Using Genetic Algorithms for Load Balancing in
Cloud Computing

Lejla Hodzié
University of Sarajevo
Faculty of Electrical Engineering
Sarajevo, Bosnia and Herzegovina
lhodzicl @etf.unsa.ba

Abstract—The cloud has become an essential part of modern
computing, and its popularity continues to rise with each passing
day. Currently, cloud computing is faced with certain challenges
that are, due to the increasing demands, becoming urgent to
address. One such challenge is the problem of load balancing,
which involves the proper distribution of user requests within the
cloud. This paper proposes a genetic algorithm for load balancing
of the received requests across cloud resources. The algorithm
is based on the processing of individual requests instantly upon
arrival. The conducted test simulations showed that the proposed
approach has better response and processing time compared to
round robin, ESCE and throttled load balancing algorithms. The
algorithm outperformed an existing genetic based load balancing
algorithm, DTGA, as well.

Index Terms—load balancing, genetic algorithms, cloud com-
puting

I. INTRODUCTION

Cloud computing is a model for enabling on-demand net-
work access to a shared pool of configurable computing
resources, such as servers and storage [1]. Due to the numerous
advantages offered by such an approach, its popularity has
been growing rapidly. The increasing demand for cloud ser-
vices has led to certain challenges for cloud service providers.
One of these challenges is the problem of load balancing,
which involves distribution of the received requests among
available resources.

Depending on the circumstances, load balancing can be
implemented on various cloud resources, both hardware and
software. Regardless of the implementation site, the goal of
load balancing is creation of an effective algorithm that targets
to avoid any overutilization and underutilization of resources
[2]. The existence of such a load balancing algorithm can
improve the delivery of cloud services in many ways. Some of
these improvements are: reduction of execution cost, increase
in stability, and reduction of response time. Ultimately, all
the mentioned factors lead to an increase in the quality of
provided services. From all of the above, it is clear that the
use of a suitable load balancing strategy is extremely important
for cloud computing.

There are two types of load balancing algorithms: static
and dynamic. Static algorithms perform balancing based on
previously known facts about the system. The current state
of the system is not taken into account [3]. This makes them
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suitable for situations where requests are distributed evenly,
and there is no excessive load on resources. Some of the
frequently used static algorithms are: round robin, FCFS, and
threshold algorithm.

Dynamic load balancing algorithms consider the current
state of the system when making decisions. This allows them
to know which resources are over and underutilized, and
dynamically schedule requests accordingly [3]. Load balancing
use cases in cloud computing usually imply a huge number
of users who generate requests of varying demands. It is clear
that these are highly unpredictable situations, in which it is
necessary to use dynamic load balancers. Most of the so-
called soft computing based methodologies fall under this
category [4]. Soft computing refers to all techniques that
use some kind of intuition when solving given problems.
Some of the numerous soft computing techniques include
evolutionary algorithms such as the honey bee algorithm, ant
colony optimization, and genetic algorithms.

Soft computing techniques trade low computational com-
plexity for accuracy, which means that such algorithms some-
times find feasible, but not optimal solutions [4]. However,
there are many complex, real-life problems where traditional
computing methods aren’t applicable, and soft computing
algorithms are the best choice.

Load balancing in cloud computing is one example of such a
problem. Therefore, this paper presents the application of one
soft computing approach, genetic algorithms, to the problem
of load balancing in cloud computing. More specifically, the
paper presents a genetic based algorithm for balancing user
requests among virtual machines within the cloud.

II. RELATED WORK

Numerous publications have addressed the utilization of
soft computing techniques for solving the problem of load
balancing in cloud computing. Paper [5] by Dhinesh Babu
L. D. and P. Venkata Krishna introduces an approach to
solving load balancing using the honey bee algorithm. This
approach models the load balancing problem based on the
process through which bees locate and reap the food. Another
technique that has been applied is the ant colony algorithm,
which was described by R. Mishra and A. Jaiswal [6]. The
paper introduced an effective load balancing algorithm that



relies on a specific pheromone update mechanism. In the
context of load balancing in cloud computing, particle swarm
optimization (PSO) algorithms have shown promising results.
Notable examples of successful PSO-based approaches include
those presented by Liu, Z., Wang, X. [7], A. Pradhan and S.
K. Biso [8], and Zavieh et al. [9].

The concept of using genetic algorithms for load balancing
problems was originally introduced in [10] by K. Dasgupta,
B. Mandal, P. Dutta, J. K. Mandal and S. Dam. In this paper,
the authors addressed the problem of scheduling N jobs on M
processing units. It was assumed that each processing unit can
be represented by a Process Unit Vector (PUV), while each
job is described using a Job Unit Vector (JUV). Based on these
vectors, the authors defined a fitness function that calculates
the cost of a given allocation. Throughout the execution, the
algorithm aims to minimize the value of the fitness function.
Several tests conducted using the CloudAnalyst simulation tool
showed that the proposed load balancer outperforms a few
existing techniques, while also satisfying Quality of Service
(QoS) requirements.

H. A. Makasarwala and P. Hazari [11] proposed a genetic
algorithm based load balancer that considers the priority of
requests. Here, the priority of the task is calculated according
to the amount of time needed for it to be completed. Based
on the priorities of upcoming tasks, the initialization of the
population is performed. The authors also introduced a fitness
function which calculates the cost of executing a single task
on a specific virtual machine. The proposed approach was
tested using CloudAnalyst. The results showed that it provides
a better response time compared to the previously available
methods.

A significant number of studies have improved load balanc-
ing approaches by combining genetic algorithms with other
advanced techniques. S. Eladl, N. Ziedan and T. Gaafar [12]
introduced a load balancer called DTGA, which incorporates a
genetic algorithm with a throttled load balancer. The main idea
proposed in the paper is to use genetic algorithm to ensure that
the processing time of individual tasks is taken into account,
which cannot be achieved with the throttled algorithm alone.
The simulation conducted using the CloudAnalyst simulation
tool demonstrated that the implemented algorithm enhances
the overall response time, data center processing time and
resource utilization.

Similarly, S. Dam et al. in [13] implemented a combination
of genetic algorithm and gravitational emulation local search
to generate a better initial population. In [14] A. Saadat and
E. Masehian proposed a hybrid intelligent approach which uti-
lizes genetic algorithms and fuzzy logic. Another improvement
has been demonstrated by M. Kanthimathi and D. Vijayakumar
[15], who introduced a load balancer that combines genetic
and ant colony-based optimization methods.

Overall, there are numerous implementations of load bal-
ancers based on genetic algorithms that improve different
aspects of cloud service quality. However, it can be observed
that all these approaches operate by handling the requests
in batches. In practice, it is impossible to predict the exact

number of incoming requests and their arrival times. There-
fore, waiting for a batch of requests is not always an optimal
strategy. To address this limitation, this paper introduces an
approach based on processing each request individually upon
arrival.

ITII. GENETIC ALGORITHMS

Genetic algorithms are search and optimization algorithms
based on the principles of natural selection and genetics. They
abstract the problem space as a population of individuals, in
which they attempt to identify the best one. [16] The process
of searching for the best individual is iterative, and based on
continuous production of new generations of solutions. This
manner of functioning enables them to be used for solving a
wide range of problems.

The basic elements of genetic algorithms are [17]:

A. Population

consists of a group of chromosomes (individuals), where
each chromosome represents one possible solution.

B. Chromosome encoding scheme

refers to the method used to represent a potential solution
of a problem as a chromosome of a population. Each chro-
mosome is composed of genes that represent some aspect
of the problem solution. There are different mechanisms of
chromosome encoding available, but the most commonly used
are binary and real encoding. Binary encoding represents a
potential solution as a vector of binary values, while real
encoding uses a vector of real values.

C. Fitness function

the central component of genetic algorithms. It represents
the evaluation mechanism of how good an individual, i.e. a
potential solution, is. A higher fitness value indicates that the
solution is ’fitter for a problem’.

D. Selection mechanism

in each iteration of the algorithm, the best individuals are
chosen to pass their genes on to the next generations. Parent
individuals are selected based on their fitness value, with those
with better fitness having a higher chance of being selected.

E. Crossover mechanism

once a pair of parent individuals is selected, they undergo a
crossover operation. As a result, offspring chromosomes that
will form a new generation are created. The basic idea behind
this operator is that parents with good fitness value will create
even better offspring.

F. Mutation

mechanism that randomly changes one element of a popu-
lation’s chromosomes. The primary function of this operator
is to maintain the diversity of generated solutions. Usually,
the mutation is performed with a low probability, so as not to
interfere with the convergence of the algorithm.



G. Shift mechanism

within each iteration of the algorithm, the current population
is replaced by a new population generated from the best
individuals in the current one. To ensure that each iteration
produces a better population, the best few chromosomes of
the current population can be transferred to the next population
without undergoing any modifications. This strategy is called
elitism.

H. Termination conditions

there are usually several termination conditions, with the
number of iterations and the stagnation of the fitness value
being the most commonly used one. Upon the termination,
the algorithm returns the best solution found in the current
population, or the best solution found during the entire exe-
cution.

It is evident that genetic algorithms are highly configurable
and can be made suitable for solving the most diverse types
of optimization problems. Thus, load balancing with genetic
algorithms can focus on a variety of optimization factors
such as energy usage, makespan, and performance, while
maintaining the quality of service [18]. All of this makes
them very suitable soft computing technique for solving load
balancing problems.

IV. PROPOSED ALGORITHM

This section provides an explanation of the proposed algo-
rithm by describing its components.

A. Chromosome representation

The encoding of chromosomes in the implemented algo-
rithm utilizes the permutation encoding method, as proposed
in [11]. This means that each chromosome has the following
form:

A ={VM;4}

where VM,, denotes a virtual machine identifier.

B. Population initialization

The population initialization mechanism is based on the
random selection of chromosomes. As a consequence, the
first iteration of the algorithm consists of the evaluation of
randomly selected virtual machines.

The size of the population is dependent on the number of
virtual machines (VMs) in the datacenter. For large datacenters
with more than 50 VMs, 10% of available resources are
considered simultaneously in one iteration of the algorithm.
In other words, the number of chromosomes is equal to the
total number of VMs divided by 10. This ensures that only a
smaller percentage of the most suitable resources are taken into
account during each iteration. For smaller datacenters with less
than 50 VMs, the number of chromosomes is set to 5, which
was determined experimentally. In datacenters with less than 5
virtual machines, all available machines are taken into account,
meaning the number of chromosomes equals the number of
virtual machines.

C. Fitness function

For determining the value of each chromosome, the fitness
function proposed in [11] is used. This fitness function evalu-
ates each possible solution based on the following formula:

U
MIPS T TP
Here, N represents the cloudlet length, MIPS represents the
processor speed in Million Instructions per Second, U repre-
sents the current load of the considered VM expressed in the
number of tasks currently executed on it, and CP represents
the capacity of the VM (in terms of RAM). The fitness value
of the chromosome is calculated as the inverse of the cost.

cost =

D. Selection mechanism

For selection of the chromosomes that will generate the
next population, a roulette wheel selection mechanism is used.
The main feature of this selection mechanism is that it gives
a higher chance of selecting individuals with higher fitness
values [17].

E. Crossover operator

The intermediate recombination operator is employed for
generating offspring chromosomes. This operator selects the
values of child chromosome elements around or between the
values of parent chromosome elements. The parameter d,
which controls the range of possible offspring values, is set to
0.25 [17].

F. Mutation operator

For the mutation operator, random modification of the
chromosome’s elements was used. The parameters of this
operator are set to allow for the movement of the cloudlet’s
execution to the two nearest neighboring machines. The mu-
tation operator is applied to a randomly chosen chromosome,
with a probability of 0.05.

G. Elitism

To ensure that the best individuals are carried over to
the next generation, the elitism of the 2 best individuals is
incorporated.

H. Termination conditions

The genetic algorithm terminates when one of the following
termination conditions is met:

1) The best fitness value in the current population hasn’t
changed since the last iteration

2) There is a chromosome in the population representing a
VM with a cost of 0 (meaning the cost cannot be further
reduced)

3) The number of iterations reaches 10



L. Algorithm flow
The steps of the proposed algorithm are shown in 1:

Algorithm 1: Proposed genetic algorithm

1 Create the initial population by randomly choosing n
virtual machines

2 Calculate the fitness value of each chromosome* in the
population

3 Check if any of the termination conditions are met. If
yes, return the virtual machine with the highest
corresponding fitness value (END)

4 n - 2 times do:
(D Select 2 chromosomes using roulette wheel
selection
(II) Create a new chromosome by crossing the
selected chromosomes

5 Mutate a randomly chosen chromosome

6 Form a new population by combining newly generated
chromosomes and 2 best chromosomes from the
current population

7 Replace the current population with the new population

8 Calculate the fitness of the new population

9 Return to the step 3

*here, each chromosome represents one virtual machine

The flowchart of the described algorithm is shown in

Figure 1.

Generate the initial population through a
random selection of n VMs

l

Evaluate the fitness of each chromosome*

Termination
conditions
are met?

Return the VM with the
highest corresponding
fitness value

Generate n-2 chromosomes using selection
and crossover operators

|

Mutate a randomly chosen chromosome

|

Form a new population using elitism of the
two best chromosomes

Fig. 1. Flowchart of the proposed algorithm

V. RESULTS
A. Simulation Tool

In order to evaluate the performance of the proposed algo-
rithm, the CloudAnalyst simulation tool was used. CloudAna-
lyst is an open-source GUI based simulation tool, built on top
of the CloudSim framework. This tool allows specifying the
detailed descriptions of data centers, user bases and internet
characteristics. By doing so, the algorithm can be tested in
highly dynamic and demanding contexts.

Some of the main features of this tool include [19]:

« the ability to define highly configurable and flexible
simulations

« repeatability of experiments

« graphical output

« use of consolidated technology and ease of extension

CloudAnalyst has three built-in load balancers: round robin,
equally spread current execution and throttled load balancer.
In order to test the proposed algorithm within this simulation
tool, it had to be modified. Specifically, the tool was extended
by implementing a new load balancer that works on the basis
of the proposed genetic algorithm.

B. Simulation Setup

The performance of the algorithm was evaluated through
two different test scenarios. The main objective of this eval-
uation was to compare the performance of the proposed
algorithm with that of one of the existing GA-based load
balancers. For that reason, the simulation defined in [12] was
taken as the first test scenario.

The scenario involves four data centers and six user bases,
each located in a different geographical region. The data
centers are equipped with identical physical hardware, with
a different number of virtual machines built on top of it. All
user bases are set to generate the same amount of requests,
with identical request sizes. The routing protocol used in the
simulation is ’closest data center’, and the simulation time
is set to 60 minutes. A more detailed description of the
simulation can be found in the original paper.

The proposed algorithm utilizes a fitness function that
considers the specifications of available resources. To evaluate
the suitability of such a fitness function, the algorithm was
tested in a context where data centers have varying resources.
This was achieved by modifying the first scenario so that each
data center has two types of hardware. These types differ in
processor speed, which can be either 10000 or 2000 MIPS.
On top of this hardware, two types of virtual machines are
built:

TABLE I
VIRTUAL MACHINES SPECIFICATIONS

Type I VM
Image Size | 10000
Bandwidth 1000
Memory 512

Type 11 VM
Image Size | 100
Bandwidth | 100
Memory 64




Each data center is configured to have equal quantities of
both hardware and virtual machine types.

C. Results

Each test scenario was carried out using the proposed
algorithm and the built-in load balancers.

The performance was measured using two metrics: overall
response time, which reflects the time it takes for a request
to be completed, and data center processing time, which mea-
sures the amount of time the data center spends on processing
the requests. The test scenarios were conducted multiple times
to ensure robustness and reliability. For each test scenario, the
displayed results represent the average metric values.

The results of the first test scenario are shown in the table
II, along with the metrics of the DTGA algorithm from [12].
These metrics were obtained from the original paper [12].

TABLE 11
SCENARIO I SIMULATION RESULTS

Round Robin | Throttled ESCE DTGA | Proposed GA
Overall 1374.23 1408.75 | 1384.85 | 1372.02 1368.56
response time (ms)
Data center 1256.76 129137 | 126742 | 1254.49 1251.10
processing time (ms)

The presented results show that the proposed algorithm
outperformed other evaluated algorithms in terms of both
overall response time and data center processing time. A visual
representation of the comparison among these algorithms is
show in the figure 2.
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Fig. 2. Scenario I - Comparison of overall response time and data center
processing time

Compared to the best built-in load balancer and the DTGA
algorithm, the proposed algorithm reduces overall response
time by 5.67 ms and 3.46 ms, respectively. At the same time,
the datacenter processing time is reduced by 5.66 ms and 3.39
ms, respectively. The results indicate that the implemented
algorithm achieves a 2.21 times greater difference in overall
response time and a 2.3 times greater difference in data center
processing time compared to the DTGA algorithm.

The results of the second test scenario are shown in the
table III.

TABLE III
SCENARIO II SIMULATION RESULTS

Round Robin | Throttled ESCE Proposed GA
Overall 2243.12 1538.55 | 2213.41 1383.90
response time (ms)
Data center 2125.44 142095 | 2096.40 1266.47
processing time (ms)

As in the previous scenario, it is possible to observe that
the best results are achieved by the algorithm proposed in this
paper. However, in this scenario, a considerably larger differ-
ence in performance was achieved. The observed difference is
shown in the figure 3.
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Fig. 3. Scenario II - Comparison of overall response time and data center
processing time

It can be seen that the proposed algorithm achieved an over-
all response time that is 154.65 ms shorter than the response
time achieved by the best built-in load balancer. Furthermore,
the algorithm shortened the data center processing time by
154.48 ms, compared to the performance achieved by the same
built-in load balancer. In conclusion, by using the proposed
algorithm, overall response time and data center processing
time of the test scenario are reduced by 10.05% and 10.87%,
respectively.

VI. FUTURE WORK

Addressing requests individually can introduce additional
overhead in situations when requests are arriving simultane-
ously or very frequently. In such situations, a better approach
would be to distribute all the received requests across the avail-
able virtual machines simultaneously. This can be achieved
by an algorithm that processes all requests that arrive within
a short time interval together. In that case, depending on the
frequency of requests, some requests would be processed as
a group, and some individually. Unfortunately, due to the
limitations of currently available simulation tools, it was not
possible to implement the described algorithm in this paper.
However, the idea remains to be implemented in the future.



VII. CONCLUSION

This paper proposes a genetic algorithm for load balancing
user requests within the cloud. The main idea behind the
proposed algorithm is to address requests individually, im-
mediately upon arrival. Experimental results have shown that
this approach leads to a reduction in both overall response
time and data center processing time. The approach is partic-
ularly beneficial in contexts where data centers have varying
resources, which was confirmed by the achieved 10% speedup
of response and processing time. The proposed algorithm can
be used for optimizing other aspects of cloud services as well.
This can be achieved by redefining the fitness function of the
algorithm.
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