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Abstract—Various devices and monitoring systems have been
developed and deployed in order to monitor the power grid.
Indeed, several real-world cyberattacks on power grid systems
have been publicly reported. For the transmission and distri-
bution, Phasor Measurement Units (PMUs) constitute the main
sensing equipment of the overall wide area monitoring and
situational awareness systems by collecting high-resolution data
and sending them to Phasor Data Concentrators (PDCs). In this
paper, we consider data spoofing attacks against PMU networks.
The data between PMUs and PDC(s) are sent through the legacy
networks, which are subject to many attack scenarios under with
no, or inadequate, countermeasures in protocols, such as IEEE
37.118-2. We consider one potential attack, where an adversary
may simply keep injecting a repeated measurement through a
compromised PMU to disrupt the monitoring system. This attack
is referred to as a Repeated Last Value (RLV) attack. We develop
and evaluate countermeasures against RLV attacks using a 2D
Convolutional Neural Network (CNN)-based approach, which
operates in frames for each second mimicking images, in order to
avoid the computational overhead of the classical sample-based
classification algorithms, such as SVM. Further, we take this
frame-based approach and use it with Support Vector Machine
(SVM) for performance evaluation. Our preliminary results show
that frame-based CNN as well as SVM provide promising results
for RLV attacks while the efficacy of CNN over SVM frame
becomes more pronounced as the attack intensity increases.

Index Terms—CNN, Deep Learning, SVM, PMU, PMU Spoof-
ing, PMU forged data, Repeat Last Value Attack.

I. INTRODUCTION

Smart Grid is an umbrella term used to refer to the efforts to
transform, upgrade, and enhance the power grid though digital
computing, communications, and industrial control systems
and technologies [1]-[3]. A key element of the SG effort is
in the incorporation of the bidirectional flow of power (for
distributed and renewable energy sources) as well as the two-
way communications and control capabilities. With all these
efforts, a critical need emerges to address a variety of security
and privacy related challenges [4]-[11].
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Cybersecurity, as a consequence, becomes an indispensable
component and a key enabler for the successful transformation
from the electric power grid of yesterday into the SG of
the future. Power grid infrastructure has become an attractive
target [12] with lethal and vital economic and social conse-
quences by means of disruption to electricity delivery [13].
World Economic Forum’s 2018 report [14] emphasizes the
increasing cyberattacks on the critical and strategic infrastruc-
ture that may result in disrupting the society. It is obvious
that the power grid falls into the aforementioned definition of
critical infrastructure [15]. There is definitely an imperative
to implement and adopt cybersecurity technology, both within
the SG and beyond.

An important enabler of the Smart Grid initiatives is the
enhanced use of sensing and measurement capabilities. Phasor
Measurement Units (PMUSs) are the advanced, accurate, and
synchronized measurement devices to take the situational
awareness to a new level. While the traditional Supervisory
Control And Data Acquisition (SCADA) measurements are
taken every 2-4 seconds, PMU reports them 30-120 times per
second with GPS time stamps. As compared to SCADA, PMU-
enabled conceptual model of wide-area monitoring, protection,
and control subsystem is illustrated [11] in Figure 1.

PMUs transmit data to the Phasor Data Concentrator (PDC)
by using IEEE 37.118-2 synchrophasor protocol. Data received
at PDC is then used for state estimation or historical analy-
sis. It is relatively more recently recognized that the PMU
data, especially over the IEEE 37.118-2 protocol, which has
no security mechanisms [17], has many vulnerabilities [18],
[19], such as transport layer attacks [20], data tampering
attacks [21], etc.

In this paper, we consider a PMU data collection network
where the threat environment assumes a compromised PMU
injection spoofed data into the network to corrupt, or disrupt
or confuse the state estimation and the situational awareness
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Fig. 1. A conceptual framework for a wide-area monitoring, protection, and
control (WAMPAC) system for the Smart Grid made possible by PMUs [16].
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of the overall power grid. We focus on a specific attack,
repeat last value (RLV) attack, both plain and stealth strate-
gies, whose detailed definition are given in Section III and
provide deep learning-based countermeasure together with a
preliminary results of its performance evaluation.

The rest of the paper is organized as follows: Section
I consists of related work towards spoofing cyber attacks
in the Smart Grid including but not limited to machine
learning approaches. Section III focuses on the PMU data
spoofing, dataset description and attack scenarios including
the description of the Repeat Last Value (RLV) attack as
presented in [22]. The Section IV introduces the machine
learning methodologies for detecting the PMU spoofing at-
tacks in terms of repeat last value scheme together with the
countermeasures using frame-based 2D Convolutional Neural
Network (CNN) approach and classical and frame-based SVM.
Section V includes the experimentation setup together with the
simulations and the discussion of these results. Concluding
remarks and future work ideas are given in Section VI.

II. RELATED WORK

The most common spoofing attacks on PMU data include
repeat last value attack [22], [23], time dilation attack [22]—
[27], mirroring attack [22], [23], [26], play back attack [24],
[25], data drop attack [24], [25] polynomial fit attack [26], and
general false data injections attack [24], [28], [29].

From the countermeasure perspective, there are a wide va-
riety of approaches both for intentional attacks by adversaries
and unintentional faults in the system; SVM at the sample
level is the most commonly employed one [22], [23] [22],
[23] use SVM and Artificial Neural Network (ANN) to detect
anomalies relying on the highly-correlated inter-PMU and
intra-PMU parameters. However, it is not clear from the papers
if the correlation values or PMU raw measurements of the
most correlated features are used in the algorithms. [26], [27]
focuses on SVM.

In [24], authors artificially create their datasets and use Re-
current Neural Networks (RNN) and Long short-term memory
neural network (LSTM) to detect False Data Injection Attacks
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mstmbance (FDI) against PMU based state estimators. Same authors [25]

use different approach by introducing Symbolic Aggregation
Approximation in data preprocessing phase. For detection of
these attacks text mining using Bag of Pattern and Multivariate
Bag of Pattern is used and compared. The feature extraction
is obtained through Principal Component Analysis (PCA).

In [28] authors detect FDI attacks using Rule Based Au-
toregressive Moving Average (ARMA) and Autoregressive
Integrated Moving Average (ARIMA) applied on calculations
based on Kirchoffs laws.

In [30] authors use different types of clustering to identify
different types of fault events that can occur in the power
grid. The selected fault events are divided into: single-line-
to-ground faults, line-to-line faults, three-phase faults and no-
fault data. They use two different clustering approaches. The
first is time series clustering that uses hierarchical clustering
for which they claim to be the most appropriate in case of
time series data. The other clustering method is instantaneous
clustering that uses is based on k-means and Density Based
Spatial Clustering of Applications with Noise (DBSCAN).

In [31] authors use k-nearest neighbor (KNN), binary SVM,
multi-SVM and Decision Trees (DT) to detect events based
either on event zone or event type. This approach requires
field knowledge in order to correctly apply event labeling on
the PMU data.

In [32] authors are completely agnostic to the data being
transmitted between PMUs and PDC. Instead of checking the
validity of the data they use k-means clustering to separate the
network traffic not typical for PMU to PDC communication.

In [33] authors consider single-phase, two-phase and three
phase types of faults. They also consider short circuits and
ground for each individual phase. They applied Linear Dis-
criminant Analysis (LDA), kNN, SVM and ANN machine
learning approaches on simulated IEEE 123-bus distribution
system.

In [29] phasor measurement unit data attacks (PMUDA) by
using different machine learning algorithms that can be used
for supervised and semi-supervised learning. The supervised
machine learning algorithms are multi-layerperceptron (MLP),
SVM, KNN, AdaBoost+, C4.5 DT and XGBoost. The semi-
supervised learning techniques are deep autoencoders (DA)
and one-class SVM (OC-SVM).

In [34] authors use Generative Adversarial Networks (GAN)
and Neural ordinary differential equations (NODE) to artifi-
cially generate PMU data events. They observe three event
types: Bus Fault, Line Tripping and Load shedding. The
simulation environment includes a 10-machine IEEE 39 bus
system. To classify events they use PCA and Discrete Wavelet
Transformation(DWT) SVM kernels.

In [35] authors use SVM with online learning in order to
predict short-term voltage instability on IEEE 39 bus based
network.



III. PMU DATA SPOOFING
A. Threat Model

For a our threat model, we adopt the three attack vec-
tors (spoofing techniques) described in [22], [23] based on
the more general spoofing attacks from [26], [27]. These
attacks are designed to avoid easy detection with the follow-
ing characteristics: (a) reasonable (based on the historically
valid data), (b) Continuity (falsified data should not create
a discontinuity and consistent with the preceding and the
following measurements), and (c) locality (should only based
on the local knowledge at the PMU). The three attacks are:
(1) Repeat Last Value Attack (RLV) [22], [23], where the
adversary selects the last valid data in a sequence of n
measurements and keeps repeating it for the next n values, as
shown in Figure 2, (2) Time Dilation Attack (TDA) [22], [23],
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Fig. 2. Repeat Last Value Attack: The original sequence of the PMU data on
the left is forged on the right by replacing S5 through S with the repeated
Se value.

[26], where the adversary replaces every other value with its
preceding measurement, and (3) Mirroring Attack (MA) [22],
[23], [26], where the attacker takes a set of n values and
reverses the order of the data, swaps first with the last, second
with the penultimate, etc. Our focus in this study is the RLV
and we leave the other two attacks to a future work.

B. Dataset and Variables

We make use of the EPFL dataset [36], [37], collected over a
transmission network with 7 PMUs. Every hour 180,000 rows
per PMU are being collected, giving the total of 4,320,000
samples per day for every PMU.

We make use of 9 common measurements across all mea-
surement; i.e. latency, frequency, ROCOF (rate of change of
frequency), magnitude of A, B, and C phase voltage, phase A,
B, and C voltage angle.

C. Attack Scenarios and Data Preprocessing

In this work, we use 24 hours of measurements and forge
only one PMU under two different attack scenarios with RLV.
Regardless of the scenario attack we design, we select the first
6 hours for training and 18 hours for testing as illustrated in
Figure 3. To forge the data, after selecting the PMU and its

24-hour consecutive measurements, we first determine hourly
attack counts (a) which range from 500 through 3,000 with a
step size of 500. Then, we randomly select time points within
each hour to spread attacks with minimum (/) and maximum
number (u) of spoofed signals. Since our sampling rate (.5) per
second is 50, our study design includes two attack scenarios,
50+ and 10-40, to simulate attacks exceeding and under one
second, respectively. While the former scenario has [ = 50
and v = a for random number generation of the attack count,
the latter guarantees more stealth attacks under a second by
forcing I = 10 and v = 40. In both scenarios, we observe
varying number of RLV attacks in a second, but 50+ scenario
also produces attacks that cover all 50 samples in a second or
more.

After generating the attacks, we label those samples as
forged (positive) and others as authentic (negative) and then
merge it with the rest of the 6 PMUs’ data at the PDC, yielding
64 columns and 4,320,000 rows. In all attack simulations the
ratio of the forged sample size remain disproportionately small
ranging between 0.4% and 1.8% depending on the attack count
per hour, which introduces an additional challenge associated
with the class imbalance problem. During this process, we also
perform z-score normalization on all datasets.

IV. RLV ATTACK DETECTION METHODOLOGY
A. Frame Approach

While the ideal spoof detection would be at the sample level,
its computational overhead for our high-volume PMU traffic
is overwhelming for detection. Thus, we transform data into a
coarser granularity representation through data slices for every
second, which we call frames to imitate a sequence of images
as shown in Figure 3 to use image classification algorithms.
In particular, we constructed frames for each sample with a
size of P x N, where P and N represent number of PMUs
and variables for each PMU, respectively. Depending on the
sampling rate, S, per second, we obtained 7" frames (images
representations) with a size of S x P x N. In our particular

case, where S = 50, P =7, and N = 9 due to the columns in
common across seven PMUs, we ended up with 86,400 frames
(images) of size 50x63 over 24 hours. Please note that while
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Fig. 3. Data spoofing, preprocessing, and transformation. Each pixel corre-
sponds to a measurement.




we sacrifice some good measurements at the sample level as
bad at the frame level the statistical nature of the time series
data would not be impacted by this oo conservative approach
to bring the computational complexity to acceptable levels for
scalability reasons.

Due to the random and stealth nature of the attacks, some
frames had no positive cases whereas others had at least
one forged sample in them. While transforming our data, we
labeled those frames that had at least one spoofed sample as
forged (positive) frames. This led to a reorganization of class
labels at the frame level, but the class imbalance problem
problem continued to exist with a small ratio of the positive
cases, which ranged from 0.39% to 4.88% depending on the
hourly attack count and ! and w values. As 50+ scenario
allowed attacks covering all 50 samples in a second, we
observed a high ratio (48%-84%) of such frames among the
forged ones. For instance, for hourly attack count of 500, 159
out of 334 forged frames turned out to have its samples all
spoofed.

B. Machine Learning Algorithms

In this work, we are able to take advantage of Convolutional
Neural Network (CNN), a deep learning (DL) approach, as a
result of data transformation into frames, in addition to the
more classical and widely used machine learning algorithm,
SVM.

1) 2D CNN: CNNs are one of the DL neural networks that
consist of multiple layers [38] [39] [40] and are mostly used
for image classification problems [41]. One of the advantages
of CNN over other conventional image classification methods
is that CNN does not only perform predictions, but also
learns and extracts features through their convolutional layers
coupled with pooling layers [42], which can be stacked similar
to the generic architecture as shown in Figure 4 [43].
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Fig. 4. Generic CNN Structure.

Our network architecture consists of five layers. The first
layer is a 2D convolutional layer with a kernel size of 3x3
and 256 filters. The activation function in this layer is rectified
linear unit (RLU). The second layer is a pooling layer with
a 2x2 pool size. Next two layers are flattening and dropout
layers. The drop rate in the dropout layer is set to 0.5.
The output is a dense layer with sigmoid activation function.
Training is performed over 25 epochs with a batch size of 512.

2) Support Vector Machine: Support Vector Machines
(SVMs) are another set of well-known classification methods,
which are capable of handling both linear and non-linear
data through kernel functions that are responsible for data
transformation. SVM models search for the best hyperplane
with a maximum margin in N-dimensional space, where N
is the number of features in a dataset, to achieve the best
separation [44].

In the current work, we employed a widely-used kernel
function [45], radial basis function (RBF), as shown in Eq. 1

K(z,2") = exp(—/||z — 2'|*) M

on any two samples, x and 2/, due to its overall superiority
observed in empirical studies over other kernel functions [46].
However, this necessitated a search for the best v for RBF in
addition to regularization parameter, C, for SVM. Therefore,
we performed a grid search on the training data to find the
best v — C' pair, which we used on the test set as well.

Since SVM only needed a set of features to operate on,
we first attempted to use it on the data right after the spoof-
ing without frames. We then introduced frame-based SVM,
SV M¢, which worked on image-like frames to achieve a fair
comparison of CNN and SVM. In the latter case, however, we
summarized each frame with the standard deviations of PMU
variables which formed our features for SVM, whereas CNN
relied on its implicit features extracted through convolutional
layers.

V. RESULTS AND DISCUSSION
A. Simulation Setup

The simulations are run on a server with 128GB RAM
and two Intel Xeon Silver 4208 processors running at base
clock of 2.1GHz each with 11MB of level 3 cache. Each
processor has 8 cores and 16 threads which gives a total of
32 simultaneous threads running on the training and testing
process. The storage consists has 8TB of SSD storage.

B. Simulation Results

For each dataset, we ran CNN 30 times for statistical
significance and calculated the average accuracy with standard
deviation to observe its robustness as DL models could be
fluctuating due to some internal factors such as weight initial-
ization. On the other hand, we performed only one SVM run
because of its deterministic nature. For both algorithms, we
tuned their algorithm-specific parameters in the training stage
to find the optimal models.

Training an SVM model without the frame approach on a
such big data for the purpose of sample-based spoof detection
took a considerable amount if time, in line with the intuitive
expectation we mentioned earlier. Even for the smaller subsets
of the data (lhr - Shr in length), run time was too long (up to
50 hours for some cases) for an efficient spoof detection task.
Even though we observed high accuracy and true negative
rates (TNRs) around 99% for some runs, this was mostly
because negative cases were extremely dominant in the data
which led correct classification of negative cases and increased



accuracy. However, for a spoof detection framework this would
be misleading and true positives rate (TPR), which carries
more importance towards flagging a spoofed reading, needed
further inspection. We found that TPRs were as low as 10% for
training and 0% for test. The failure of the algorithm on these
subsets might be due to the nature of the threat type, RLV,
as SVM sees the same feature values in an authentic reading
and multiple forged ones at the same time, which may make
it harder to separate them.

Next, we took the frame-based approach which not only
shrank the size of the data, but also let us detect a spoofed
time window, which was a second in our case. For both CNN
and SV My, we built classification models on 6 hours of PMU
readings, and tested for the remaining 18 hours to find out the
ability of our models to predict for long hours of readings
once they were developed. Similar to earlier SVM runs, both
algorithms gave high accuracy values around 0.99 as shown in
Table 1. However, this phenomenon was again mostly because
of the class imbalance problem which let algorithms correctly
classify overwhelmingly many negative cases as depicted in
Figures 5 and 6. Therefore, we needed a deeper look at the
performances in terms of TPRs here as well.

TABLE 1

ACCURACY VALUES FOR FRAME-BASED APPROACHES

50+ 10-40

SV My CNN SV My CNN
a/hr Train  Test Train  Test Train  Test  Train  Test
500 0.998 0.996 0.999 0.98 0.999 0.89 0.996 0.97
1000 0998 0998 0998 0.98 0.997 096 0.994 0.95
1500 0998 0998 0998 0995 0994 093 0993 0.90
2000 0998 0997 0.999 0.74 0992 092 0991 0.87
2500 0998 0997 0999 0.96 0.990 0.90 0989 091
3000 0998 0998 0.999 0.98 0.987 0.89 0986 0.84

In 50+ attack design, we observed higher TPRs for SV M
than that of CNN except for the 2000 attacks/hour as shown
in Figure 5. SV M/ had an increasing trend for TPR, whereas
CNN showed some fluctuations, which we also represented
with error bars at each attack count. As we increased the attack
counts, both algorithms converged around 80% accuracy, but
it was the standard deviation of each frame which turned out
to be zero giving a slight advantage to SV M, over CNN in
terms of more informative underlying features.

In order to avoid zero standard deviations and make the
attacks more stealth, we ran both algorithms on 10-40 attack
scenario. In this case, CNN continued to learn and extract
features while SVM still relied on standard deviations as
features. As shown in Figure 6, both methods performed
poorly for very small number of attacks, but we noticed a huge
drop in SV My’s TPR performance which did not exceed 36%
as attack counts increased. On the other hand, CNN mostly
showed a consistently increasing performance in terms of TPR
that reached 76%.

VI. CONCLUSION AND FUTURE WORK

The preliminary result showed that CNN and frame-based
SVM algorithm can be used to detect RLV attacks. It is also
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Fig. 6. Performances of SV My vs. CNN in 10-40 attack scenario.

evident that CNN outperforms the frame-based SVM detection
performance when the attack size becomes larger. In the future
work we plan to apply the same approaches on other types
of the attacks including, but not limited to TDA and MA.
The main advantage is that for these type of the attack there
is no need to perform complex state estimation functions to
detect if attack occurred. Furthermore the detailed information
and theory that stands behind the power grid is not needed.
These approaches can definitely with modifications be applied
to different fields where similar FDI attacks may occur. We
also showed that time-series component is completely not
considered as important for attack detection. One potential
research direction is to explore the time-series component
using CNN and LSTM neural networks. In our work we
spoofed only one of the PMUs data and labeled the whole
row along with correct readings of other PMUs as spoofed.
One potential direction is to investigate how CNN and frame-
based SVM perform when multiple PMUs data are spoofed.

REFERENCES

[1] H. Farhangi, “the path of the smart grid,” IEEE Power and Energy
Magazine.

[2] M. L. Tuballa and M. L. Abundo, “A review of the development of
smart grid technologies,” Renewable and Sustainable Energy Reviews,
vol. 59, pp. 710-725, 2016.



[3]

[10]

[11]

[12

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

X. Fang, S. Misra, G. Xue, and D. Yang, “Smart grid—the new and
improved power grid: A survey,” IEEE communications surveys &
tutorials, vol. 14, no. 4, pp. 944-980, 2011.

S. Systems, P. McDaniel, and S. McLaughlin, “Security and Privacy
Challenges in the Smart Grid,” Security & Privacy, IEEE, vol. 7, no. 3,
pp. 75-77, 2009.

H. Khurana, M. Hadley, N. Lu, and D. A. Frincke, “Smart-grid security
issues,” IEEE Security and Privacy, vol. 8, pp. 81-85, 2010.

A. R. Metke and R. L. Ekl, “Security Technology for Smart Grid
Networks,” IEEE Trans. on Smart Grid, no. 1, pp. 99-107, jun.

W. Wang and Z. Lu, “Cyber security in the Smart Grid: Survey and
challenges,” Computer Networks, no. 5, pp. 1344-1371.

J. Liu, Y. Xiao, S. Li, W. Liang, and C. L. P. Chen, “Cyber Security
and Privacy Issues in Smart Grids,” Communications Surveys Tutorials,
IEEE, vol. 14, no. 4, pp. 981-997, 2012.

X. Li, X. Liang, R. Lu, X. Shen, X. Lin, and H. Zhu, “Securing smart
grid: cyber attacks, countermeasures, and challenges,” Communications
Magazine, IEEE, vol. 50, no. 8, pp. 3845, 2012.

Y. Xiao, Security and Privacy in Smart Grids. Taylor &
Francis, 2013. [Online]. Available: http://books.google.com/books?
1d=QQ20Y0IrRM8C

A. Huseinovi¢, S. Mrdovi¢, K. Bicakei, and S. Uludag, “A survey of
denial-of-service attacks and solutions in the smart grid,” IEEE Access,
vol. 8, pp. 177447-177 470, 2020.

“Surviving a Catastrophic Power Outage,” The President’s National In-
frastructure Advisory Council (NIAC), Tech. Rep., Dec 2018. [Online].
Available:  https://www.dhs.gov/sites/default/files/publications/NIAC%
20Catastrophic%20Power%200utage%20Study_508%20FINAL.pdf

N. Kshetri and J. Voas, “Hacking Power Grids: A Current Problem,”
Computer, no. 12, pp. 91-95, dec.

“The Global Risks Report 2018 13th Edition,” World Economic Forum,
Tech. Rep., 2018. [Online]. Available: http://wef.ch/risks2018

M. P. Barrett, “Framework for Improving Critical Infrastructure
Cybersecurity Version 1.1,” National Institute of Standards and
Technology (NIST), Tech. Rep., apr 2018. [Online]. Available:
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf

V. Terzija, G. Valverde, P. Regulski, V. Madani, J. Fitch, S. Skok,
M. M. Begovic, and A. Phadke, “Wide-Area Monitoring, Protection,
and Control of Future Electric Power Networks,” Proceedings of the
IEEE, no. 1, pp. 80-93, jan.

S. M. S. Hussain, S. M. Farooq, and T. S. Ustun, “A security mech-
anism for ieee ¢37.118.2 pmu communication,” IEEE Transactions on
Industrial Electronics, vol. 69, no. 1, pp. 1053—-1061, 2022.

C. Tu, X. He, X. Liu, and P. Li, “Cyber-attacks in pmu-based power
network and countermeasures,” IEEE Access, vol. 6, pp. 65 594—65 603,
2018.

R. Khan, K. Mclaughlin, D. Laverty, and S. Sezer, “Design and imple-
mentation of security gateway for synchrophasor based real-time control
and monitoring in smart grid,” IEEE Access, vol. 5, pp. 11626—11 644,
2017.

Y. Wang, T. T. Gamage, and C. H. Hauser, “Security implications of
transport layer protocols in power grid synchrophasor data communi-
cation,” IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 807-816,
2016.

M. N. Aman, K. Javed, B. Sikdar, and K. C. Chua, “Detecting data
tampering attacks in synchrophasor networks using time hopping,” in
2016 IEEE PES Innovative Smart Grid Technologies Conference Europe
(ISGT-Europe). 1EEE, 2016, pp. 1-6.

J. Jiang, X. Liu, S. Wallace, E. Cotilla-Sanchez, R. Bass, and X. Zhao,
“Defending against adversarial attacks in transmission- and distribution-
level pmu data,” 2020.

J. Jiang, “Defending against adversarial attacks in electric power sys-
tems: A machine learning approach,” Washington State University, no. 1,
2019.

“Packet-data anomaly detection in pmu-based state estimator using
convolutional neural network,” International Journal of Electrical Power
& Energy Systems, vol. 107, pp. 690 — 702, 2019.

R. Ma, S. Basumallik, and S. Eftekharnejad, “A pmu-based data-driven
approach for classifying power system events considering cyberattacks,”
IEEE Systems Journal, vol. 14, no. 3, pp. 3558-3569, 2020.

J. Landford, R. Meier, R. Barella, S. Wallace, X. Zhao, E. Cotilla-
Sanchez, and R. B. Bass, “Fast sequence component analysis for attack
detection in smart grid,” in 2016 5th International Conference on Smart
Cities and Green ICT Systems (SMARTGREENS), 2016, pp. 1-8.

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

X. Liu, S. Wallace, X. Zhao, E. Cotilla-Sanchez, and R. B. Bass,
“Episodic detection of spoofed data in synchrophasor measurement
streams,” in 2019 Tenth International Green and Sustainable Computing
Conference (IGSC), 2019, pp. 1-8.

B. Chen, S.i. Yim, H. Kim, A. Kondabathini, and R. Nuqui, “Cyberse-
curity of wide area monitoring, protection, and control systems for hvdc
applications,” IEEE Transactions on Power Systems, vol. 36, no. 1, pp.
592-602, 2021.

J. Wang, D. Shi, Y. Li, J. Chen, H. Ding, and X. Duan, “Distributed
framework for detecting pmu data manipulation attacks with deep
autoencoders,” IEEE Transactions on Smart Grid, vol. 10, no. 4, pp.
44014410, 2019.

E. Klinginsmith, R. Barella, X. Zhao, and S. Wallace, “Unsupervised
clustering on pmu data for event characterization on smart grid,” in 2016
Sth International Conference on Smart Cities and Green ICT Systems
(SMARTGREENS), 2016, pp. 1-8.

A. Shahsavari, M. Farajollahi, E. M. Stewart, E. Cortez, and
H. Mohsenian-Rad, “Situational awareness in distribution grid using
micro-pmu data: A machine learning approach,” IEEE Transactions on
Smart Grid, vol. 10, no. 6, pp. 6167-6177, 2019.

P. Donner, A. S. Leger, and R. Blaine, “Unsupervised machine learning
for anomaly detection in synchrophasor network traffic,” in 2019 North
American Power Symposium (NAPS), 2019, pp. 1-6.

E. L. Grando, A. E. Lazzaretti, M. Moreto, and H. S. Lopes, “Fault
classification in power distribution systems using pmu data and machine
learning,” in 2019 20th International Conference on Intelligent System
Application to Power Systems (ISAP), 2019, pp. 1-6.

X. Zheng, B. Wang, D. Kalathil, and L. Xie, “Generative adversarial
networks-based synthetic pmu data creation for improved event classi-
fication,” IEEE Open Access Journal of Power and Energy, vol. 8, pp.
68-76, 2021.

“Pmu-based voltage stability prediction using least square support vector
machine with online learning,” Electric Power Systems Research, vol.
160, pp. 234-242, 2018.

EPFL. Epfl campus pmu dataset. [Online]. Available: https://bigdata.
seas.gwu.edu/data- set-20-epfl-campus- pmu-data-set/

M. Pignati, M. Popovic, S. Barreto, R. Cherkaoui, G. Dario Flores, J.-Y.
Le Boudec, M. Mohiuddin, M. Paolone, P. Romano, S. Sarri, T. Tesfay,
D.-C. Tomozei, and L. Zanni, “Real-time state estimation of the epfl-
campus medium-voltage grid by using pmus,” in 2015 [EEE Power
Energy Society Innovative Smart Grid Technologies Conference (ISGT),
2015, pp. 1-5.

S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a
convolutional neural network,” in 2017 International Conference on
Engineering and Technology (ICET), 2017, pp. 1-6.

U. Michelucci, Advanced Applied Deep Learning. Apress, 2019.
[Online]. Available: https://doi.org/10.1007/978- 1-4842-4976-5

E. Chollet, Deep learning with Python. Shelter Island, NY: Manning
Publications Co, 2021.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

C. Zheng, D.-W. Sun, and L. Zheng, “Recent developments and appli-
cations of image features for food quality evaluation and inspection—a
review,” Trends in Food Science & Technology, vol. 17, no. 12, pp.
642-655, 2006.

D. Nguyen, H. Yoon, T. Pham, and K. Park, “Spoof detection for finger-
vein recognition system using nir camera,” Sensors, vol. 17, p. 2261, 10
2017.

C. J. Burges, “A tutorial on support vector machines for pattern recogni-
tion,” Data mining and knowledge discovery, vol. 2, no. 2, pp. 121-167,
1998.

S. S. Keerthi and C.-J. Lin, “Asymptotic behaviors of support vector
machines with gaussian kernel,” Neural computation, vol. 15, no. 7, pp.
1667-1689, 2003.

C. Ding, L.-F. Yuan, S.-H. Guo, H. Lin, and W. Chen, “Identification of
mycobacterial membrane proteins and their types using over-represented
tripeptide compositions,” Journal of proteomics, vol. 77, pp. 321-328,
2012.



