
Evaluation of the security of password-protected encrypted RAR3 and

RAR5 archives

Ehlimana Krupalija1*, Saša Mrdović1, Emir Cogo1, Irfan Prazina1, Šeila Bećirović1

1Department of Computer Science and Informatics, Faculty of Electrical Engineering, University of Sarajevo, Sarajevo,

Bosnia and Herzegovina
*ekrupalija1@etf.unsa.ba

Abstract

Roshal Archive (RAR) format is one of the most widely used data archive formats, enabling users to reduce the size of

data and protect it with the desired password before the data is transferred to its intended recipients over the network.

This work focuses on the security of encrypted RAR archives and various different approaches for their decryption. Two

different datasets composed of randomly generated and real-world user passwords were used for deploying brute force

and dictionary attacks on password-protected RAR archives. Two available and widely used tools, John the Ripper and

Hashcat, were used for cracking passwords of encrypted RAR3 and RAR5 archives. Experimental results indicate that

both brute force and dictionary attacks were unsuccessful for RAR archives protected with randomly generated pass-

words, even of very small length. Real-world user passwords were successfully cracked only partially by brute force

attacks, whereas dictionary attacks were very successful. The success rate for RAR5 archives was only slightly lower

than for RAR3 archives and processing times were similar, indicating that this new version of the RAR format does not

significantly improve data security. Instead, the security of RAR archives can be increased by using longer passwords

more similar to randomly generated data, which are not present in commonly used dictionaries, as indicated by the ex-

perimental results.

Keywords: Password cracking, RAR format, Brute force attacks, Dictionary attacks, Software security.

1 Introduction

Data is often compressed into one of the many available

archive formats (such as RAR and ZIP) in order to reduce

its size so that it can be transferred via the network as

quickly as possible. This trend was amplified in the recent

years by the large availability of various cloud services of-

fering remote storage and sharing [1], as well as the in-

creasing internet bandwidth and speed. It became possible

to quickly share large amounts of data with many users all

over the world. This includes big data transportation for In-

ternet of Things (IoT) purposes [2], storage of large

amounts of geographical experiment data [3] and enhanced

compression of encrypted images [4]. However, transfer-

ring data over the worldwide public network is not always

safe, and malicious users can steal or copy the data, some-

times without the user even being aware of it (e.g. man-in-

the-middle attack described in [5], [6] and [7]).

In order to increase the security of compressed data, the

archives are often protected with passwords after the data

compression process is complete. The user-defined pass-

word is used for encrypting the compressed data. This is

meant to protect the data from malicious users by making

the processing time of brute force attacks for data decryp-

tion unreasonably long and therefore ineffective (e.g. 152

days for passwords containing 7 characters [8]). The user

can choose one of the available types of encryption for-

mats, algorithms used for data compression and hashing

functions of varying strength and processing speed.

This work explores the security of the Roshal Archive

(RAR) format (version 3 and 5). The RAR format is ana-

lysed in detail, including the contents of password-pro-

tected archives and methods used for data encryption. The

purpose of this work is to test whether the RAR5 format

version offers a higher level of security than the RAR3 for-

mat version. Evaluation of different attacks was conducted

to determine which attacks are more successful depending

on password length, strength and similarity to real-world

passwords chosen by users. In order to evaluate the secu-

rity of data encryption of RAR archives and compare the

security between RAR3 and RAR5 versions, two available

password-cracking tools were used: John the Ripper [9],

for deploying brute force attacks and Hashcat [10], for de-

ploying dictionary attacks. Two different datasets consist-

ing of randomly generated and user-defined passwords

were used for encrypting RAR archive contents. The ex-

perimental results indicate that RAR5 version does not sig-

nificantly improve the security of data, because the success

rates for both RAR3 and RAR5 format types were more

than 95%. RAR5 archives were cracked more quickly (77.5

s on average) by using the brute force attack. Matches for

the dictionary attack were also found more quickly for

RAR5 archives.

This work is structured as follows. In Section 2, the RAR

format is explained in detail, as well as the differences be-

tween RAR3 and RAR5 types. Previous work on password

cracking is also systematically explained. Section 3 gives a

summary of datasets and dictionaries used for cracking en-

crypted RAR archives by using John the Ripper and Hash-

cat tools. The methodology for the entire password crack-

ing process is explained. In Section 4, a detailed evaluation

of the deployed attacks for different RAR format versions

and the analysis of the experimental results are given. Sec-

tion 5 offers a summarization of the presented concepts,

including instructions for future work and possible im-

provements.

mailto:*ekrupalija1@etf.unsa.ba

2 Background and related work

2.1 RAR format

Roshal Archive (RAR) format is one of the most frequently

used formats for creating compressed data archives. The

native software tool for creating RAR archives is WinRAR

[11]. It is available on all popular operating systems (e.g.

Microsoft Windows, Linux). The initial RAR version was

released in 1995. It has gone through many changes which

were necessary due to security issues of earlier standards.

The initially used data encryption algorithm with 40-bit en-

cryption keys [8] became insecure after the technological

advancement led to the increased speed of brute force at-

tacks. In 2002, the AES-128 encryption algorithm with

128-bit encryption keys was incorporated for data encryp-

tion [6]. It was replaced by AES-256 with 256-bit encryp-

tion keys in 2013 [7] with the introduction of the RAR5

format. The increase of encryption key size resulted in

drastic increase of processing time for brute force attacks.

RAR archives can contain folders and files of different

types. In order to be able to reconstruct the contents when

unpacking the archive, all information is stored in various

headers. Every RAR3 archive is composed of the marker

block, archive header, file header, file contents and termi-

nator block, as explained in detail in [12] and [13]. Without

the usage of data encryption, all metainformation and ar-

chive contents can be directly retrieved. When data encryp-

tion is used for creating RAR3 archives, archive content

cannot be directly read without decrypting the data first.

The structure of an example encrypted RAR3 archive cre-

ated by compressing a single file named file.txt with four

bytes of content is shown on Figure 1. The usage of data

encryption results in additional 8 bytes of data which con-

tain the salt used for encryption.

The RAR5 format introduces many differences to the pre-

viously explained concepts [14]. RAR5 is not used as the

default format by WinRAR. Instead, the user needs to man-

ually specify that they want to use this format type. The

reason for this is because the usage of the RAR5 format,

while increasing the security of data, results in significant

increase in archive size. The contents of the RAR5 archive

are very different when compared to the corresponding

RAR3 archives, as visible on Figure 2. All headers except

for the marker block are variable in size and cannot be ac-

curately located. The main reasons for the larger archive

size are due to an increase in marker block size, cyclic re-

dundancy check (CRC) checksum size, and salt size. New

flags were added to the terminator block and a new header

was added – the archive encryption header. This header

contains information about the version of the encryption

algorithm, additional checksums and password checks. All

of this increases the security of the encrypted data and de-

creases the speed of attacks targeting checksums, salt val-

ues and encrypted archive contents.

2.2 Data encryption methods

The entire data encryption process for RAR archives is ex-

plained in [8], [15] and [16]. The randomly generated salt

value is first appended to the password provided by the

user, as well as 3 additional bytes for describing the current

iteration number of the encryption process. This value is

used as the input for Password-Based Key Derivation

Function 1 (PBKDF1). It uses Hash-Based Message Au-

thentication Code (HMAC/SHA256) [17] pseudorandom

function in 262,144 iterations for generating the 256-bit

output hash of the provided password. The hash is used as

the secret key for the Advanced Encryption Standard

(AES-256) block cipher, which is then used for encrypting

the data contained in the RAR archive.

Encrypting the contents of the RAR archive through the

usage of brute-force resistant methods increases the secu-

rity of data. However, some approaches such as [6], [7] and

[18] have shown that it is possible to retrieve the original

contents by only using the metadata, which is not encrypted

by default. For this reason, WinRAR also offers RAR ar-

chive metadata encryption. If the metadata is encrypted,

neither the names and sizes of files, their extensions nor

CRC checksums can be directly read from the archive, ef-

fectively blocking all attacks described in [5].

The usage of 8-byte and 16-byte salt size for RAR3 and

RAR5 archives respectfully makes the number of combi-

nations for rainbow table attacks too large for their success-

ful deployment [19] [20]. However, RAR archives can be

attacked an unlimited number of times (unlike e.g. website

login forms which can have time limits and locks). This

enables brute force, dictionary and hybrid attacks [21]. For

this reason, additional capabilities enabled by WinRAR

can be used to further enhance RAR archive security. For

example, different passwords can be used for separate files

and archives can be split into multiple volumes. The max-

imum password length for encryption is 127 characters

[15], but there are no security requirements forcing the

minimum password length and different character set us-

age. This means that the final security of the RAR archive

depends on the end user.

2.3 Related work

The main security issues which cannot be solved by the us-

age of bigger encryption keys and more secure encryption

standards have been analysed in [5], [6] and [18]. If

metadata is not encrypted, file contents can be guessed by

using the checksum and file extensions. Even if parts of the

archive are missing, they can be automatically repaired by

using methods such as [22]. Making changes in compres-

sion method headers or names of encrypted files can enable

the man-in-the-middle attack described in [5], [6] and [7]

for successfully retrieving file contents.

Many different methods have been applied for evaluating

the security of encrypted RAR archives. GPU paralleliza-

tion techniques based on Computer Unified Device Archi-

tecture (CUDA) were used for manual AES key decryption

in [23] and [24]. OpenCL GPU parallelization was applied

in [25] and collaborative pipeline computing by using both

CPU and GPU was proposed in [16]. Usage of distributed

computing was proposed in [20] for achieving additional

speedup. Brute force attacks were applied in [8] in order to

prove that the time cost of password exhaustive search is

Figure 1 Structure of an example encrypted RAR3 archive: marker block (blue), archive header (green), file header

(orange), salt (red), file content (no colour), terminator block (yellow)

Figure 2 Structure of an example encrypted RAR5 archive

infeasibly long. The same method was applied in [8], [19]

and [26] to prove brute-force attacks as ineffective for

passwords containing more than 6 characters.

Password cracking of encrypted RAR archives is supported

by many commercial and open-source tools, such as John

the Ripper, Hashcat and Wrathion [26]. Cloud computing

can also be used for deploying more resources in order to

increase the processing speed [27]. John the Ripper and the

proposed TDT model based on machine learning methods

were used for cracking passwords of the RockYou dataset

in [28]. Hashcat and the proposed distributed computing

model have been applied for password cracking of en-

crypted RAR3 and RAR5 archives in [29]. John the Ripper

and Hashcat were used for password cracking of encrypted

RAR3 and RAR5 archives in [30] by using resource sched-

uling algorithms and GPU utilization. A comparison be-

tween John the Ripper and Hashcat, their available pass-

word-cracking modes and strengths and weaknesses for en-

crypted RAR archive password cracking was done in [31].

Rule-based attacks for reducing the processing time of

John the Ripper and Hashcat attacks were used in [32].

3 Methods

Two types of data were used for encrypting RAR archives:

1. Data extracted from the RockYou dataset availa-

ble at [33], which contains 14,341,564 unique

real-world passwords of 32,603,388 user ac-

counts. Only the first 210 passwords were used

for evaluation due to the time-consuming process

of password cracking which, in some cases, did

not terminate after reaching the time limit of 2

hours of attempting different combinations of in-

put characters. Due to equipment limitations and

the inability to use GPU parallelization tech-

niques, a total processing time of over 400 hours

was needed to process these passwords. However,

due to the purpose of comparing RAR3 and RAR5

security by using the same passwords to protect

the archives, 210 randomly selected rows were

sufficient for a meaningful evaluation. The distri-

bution of password length in the evaluation subset

of the RockYou dataset is shown on Figure 3.

1 The following 28 special characters were used: !, “, #, $, %, &, /, (,), =, ‘, ?, +, *,

,, ;, ., :, -, _, <, >, @, {, }, [,] and \

Most passwords are 6 and 7 characters long

(47.62% and 20% respectfully). Only 3 pass-

words of length 10 (1.43%) and 19 passwords of

length 9 (9.05%) are present in the subset.

Figure 3 RockYou dataset password length distribution

2. Data consisting of randomly generated pass-

words, which do not contain any similarity to real-

world data. Password strength is based on the size

of the character set used for generating the pass-

word (inspired by basic elements of user pass-

words shown in [28]), as shown in Table 1. The

lowest security is offered by the character set con-

taining only lowercase English letters (total

26noOfCharacters permutations necessary for exhaus-

tive password search) whereas the highest secu-

rity is offered by the character set containing low-

ercase and uppercase English letters, digits, spe-

cial and language-specific characters (total

95noOfCharacters permutations necessary for exhaus-

tive password search).

Table 1 Different password strengths based on character

sets used for generating the desired password

Character set type Character

set size

Password

strength

a-z 26 1

a-z, A-Z 52 2

a-z, A-Z, 0-9 62 3

a-z, A-Z, 0-9, special characters1 90 4

a-z, A-Z, 0-9, special characters,
language-specific characters2

95 5

2 The following 5 language-specific characters were used: č, ć, đ, š and ž

Depending on the type of data (randomly generated pass-

words or user passwords), different dictionaries were used

for deploying dictionary attacks in Hashcat. A compilation

of dictionaries from which the dictionaries were selected

are available at [34]. Five dictionaries containing a total of

8,017,883 passwords were used for the RockYou dataset.

Twenty dictionaries containing a total of 9,022,794 pass-

words were used for the randomly generated password da-

taset. This increase in password space size was necessary

due to the lack of similarity of randomly generated pass-

words with user passwords.

The password-cracking process consists of three iteratively

repeated steps: creating a RAR archive and protecting it

with a password, attempting to crack the password by using

the available tools and exporting information about the suc-

cess of cracking and execution time. The user needs to

specify which type of dataset they want to use (randomly

generated password or RockYou dataset), their desired

cracking tool (John the Ripper or Hashcat), type of RAR

archive (RAR3 or RAR5 archive) and the desired password

length and strength. If the randomly generated password

dataset is used, then passwords of different lengths and

strengths are iteratively randomly generated, otherwise the

first 210 rows of the RockYou dataset are used. After the

desired password is obtained, the password is used for gen-

erating a new RAR archive. For this purpose, the console

version of WinRAR is used. The RAR archive contains a

4-byte .txt file. It is encrypted using the provided password.

Hashcat and John the Ripper tools cannot directly use en-

crypted RAR archives as input. Instead, the hash of the en-

crypted archive must first be extracted into a .txt file. For

this purpose, the rar2john tool is used.

The final step of the password-cracking process is the exe-

cution of the desired tool on the extracted hash. The desired

tool is executed through a shell command as a separate pro-

cess without the use of multithreading. If the Hashcat tool

is used, various dictionaries are used for attempting the dic-

tionary attack on the password hash. If multiple attacks are

successful, only the lowest execution time (the fastest

match with existing passwords from the dictionaries) is

recorded. In case of John the Ripper tool, the cracking is

attempted only once by using the brute force attack. Nega-

tive overall execution time (-1) is used to describe the situ-

ation when no attacks are successful.

4 Results

Evaluation was performed on a single machine with the

following CPU specifications: Processor Intel(R) Core

(TM) i5-7200U CPU @ 2.50GHz, 2712 Mhz, 2 Core(s), 4

Logical Processor(s) and 4 GB of RAM memory.

4.1 Randomly generated password dataset

The processing time for password cracking was limited to

a maximum of 2 hours per password for the randomly gen-

erated password dataset, due to equipment limitations. Re-

sults achieved by using the brute force attack in John the

Ripper are shown on Figure 4. The average processing time

is lower for RAR5 archives (724.4 s < 801.9 s) mainly due

to the very low processing time for passwords containing 1

and 2 characters. The highest processing time was achieved

for the RAR5 version (5,043.3 s). The average processing

time was very high for passwords containing 4 characters

(4,293.6 s for RAR3 and 5,043 s for RAR5).

Figure 4 Speed of password cracking by using John the

Ripper

Results achieved by using the dictionary attack utilized in

Hashcat did not result in exponential processing time in-

crease, as shown on Figure 5. High processing times were

achieved for passwords of all lengths and strengths, due to

the nature of the dictionary attack. Regardless of the RAR

format type, only a small number of passwords of length 3

and 4 were successfully cracked. The average processing

times for RAR5 archives were considerably smaller (310.8

s as opposed to 2,169.6 s for RAR3 archives), although the

success rate of cracking for RAR5 was smaller only by a

single password.

Figure 5 Speed of password cracking by using Hashcat

4.2 RockYou dataset

The processing time for password cracking was limited to

a maximum of 300 s for the RockYou dataset, in order to

maximize the number of processed passwords. This was

done because brute force attacks do not terminate in feasi-

ble time for passwords longer than five characters, and

most dictionary attacks terminate before reaching this time

limit. The results achieved by using John the Ripper and

Hashcat are shown in Table 2. It is visible that the success

rate of password cracking by using the dictionary attack

utilized in Hashcat is much higher than the success rate by

using the brute force attack utilized in John the Ripper

(58.58% on average). Comparing the successfully cracked

passwords by password length indicates that the success

rate for longer passwords is significantly higher for the dic-

tionary attack. This was expected due to the exponential

increase in the number of combinations for every addi-

tional character, reducing the success rate of the brute force

attack significantly.

Table 2 Summary of successfully cracked passwords by

password length using John the Ripper and Hashcat

Password

length

John

(RAR3)

John

(RAR5)

Hashcat

(RAR3)

Hashcat

(RAR5)

5 6 7 11 10

6 38 45 98 98

7 15 15 39 40

8 10 14 34 34

9 4 5 18 17

10 0 0 3 3

Success rate 34.76% 40.95% 96.67% 96.19%

The success rate of password cracking for RAR3 and

RAR5 archives by using the dictionary attack differed only

by one additional RAR3 password. However, the differ-

ence when using the brute approach was significant (13 ad-

ditional RAR5 passwords were successfully cracked). Fig-

ure 6 shows the password-cracking speed for passwords

which were successfully cracked by John the Ripper and

Hashcat. The largest number of passwords were success-

fully cracked in less than 120 s of processing time for both

tools, regardless of RAR archive type. The number of suc-

cessfully cracked passwords with processing time longer

than 120 s was very low for the brute force attack. John the

Ripper successfully recovered only 12 RAR3 passwords

and 11 RAR5 passwords in this execution time period,

whereas this is not true for the dictionary attack (Hashcat

successfully recovered 90 RAR3 passwords and 77 RAR5

passwords in this execution time period).

Figure 6 Distribution of cracked passwords by processing

time using John the Ripper and Hashcat tools

Figure 7 and 8 show the ratio of cracked passwords by pro-

cessing time and password length using John the Ripper

and Hashcat for RAR3 and RAR5 types. The highest num-

ber of passwords cracked by John the Ripper was cracked

in less than 60 s and most of the passwords were 6 or 7

characters long. The most significant difference when

comparing results achieved by John the Ripper for differ-

ent archive types is that for RAR5 archives, a lower num-

ber of 6-character passwords and a higher number of 8-

character passwords were cracked in the next 60 s (between

60 and 120 s) of processing time. These passwords were

successfully cracked in the first 60 s instead, bringing the

percentage of 32.88% for RAR3 up to 40.70% for RAR5.

The ratio of cracked passwords was significantly different

for the dictionary attack utilized in the Hashcat tool. Pass-

words of length 6-8 were continually successfully cracked

between 0 and 300 s of processing time as opposed to John

the Ripper cracking, which was mostly unsuccessful after

120 s of processing time. The most significant difference

when comparing the ratio between RAR3 and RAR5 ar-

chives is the speed of cracking. Hashcat successfully

cracked 19.21% RAR3 passwords of length 6 in the first

60 s of processing time and 6.90% RAR3 passwords of

length 6 after 120 s of processing time (a total of 26.11%).

For RAR5 archives, 9.41% passwords of length 6 were

successfully cracked in the first 60 s of processing time and

23.27% passwords of length 6 after 120 s of processing

time (a total of 32.68%).

Figure 7 Ratio of cracked passwords by cracking time and

password length successfully cracked by John the Ripper

Figure 8 Ratio of cracked passwords by cracking time and

password length successfully cracked by Hashcat

The dictionary attack utilized in the Hashcat tool resulted

in different password-cracking speed for RAR3 and RAR5

types. An analysis of the success of each dictionary for

password cracking is shown on Figure 9. 88.61% of all

cracked passwords were successfully matched in the first

three dictionaries for RAR5 archives as opposed to RAR3

archives, where only 49.26% of all cracked passwords

were successfully matched in the first three dictionaries.

Figure 9 Distribution of cracked passwords by dictionaries

in which a match was found using Hashcat

4.3 Discussion

The results achieved on the randomly generated password

dataset indicate that RAR5 archives did not offer a higher

level of protection. The average processing times were

lower for all RAR5 archives, and both brute force and dic-

tionary attacks were able to crack passwords of RAR5 ar-

chives more quickly. The dictionary attack was far more

successful for the RockYou dataset and the success rate for

RAR5 type was smaller only by 0.48%. This password-

cracking efficiency is higher than the results achieved in

[29] (~4% drop in efficiency), even though clusters of com-

puters were not used for evaluation. A percentage of RAR5

passwords higher by 6.57% was cracked in 120 s of pro-

cessing time. Best password-cracking time of 5.5 hours for

character length of 9 characters achieved by the distributed

computing approach [20] was far outperformed by using

Hashcat, with a time limit of 300 s. The dictionary attack

(with average success rate of 96.43%) was also more suc-

cessful than the TDT model based on machine learning

methods proposed in [28] (with hit rate of up to 41% for

the customized RockYou dataset). The results also show

that dictionary entries are processed faster for RAR5 ar-

chives, which results in a higher percentage of matches in

the first three dictionaries. All of this indicates that the us-

age of RAR5 archive type, which significantly increases

archive size as the main drawback, does not significantly

increase the processing time but instead results in a higher

success rate for the brute force attack and a similar attack

success rate for the dictionary attack.

5 Conclusion

The availability of many tools which utilize brute force,

dictionary and hybrid attacks has endangered the security

of password-protected RAR archives. The purpose of the

RAR5 format was meant to increase security of encrypted

data. In this work, the security of encrypted RAR3 and

RAR5 archives was evaluated by using John the Ripper

and Hashcat tools. Two types of data, including randomly

generated and real-world user passwords of different

length and strength were used in this process. Brute force

attacks were ineffective even for randomly generated pass-

words of small sizes due to very high processing time,

whereas they were partially successful on the RockYou da-

taset. Dictionary attacks did not have the same drawbacks

regarding processing time, resulting in very high success

rates for the RockYou dataset. However, the success on

randomly generated passwords was very limited. This in-

dicates that randomly generated passwords offer a higher

level of security for RAR archives. The RAR5 format,

which is meant to improve security of data and make the

processing time of brute force attacks astronomically high,

did not yield the expected results. The success rate for real-

time user passwords was comparable for both format types,

and the processing times were similar (the speed of crack-

ing for the RAR5 version was even considerably higher in

the dictionary attack on randomly generated passwords).

Matches of passwords were found faster (in the first two

dictionaries) for RAR5 as opposed to RAR3. This indicates

that the usage of the RAR5 format did not considerably im-

prove the security of encrypted data. However, the success

rate of the deployed attacks mainly depends on the pass-

word used to protect the archive. Therefore, WinRAR soft-

ware should prohibit usage of short passwords which are

easy to crack and every password should contain characters

from different character sets. This way, password strength

can be significantly increased. RAR5 archives should also

use metadata encryption methods by default. This would

make the password-cracking process significantly longer,

as it would be harder to obtain the password hash and com-

pare it to hashes generated by the cracking tools.

It is important to note that GPU parallelization techniques

were not used for speeding up the cracking process. Due to

this drawback, only a small portion of the RockYou dataset

could be used for evaluation. Utilizing the GPU function-

alities could lead to a better evaluation of a larger portion

of the RockYou dataset. The processing times can also be

lowered by directly attacking the archive contents instead

of using the aid of software tools. The tool start-up and in-

itialization process are included in the total password

cracking time, which also reduces the available cracking

time. Splitting archives into multiple volumes and

metadata encryption techniques should also be explored in

order to verify whether the RAR5 format version offers a

higher level of security when additional protection meth-

ods are applied.

6 Literature

[1] C. S. Kumar and K. V. Kumar, “An enhanced data

integrity technique for cloud storage with integrated

archive using PDP,” International Journal of

Engineering & Technology, no. 7, pp. 905-907,

2018.

[2] Q. Jiancheng, L. Yiqin and Z. Yu, “Parallel

algorithm for wireless data compression and

encryption,” Journal of Sensors, vol. 2017, no.

4209397, 2017.

[3] Y. Zhang, Y.-G. Wang, Y.-P. Bai, Y.-Z. Li, Z.-Y. Lv

and H.-W. Ding, “A new rockburst experiment data

compression storage algorithm based on big data

technology,” Intelligent Automation and Soft

Computing, vol. 25, no. 3, pp. 561-572, 2019.

[4] N. S. Noor, D. A. Hammood, A. Al-Naji and J.

Chahl, “A fast text-to-image encryption-decryption

algorithm for secure network communication,”

Computers, vol. 11, no. 39, 2022.

[5] T. Kohno, “Attacking and repairing the WinZip

encryption scheme,” in Proceedings of the 11th ACM

Conference on Computer and Communications

Security (CCS 2004), Washington, DC, 2004.

[6] G. S.-W. Yeo and R. C.-W. Phan, “On the security

of the WinRAR encryption feature,” International

Journal of Information Security, vol. 5, no. 2, pp.

115-123, 2006.

[7] K. Arthur-Durett, “The weakness of WinRAR

encrypted archives to compression side-channel

attacks,” Open Access Theses, West Lafayette, 2014.

[8] J. Chen, J. Zhou, K. Pan, S. Lin, C. Zhao and X. Li,

“The security of key derivation functions in

WinRAR,” Journal of Computers, vol. 8, no. 9, pp.

2262-2268, 2013.

[9] “John the Ripper password cracker,” Openwall,

[Online]. Available:

https://www.openwall.com/john/. [Accessed 25

August 2022].

[10] “hashcat - advanced password recovery,” [Online].

Available: https://hashcat.net/hashcat/. [Accessed 25

August 2022].

[11] “WinRAR 6.11 - Compress, Encrypt, Package and

Backup with only one utility,” RARLAB, [Online].

Available: https://www.win-

rar.com/start.html?&L=0. [Accessed 25 August

2022].

[12] “RAR,” Forensics Wiki, [Online]. Available:

https://forensicswiki.xyz/page/RAR. [Accessed 25

August 2022].

[13] J. Schiller, “The RAR Format,” [Online]. Available:

https://codedread.github.io/bitjs/docs/unrar.html.

[Accessed 25 August 2022].

[14] “RAR 5.0 archive format,” RARLAB, [Online].

Available: https://www.rarlab.com/technote.htm.

[Accessed 25 August 2022].

[15] “WinRAR Encryption Frequently asked questions

(FAQ),” RARLAB, [Online]. Available:

https://www.win-rar.com/encryption-

faq.html?&L=0. [Accessed 25 August 2022].

[16] Q. Ji and H. Yin, “Speedup and password recovery

for encrypted WinRAR3 without encrypting

filename on GPUs,” in Journal of Physics:

Conference Series - 2020 6th Annual International

Conference on Computer Science and Applications,

Guangzhou, 2020.

[17] J. Katz and Y. Lindell, “Introduction to Modern

Cryptography,” CRC Press, Boca Raton, 2021.

[18] T. Kohno, “Analysis of the WinZip encryption

method,” IACR ePrint Archive, no. 078, pp. 1-19,

2004.

[19] J. A. Chester, “Analysis of password cracking

methods & applications,” Honors Research Projects,

no. 7, 2015.

[20] R. Hranický, M. Holkovič and P. Matoušek, “On

efficiency of distributed password recovery,” The

Journal of Digital Forensics, Security and Law, vol.

11, no. 2, pp. 79-96, 2016.

[21] T. Kakarla, A. Mairaj and A. Y. Javaid, “A real-

world password cracking demonstration using open

source tools for instructional use,” in 2018 IEEE

International Conference on Electro/Information

Technology (EIT), Rochester, 2018.

[22] Y. Wei, N. Zheng and M. Xu, “An automatic carving

method for RAR file based on content and structure,”

in 2010 Second International Conference on

Information Technology and Computer Science,

Kiev, 2010.

[23] G. Hu, J. Ma and B. Huang, “Password recovery for

RAR files using CUDA,” in 2009 Eight IEEE

International Conference on Dependable,

Autonomic and Secure Computing, Chengdu, 2009.

[24] Y. Zhang and G.-d. Sheng, “RAR password

decryption by utilizing GPU,” in The 2010

International Conference of Apperceiving

Computing and Intelligence Analysis Proceeding,

Chengdu, 2010.

[25] X. An, H. Zhao, L. Ding, Z. Fan and H. Wang,

“Optimized password recovery for encrypted RAR

on GPUs,” in 2015 IEEE 17th International

Conference on High Performance Computing and

Communications, 2015 IEEE 7th International

Symposium on Cyberspace Safety and Security, and

2015 IEEE 12th International Conference on

Embedded Software and Systems, New York, 2015.

[26] R. Hranický, P. Matoušek, O. Ryšavý and V. Veselý,

“Experimental evaluation of password recovery in

encrypted documents,” in Proceedings of the 2nd

International Conference on Information Systems

Security and Privacy (ICISSP 2016), Rome, 2016.

[27] G. Korlam, “Password cracking in the cloud,” UC

Santa Barbara, Santa Barbara, 2012.

[28] H.-C. Chou, H.-C. Lee, H.-J. Yu, F.-P. Lai, K.-H.

Huang and C.-W. Hsueh, “Password cracking based

on learned patterns from disclosed passwords,”

International Journal of Innovative Computing,

Information and Control, vol. 9, no. 2, pp. 821-839,

2013.

[29] R. Hranický, L. Zobal, V. Večeřa and P. Matoušek,

“Distributed password cracking in a hybrid

environment,” in Proceedings of Security and

Protection of Information (SPI) 2017, Brno, 2017.

[30] P. Kubelka, “Password recovery job scheduling for

online deep file analysis,” Czech Technical

University in Prague, Prague, 2020.

[31] D. Pahuja and P. Sidana, “Implementing and

comparing different password cracking tools,”

International Research Journal of Engineering and

Technology (IRJET), vol. 8, no. 5, pp. 2089-2095,

2021.

[32] E. Liu, A. Nakanishi, M. Golla, D. Cash and B. Ur,

“Reasoning analytically about password-cracking

software,” in 2019 IEEE Symposium on Security and

Privacy, San Francisco, 2019.

[33] W. J. Burns, “Common Password List (rockyou.txt

),” Kaggle, 13 January 2019. [Online]. Available:

https://www.kaggle.com/datasets/wjburns/common-

password-list-rockyoutxt. [Accessed 23 August

2022].

[34] D. Miessler, J. Haddix and g0tmi1k, “SecLists - The

Pentester's Companion,” GitHub, 19 December

2017. [Online]. Available:

https://github.com/danielmiessler/SecLists.

[Accessed 23 August 2022].

