

117.897 45.641 40.742 22.315 4



In summary, the best results (the smallest length in bytes),
for all error level correction tested, were for GIF files, if we
use QR code scale greater than one.

If we use QR code scale equal to one (i.e. without scaling),
the best results (the smallest length in bytes), for all error level
correction tested, were for monochrome BMP files.

V. CONCLUSION

In this paper we described an implementation of secure key
exchange using QR codes. RICA key exchange implemented
is not only secure, but also more robust.

Robustness of presented implementation is due to QR codes
properties. QR codes are resistant to a certain level on errors.
In our case we showed that we could use up to 25 percent of
error level correction.

QR code poses an ability to preserve correct information in
a case of transformation of initial QR code/picture from one
format to another. In that way we were able to compress our
initial QR code almost six times, either by using monochrome
BMP instead of JPEG file (in case where we had no QR code
scaling), or by using GIF instead of JPEG file (in case where
we had QR code scaling greater than one).

Photo cameras are integral part of most existing mobile
phones. Different QR code recognition software is usually
installed on mobile phones, too. Considering the fact that
there is GPG version for Android smart phones, and also the
fact that QR code readers already exists in smart phones, it
is reasonable to propose an implementation of the process
for secure exchange of keys, for smart phones on Android
platform.

Moreover, the implementation which is presented here,
could also be transformed to Windows Mobile (WM) platform,
i.e. on smart phones which have Windows Mobile as an
operating system.

The transformation could be done to iPhone platform, on
smart phones which have iPhone operating system (iOS), too.

Our future work will be oriented mostly towards:
1) Improvement of existing implementation by choosing

YouTube Video ID automatically,
2) Transformation of the implementation on other plat-

forms/operating systems, like Android, WM or iOS, and
3) Comparison of performances from different smart phone

platform(s) to laptop/desktop platform based on Win-
dows operating system.

TABLE III
RESULTS FOR QR CODE IN DIFFERENT PICTURE FORMATS, WITH ERROR

LEVEL CORRECTION Q

JPEG
(bytes)

PNG
(bytes)

Mono BMP
(bytes)

GIF
(bytes)

QR Code
scale

19.934 9.081 4.046 5.110 1

70.514 24.979 14.626 11.804 2

146.905 45.682 31.806 20.367 3

159.236 62.340 55.586 30.446 4

REFERENCES

[1] D. Omerasevic, N. Behlilovic, and S. Mrdovic, “CryptoStego - A Novel
Approach for Creating Cryptographic Keys and Messages,” in Systems,
Signals and Image Processing (IWSSIP), 2013 20th International Con-
ference on, pp. 83–86, 2013.

[2] D. Omerasevic, N. Behlilovic, S. Mrdovic, and A. Sarajlic, “Compar-
ing Randomness on Various Video and Audio Media File Types,” in
Telecommunications Forum (TELFOR), 2013 21st, pp. 381–384, Nov
2013.

[3] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and F. Thayer, “RFC
4880 - OpenPGP Message Format,” tech. rep., Internet Engineering Task
Force, Nov. 2007.

[4] I. T. S. C. (www.itsc.org), “QR code,” Synthesis journal, pp. 59–78,
2008.

[5] Y. Liu, J. Yang, and M. Liu, “Recognition of QR Code with mobile
phones,” in Control and Decision Conference, 2008. CCDC 2008.
Chinese, pp. 203–206, July 2008.

[6] International Organization for Standardization, “Information Technology
— Automatic Identification and Data Capture Techniques — QR Code
2005 Bar Code Symbology Specification.” ISO/IEC 18004:2006, 2006.

[7] C.-H. Chung, W.-Y. Chen, and C.-M. Tu, “Image Hidden Technique
Using QR-Barcode,” in Intelligent Information Hiding and Multimedia
Signal Processing, 2009. IIH-MSP ’09. Fifth International Conference
on, pp. 522–525, Sept 2009.

[8] K.-C. Liao and W.-H. Lee, “A Novel User Authentication Scheme Based
on QR-Code.,” JNW, vol. 5, no. 8, pp. 937–941, 2010.

[9] G. Prabakaran, R. Bhavani, and M. Ramesh, “A robust QR-Code video
watermarking scheme based on SVD and DWT composite domain,”
in Pattern Recognition, Informatics and Mobile Engineering (PRIME),
2013 International Conference on, pp. 251–257, Feb 2013.

[10] A. Sun, Y. Sun, and C. Liu, “The QR-code reorganization in illegible
snapshots taken by mobile phones,” in Computational Science and its
Applications, 2007. ICCSA 2007. International Conference on, pp. 532–
538, Aug 2007.

[11] E. Tromer, “Hardware-Based Cryptanalysis.”
http://cs.tau.ac.il/ tromer/phd-dissertation/, 2007. [Accessed
12.04.2014.].

[12] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid,
“Recommendation for Key Management - Part 1: General
(Revision 3).” http://csrc.nist.gov/publications/nistpubs/800-57/sp800-
57 part1 rev3 general.pdf, 2012. [Accessed 12.04.2014.].

[13] D. Genkin, A. Shamir, and E. Tromer, “RSA Key Extraction via
Low-Bandwidth Acoustic Cryptanalysis.” http://eprint.iacr.org/2013/857,
2013. [Accessed 12.04.2014.].

[14] T. Worstall, “Researchers Break RSA 4096 Encryption
With Just A Microphone And A Couple Of Emails.”
http://www.forbes.com/sites/timworstall/2013/12/21/researchers-break-
rsa-4096-encryption-with-just-a-microphone-and-a-couple-of-emails/,
12 2013. [Accessed 26.04.2014.].

[15] C. H. Kim and J.-J. Quisquater, “How can we overcome both side
channel analysis and fault attacks on RSA-CRT?,” in Fault Diagnosis
and Tolerance in Cryptography, 2007. FDTC 2007. Workshop on,
pp. 21–29, Sept 2007.

[16] YouTube, “Terms of Service.” http://www.youtube.com/t/terms, 03 2014.
[Online; accessed 02.04.2014.].

[17] twit88, “Open Source QRCode Library.”
http://www.codeproject.com/Articles/20574/Open-Source-QRCode-
Library, September 2007. [Online; accessed 30.3.2014.].


