
CryptoStego - A Novel Approach for Creating
Cryptographic Keys and Messages

Damir Omerasevic
PBH Technologies

PrinTec Group of Companies
Sarajevo

Bosnia and Herzegovina
Email: d.omerasevic@printec.ba

Narcis Behlilovic
Faculty of Electrical Engineering

University of Sarajevo
Sarajevo

Bosnia and Herzegovina
Email: nbehlilovic@etf.unsa.ba

Sasa Mrdovic
Faculty of Electrical Engineering

University of Sarajevo
Sarajevo

Bosnia and Herzegovina
Email: sasa.mrdovic@etf.unsa.ba

Abstract—This paper proposes a cryptographic key establish-
ment method based on set of images shared by sender and
receiver. The method is simple, fast and secure. We call it
CryptoStego. Possible key sizes are virtually limitless. Proposed
method is implemented in C programming language. The imple-
mentation is compared with (A)RC4 stream cipher, by comparing
CPU time and memory occupation by both algorithms. The
results of comparison are presented. Intel VTune Amplifier XE
2011 was used as measuring tool.

Index Terms—ARC4, RC4, ARCFOUR, CryptoStego, cryptog-
raphy, key generation, steganography.

I. INTRODUCTION

Modern ciphers that are standardized, like AES or RSA, are
well known. They do not have weaknesses that would enable
someone to decrypt ciphertext without correct key within
reasonable time. They all implement Kerckhoffs’s principle
[1] that security of the system is in security of secret key.
Therefore secret key needs to be safe. There are two possible
ways to attack cipher secret key. One is to try all possible
values of the key until the correct key is guessed, brute force
attack. To prevent this kind of attack key needs to be as long
as possible. The other avenue of attack is to try to get hold of
the secret key. To protect secret key various key establishment
protocols have been developed. They all address the problem
of how to securely make secret key available to all pairs that
need to use it to encrypt messages.

Steganography tries to enable hiding the very existence
of messages being exchanged. Messages are very often hid-
den within various multimedia files, like pictures, audio or
video recordings. These types of files have higher information
redundancy than ordinary data files and can suffer minor
changes with very little observable impact when reproduced.
This fact is used to embed messages through ”invisible”
changes. Various techniques have been developed to better
hide changes.

Idea of this paper is to use multimedia files to establish
secret key for encryption. With proposed approach key space,
and therefore key length, is virtually limitless. In addition
there is no need to exchange keys. Keys are generated from
multimedia files that both sides have. Parties only occasionally
have to exchange information on which set of files they will

be using. This information can be updated dynamically using
encrypted channel that has been established.

The paper is organized as follows. Related work is ad-
dressed in section 2. Section 3 explains our idea on how
to establish encryption keys. Example implementation and
its comparison with (A)RC4 stream cipher are presented in
section 4. Conclusion and discussion as well as directions for
future research work are in section 5.

II. RELATED WORK

Basic issues of key establishment with various key transport
and key agreement protocols are well covered in books [2],
[3].

Different ideas on combining cryptography with steganog-
raphy have appeared. One idea is to hide cihertext within
an image using steganography like it was proposed in [4].
To further complicate things [5] proposes encrypting plaintext
twice before hiding it in an image. Paper [6] proposes doing
encryption and hiding in one step saving time and resources.
Our approach is fundamentally different, much simpler and
solves a different problem.

Idea to use media files to generate cryptographic keys has
been around for a while. Most of proposed solutions were to
generate personalised keys based on biometric features like
fingerprint [7], voice [8] or face [9]. Good recent overview of
biometric key generation methods and issues can be found in
[10]. Again, our method borrows some ideas from this area of
research but does not propose permanent personal keys, rather
one time session keys.

The most similar idea to the one we propose is expressed
in [11]. Their method uses image features for key generation.
Process of key generation is rather complicated, and requires
time. They also use their own encryption algorithm. Our idea
uses image bits directly and we do not invent new encryption
algorithm. In the next section the method that we propose will
be explained.

III. PROPOSED METHOD

A brief explanation of basic idea will be provided first. Then
a more detailed explanation of one possible implementation of
idea will be given.



A sender and a receiver should have an ordered set of
files that are, individually, much bigger then messages being
exchanged. For each message to be encrypted the sender picks
a file from the set and a position within that file. The bits of
a plaintext message are XORed with the bits of the selected
file from the selected position to generate a ciphertext. The
ciphertext with an index of the selected file and the position
within the file is sent to the receiver. Using the index and the
position, receiver can transform the ciphertext back to plaintext
by XORing it with the bits of the same file from the same
position.

A. Security analysis

A third party that monitors the communication channel can
capture the ciphertext, the index and the position. The index
and the position are of no value without knowledge of the file
set. The ciphertext is the result of XORing plaintext message
with the key, the bits form the selected file, that is the same
length as the message. Since each message is encrypted with a
different key that has the same length as the message method
resembles one time pads.

There are two important differences. The key bits are not
completely random. They are bits of a file that has certain
format that might limit their randomness. Also, one time pads
should be destroyed after use. Depending on the selected set
of files this might not be possible. In a case that the set of
files used to encrypt the message is revealed in future it will
be possible to decrypt the message for anyone with an access
to the set and the encrypted message with the index and the
position.

Mentioned differences from one time pad mean that pro-
posed method is not perfectly secure. For practical purposes
the keys might be considered random enough. This points to a
direction for future research on randomness of bits in various
file types and selection of the best ones. Also, if encrypted
messages have a value for a limited period of time than a
selected set of files used for encryption needs to stay secret
only for that period of time.

It is obvious that security of proposed encryption method is
in secrecy of a set of files. The set of files might be considered
as a master key or some sort of key encryption key, while the
bits of files used to encrypt messages have a role of session
keys. Key size of this master key is practically limitless since
the number of possible file sets is practically limitless. There
are implementation issues regarding the size of the set and
the size of the files that might limit the possible size of this
”master” key for a particular implementation.

There is also, a very important, issue of distribution of this
”master” key. Parties in secret communication need to agree
on a set of files they are going to use for encryption. We do
not address that problem. We believe that it is solvable. The
parties need to exchange information on any set of ordered
files available to both sides. It could, and should, be done
using different channel from the one that will be used to
send encrypted messages. To support our belief we give some
examples of possible file sets that can be named in short

TABLE I
THE STRUCTURE OF MESSAGE

File index i Position p in file Pi Bits of ciphertext

1 byte 4 bytes L - length of plaintext in bits

telephone or even SMS message. ”A folder of distribution of
some OS ordered by names (sizes, dates, ...) of files”. ”A
public, or available to parties, online repository of images
(songs, video material, ...) ordered by names (sizes, dates, ...)
of files”.

B. Formal model

Formal model has the following notation:
• P - ordered set of files
• i - file index
• Pi - selected file
• p - starting position in bits in file Pi

• bPi(k) - bit k in file Pi

• M - plaintext
• L - length of the plaintext
• C - ciphertext of plaintext
• bMj - bit j of plaintext
• bCj - bit j of ciphertext
Using above notation encryption process can be expressed

with:
forj = 1toL
bCj = bMj ⊕ bPi(p+ j − 1)
Similarly, decryption can be expressed with:
forj = 1toL
bMj = bCj ⊕ bPi(p+ j − 1)
We will present implementation of CryptoStego example

and we will compare it with (A)RC4 stream cipher in the
following section.

IV. COMPARING CRYPTOSTEGO AND (A)RC4
In this section we will describe message format for Cryp-

toStego, testing environment we used, testing procedure we
established and results received from CryptoStego and (A)RC4
measurements.

An alleged implementation of RC4 was posted September
13, 1994 at anonymously on the Internet newsgroup sci.crypt
without permission or verification from author Ron Rivest [12]
[13]. The name RC4 is trademarked, so RC4 is very often
referred to as ARC4 or ARCFOUR [14], in order to avoid
trademark problems. We will use name (A)RC4 in our work.

A. Message format

Since messages with a ciphertext need to include file index
”i” and starting position ”p” we defined message format for
the proof of concept implementation we created. The structure
of message is given in Table I.

Above message format assumes that there are maximum of
256 files in set. Position is defined with four bytes that allows
for 232, over 4 billion, positions.

Details of testing and matching results will be given in next
subsections.



B. Testing environment

Testing environment was set on laptop, with the following
hardware: CPU Intel Core i7-3610QM, CPU working fre-
quency was 2.30GHz, and RAM memory was 12 GB.

The laptop had the following software: operating system
Windows 7 Ultimate Edition with SP1, software Intel VTune
Amplifier XE 2011 and compiler Borland C++ version 5.02.

As a source for our set of files, we used one CD with family
pictures. All pictures were inside one folder. The folder had
215 pictures. We made a copy of all pictures, sorted by date,
from CD to one folder on laptop.

C. Testing procedure

We will describe how we set up environment, in order to
be able to make comparison and get matching results.

We used compiler Borland C++ and made CryptoStego
algorithm for enryption.

The algorithm first reads plaintext from a file. At that time
we also calculate plaintext length. We will use plaintext length
later, when we make ciphertext.

Second step of the algorithm is to randomly select a file
from a set of family pictures. Random selection of a file is
done by one function written in CryptoStego algorithm.

Third step of the algorithm is to select position within
the file chosen in second step, as starting point for making
CryptoStego ciphertext. Position selection is done by one
function written in CryptoStego algorithm.

Fourth step is reading number of bytes calculated in first
step, in the file chosen in the second step, starting from the
position chosen in third step, which is our ”master” key.

Fifth step is encryption process, where we will get cipher-
text.

Sixth step is writing ciphertext to a file, with structure given
in table I.

We also used compiler Borland C++ to compile (A)RC4
algorithm [12] [13] for encryption.

We used Intel VTune Amplifier XE 2011 software for
measurements.

Every time, for every length of bytes, we made measurement
cycle between 4 to 6 times and we measured CPU and RAM
memory usage.

One measurement cycle we did for (A)RC4 and one mea-
surement cycle we did for CryptoStego.

For example, for (A)RC4, for the first measurement cycle
we took 8 bytes (plaintext was 12345678) for plaintext mes-
sage and for key, then we start measurement cycle. During
this measurement cycle we wrote down current results. For
CryptoStego, we also took 8 bytes (plaintext was 12345678)
for plaintext message and then we start measurement cycle
again. During this measurement cycle we also wrote down
current results.

If the same current results in the same measurement cycle
repeated minimum 4 times, we wrote down to Excel this as
final result. Otherwise, we calculated average value of current
results for current measurement cycle and then we wrote it
down as final result to Excel.

Fig. 1. CPU usage comparison

Maximum one current result in one measurement cycle is
not taken into consideration, if it is deviated from the other
current results.

For the next measurement cycle we took 16 bytes (plaintext
was 1234567890123456) for plaintext message and for key on
(A)RC4 and wrote down current results. For next measure-
ment cycle on CryptoStego we took 16 bytes (plaintext was
1234567890123456) for plaintext message and wrote down
current results.

After that, we wrote down final results for both (A)RC4 and
CryptoStego measurements on 16 bytes to the Excel table.

We continued to increase number of plaintext bytes and
key bytes to 24, 32, 40, etc. and we finished measurement
cycles for (A)RC4 with 16384 bytes. However, we continued
measurement cycles for CryptoStego, with increasing number
of plaintext bytes to 32768, 65536, 131072 and 262144,
respectively.

Ate the end of all measurement cycles, after we wrote
down all final results to Excel table, we got one figure for
CPU usage comparison and one table for RAM memory usage
comparison.

The measurement is done only for encryption. We believe
that decryption uses the same or less CPU time, because of
the nature of measured algorithms, so we did not take it into
consideration in this work.

Fig. 1 is having comparison of CPU usage for CryptoStego
and (A)RC4. As we could see from fig. 1, CryptoStego is
using less CPU time than (A)RC4.

Table II is having comparison of RAM memory usage for
CryptoStego and (A)RC4, from where we see that CryptoStego
use less RAM memory than (A)RC4.

We could see from Fig. 1 and Table II that CryptoStego
have better performances than (A)RC4 in both CPU time and
RAM memory consumption, at least for measured length of
bytes.

V. CONCLUSION

CryptoStego key establishment and encryption method is
simple and fast. It has been shown that it uses less resources
than (A)RC4. CryptoStego resembles one time pads. Each
message is encrypted with a different key. A length of the



TABLE II
MEMORY USAGE COMPARISON

Plain-
text

(bytes)

(A)RC4
memory

(KB)

Cryp-
toStego
memory

(KB)

Plain-
text

(bytes)

(A)RC4
memory

(KB)

Cryp-
toStego
memory

(KB)

8 7 7 176 8 7

16 7 7 184 8 7

24 7 7 192 8 7

32 7 7 200 8 7

40 7 7 208 8 7

48 7 7 216 8 7

56 7 7 224 8 7

64 7 7 232 8 7

72 7 7 240 8 7

80 7 7 248 8 7

88 7 7 256 8 7

96 7 7 512 8 7

104 7 7 1024 10 7

112 8 7 2048 12 7

120 8 7 4096 16 7

128 8 7 8192 24 7

136 8 7 16384 40 7

144 8 7 32768 9

152 8 7 65536 9

160 8 7 131072 9

168 8 7 262144 9

key is the same as a length of the message. Parties in secret
communication need only to have an ordered set of files that
are, individually, much bigger than messages being exchanged.

Future work is oriented towards the following open ques-
tions. An analysis of file types that would be the best as
key generators. Files would need to have as random bits
as possible, be much bigger than messages to be encrypted
and organised in sets that are easy to name (and exchange
if needed). Also protocols for agreement on set of files and
ordering should be explored.

REFERENCES

[1] A. Kerckhoffs, “La cryptographie militaire - Partie I,” Journal des
sciences militaires, vol. IX, pp. 5–83, Jan 1883.

[2] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot, Handbook of
Applied Cryptography, 1st ed. Boca Raton, FL, USA: CRC Press,
Inc., 1996.

[3] B. Schneier, Applied cryptography: Protocols, Algorithms, and Source
Code in C, 2nd ed. Wiley, 1996.

[4] P. Marwaha and P. Marwaha, “Visual cryptographic steganography in
images,” in Computing Communication and Networking Technologies
(ICCCNT), 2010 International Conference on, 2010, pp. 1–6.

[5] S. Usha, G. Kumar, and K. Boopathybagan, “A secure triple level
encryption method using cryptography and steganography,” in Computer
Science and Network Technology (ICCSNT), 2011 International Confer-
ence on, vol. 2, 2011, pp. 1017–1020.

[6] S. Song, J. Zhang, X. Liao, J. Du, and Q. Wen, “A novel
secure communication protocol combining steganography and
cryptography,” Procedia Engineering, vol. 15, no. 0, pp. 2767
– 2772, 2011, ¡ce:title¿CEIS 2011¡/ce:title¿. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877705811020224

[7] C. Soutar and G. Tomko, “Secure private key generation using a
fingerprint,” in Cardtech/Securetech Conference Proceedings, vol. 1,
1996, pp. 245–252.

[8] F. Monrose, M. Reiter, Q. Li, and S. Wetzel, “Cryptographic key
generation from voice,” in Security and Privacy, 2001. S P 2001.
Proceedings. 2001 IEEE Symposium on, 2001, pp. 202–213.

[9] A. B. Teoh, D. C. Ngo, and A. Goh, “Personalised cryptographic
key generation based on facehashing,” Computers & Security,
vol. 23, no. 7, pp. 606 – 614, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404804001701

[10] L. Ballard, S. Kamara, and M. K. Reiter, “The practical subtleties of
biometric key generation,” in 17th USENIX Security Symposium, 2008.

[11] B. Santhi, K. Ravichandran, A. Arun, and L. Chakkarapani, “A novel
cryptographic key generation method using image features,” Research
Journal of Information Technology, vol. 4, no. 2, pp. 88–92, 2012.

[12] D. Sterndark, “Rc4 algorithm revealed,”
https://groups.google.com/group/sci.crypt/msg/10a300c9d21afca0s,
1994, [Online; accessed 11.4.2013.].

[13] R. J. J. Jenkins, “Isaac and rc4,”
http://burtleburtle.net/bob/rand/isaac.html, 1996, [Online; accessed
11.4.2013.].

[14] Wikipedia, “Rc4,” http://en.wikipedia.org/wiki/RC4, 2013, [Online; ac-
cessed 11.4.2013.].


