
1569110075 1

Abstract—One of the basic principles of cryptography is that

the security of a system must depend not on keeping secret the

algorithm, but only the key. This principle is known as

Kerckhoffs’ Principle. In this paper we propose application of

this principle in intrusion detection systems. The fact that

attackers know the intrusion detection algorithm will not help

them if there is a secret key for each implementation that makes it

different enough from the others. Implementation of network

packet payload anomaly detection IDS that enables application of

the idea is presented. Results for various keys confirm excellent

detection capabilities. Proof of concept mimicry attack protection

example is provided.

Index Terms—anomaly detection, Kerckhoffs’ principle,

network intrusion detection, word models.

I. INTRODUCTION

HE history of intrusion detection systems has been

compared to an arms race [1]. Similar to any protection

system, when the defenders find a method to discover a certain

type of attack, the attackers study the method and find ways to

get around it. There are numerous examples in the IDS arena

and, to name only a few, in academic papers, like [2], which

pointed out serious flaws in all NIDS of the time, or more

recently [3], which showed how [4], [5], [6], [7] anomaly

detection methods could be evaded.

Cryptography put an effective stop to this type of arms race

following the principle that the security of a system must

depend not on keeping secret the algorithm, but only the key.

Modern cryptographic algorithms passed the test of time. Data

Encryption Standard (DES) [8] was the US encryption

standard and de facto standard in the rest of the world for 25

years, from 1977 to 2002. The DES algorithm was practically

never broken. It was replaced with Advanced Encryption

Standard (AES) [9] mainly because the DES key was not big

enough for current brute force computing power.

A mimicry attack is first defined in [10] as malicious exploit

code that mimics the operation of the application thus evading

detection by anomaly detectors. This definition was given in

the context of host IDS, but the idea applies to network IDS as

well. For NIDS, a mimicry attack tries to make attack sessions

look like normal ones. This should prevent their identifications

as anomalous and therefore detection. Knowing how a

Manuscript received March 7, 2008.

S. Mrdovic is with the University of Sarajevo, Sarajevo, Bosnia and

Herzegovina (e-mail: sasa.mrdovic@ etf.unsa.ba).

B. Perunicic is with the University of Sarajevo, Sarajevo, Bosnia and

Herzegovina (e-mail: bdrazenovic@ etf.unsa.ba).

detection method creates the model of a normal session could

enable attackers to create attack sessions that mimic normal

ones. But if there is a secret key for each implementation of

the detection method that makes it different enough from the

others, attackers will not be able to mimic normal behavior

without knowledge of the key.

In this paper, we propose using this cryptography principle

for intrusion detection. We present this novel and original idea

and one practical implementation. First we implement a base

system, simple and efficient state of the art anomaly detection

network intrusion detection system. Then we show how a key

can be added to the base system detection algorithm,

implementing Kerckhoffs’ principle. We provide detection

results for the base system and keyed systems with proof of

concept showing how the proposed implementation prevents

mimicry attack.

II. RELATED WORK

Payload analysis of network packets to detect intrusions

became a necessity. It enables detection of application level

attacks. Those attacks make up the majority of current

computer attacks [11] for two basic reasons. Most of the

current vulnerabilities that create opportunities for attacks are

in user applications [12]. Most intrusions at a lower level of

the network protocol stack could now be efficiently prevented

using properly configured standard network protection

equipment like firewalls. Techniques of anomaly-based

network intrusion detection have been proposed that analyze

payloads of packets and connections [4], [6], [13], [14], [15].

HTTP oriented analysis is given in [16]. Detection of byte

sequences that resemble code is proposed in [17] and [18].

Syntax and semantic information is used in [1] and [19].

Single byte frequencies in payload as a basis for the model are

used in [7] with improvements in [20]. Recent research uses

frequencies of more than one byte, n-grams, [21] or language

model based on words, consecutive bytes in payload separated

by delimiters [22].

General issues and difficulties with NIDS and evasion ideas

are best given in [2]. The first actual mimicry attacks are given

in [23] and [24]. Specific ideas on how to avoid anomaly

based NIDS detection are given in [25] and [26]. Polymorphic

blending attacks that evade most of currently proposed

payload analysis method are described in [3].

As we already said, it is an arms race. There are very few

ideas for fighting mimicry attacks on anomaly detection NIDS.

One practical implementation of protection against general

Kerckhoffs’ Principle for Intrusion Detection

Sasa Mrdovic, Branislava Perunicic

T

1569110075 2

mimicry attacks is presented in [21]. We are not aware of any

general approaches like the one we suggest.

III. KERCKHOFFS’ PRINCIPLE

In 1883 Kerckhoffs suggested six principles of design of

practical cryptographic ciphers [27]. The second of those

principles is known as Kerckhoffs’ principle and states that the

design of a system should not require secrecy, and compromise

of the system should not inconvenience the correspondents.

Shannon later restated that it should always be assumed that

"the enemy knows the system being used" and this statement is

known as Shannon’s maxim [28]. The idea that security of the

cryptographic system rests in the keys, not in the algorithm, is

one of the main concepts in modern cryptography. In

cryptography, a key can be compromised, and can be replaced

with different one without a need to redesign algorithm. This

concept, that if there was a compromise of secrecy whatever is

compromised should be easily replaceable, applies to security

in general. Saltzer and Schroeder [29] include it in their eight

principles for the design and implementation of security

mechanisms and call it “Open design”. They say that design

should not be secret and that mechanisms should not depend

on the ignorance of potential attackers, but rather on the

possession of specific, more easily protected, keys or

passwords. In physical security if a door key is lost or stolen,

only locks need to be changed, or sometimes a lock can simply

be reprogrammed, as in hotels. This is not just more

convenient but is also more secure if the key space is large

enough.

We suggest applying the same principle when designing

intrusion detection systems. Most intrusion detection schemes

can be defeated with careful crafting of attack vectors for the

particular defense mechanism. If the detection algorithm is

known but the actual detection of attack depends on some

piece of information unknown to attacker, this makes it very

difficult if not impossible to create an attack that will not be

detected.

IV. BASE SYSTEM

Our base system detects anomalies in network packet

payload. Packet payload analysis divides payload into groups

of consecutive bytes, n-grams. It has been shown that using

higher order n-grams for payload modeling yields better

detection results [21] than using 1-gram model [7]. Selection

of optimal length of n-grams is no easy task and the result

might depend on the network protocol being modeled and the

particular traffic dataset. Using words, byte sequences

separated with boundary symbols, for text-based protocols like

HTTP, SMTP and FTP achieves marginally less accurate

results than modeling with several n-gram lengths at once, but

with much smaller computational load [22]. We used words as

the basis for our model, following advice given in [22] to limit

byte sequence length to 16 bytes in absence of delimiters.

A. Learning

Initial research focused on HTTP protocol with a set,

extended from [14], of 20 delimiters we found to be the most

appropriate, since they provide the biggest number of

meaningful words:

CR LF TAB SPACE , . : / \ & ? = () [] " ; < >

We trained our system using supervised learning.

Supervised learning should be performed on normal, attack

free, traffic. Obtaining a clean data set might be difficult.

Collection of normal production network traffic for a period of

time does not guarantee that it is attack free and also does not

guarantee that all possible normal packets will be seen. The

duration of time required to collect enough traffic might also

be longer than desired. A detection method should be able to

cope with those realistic limitations on learning. A good

overview of the machine learning issues and possible solutions

is given in [30].

We used a semi-automated process to obtain attack-free

traffic from collected network traffic. HTTP traffic collected

from our department Web servers was scanned using the

signature-based network intrusion detection, Snort [31]. A

scan was performed with all rules activated and with the latest

signature content of Snort rules obtained from [32]. In this way

we were able to obtain traffic that can be considered clean

enough for training.

After some experimenting with various amounts of traffic

used for training, we found that after learning for 96 hours, the

number of learned words increases very little with additional

traffic. At this point we concluded that there would be little

gain from further training. Fig. 1 shows the dependency of the

number of words learned on the number of hours of network

traffic used for training.

We parsed only incoming HTTP traffic since we want to

detect attack by recognizing incoming traffic that our servers

have never seen. This provides for smaller number of words

and faster processing without significant negative impact on

detection, as will be shown later. Our total number of learned

normal words was little over 33 000.

Fig. 1. Number of learned words as a function of hours of network traffic

1569110075 3

All words found in normal traffic are stored in a hash table,

together with the frequencies with which they appear. At this

point word frequencies are not used, but we have certain ideas

for future use of those frequencies.

B. Detection

In the detection phase, we tokenize to words incoming

HTTP network traffic payloads using the same delimiters used

during the learning phase. For each of the words we check if it

is in a set of learned words. Then we a use simple formula

similar to the one suggested in [21] for packet scoring.

Score = New / Total

New is the number of new words, not in a set of learned

words, in a packet. Total is the total number of words in a

packet. This score is a measure of packet anomaly. The score

is expressed as a percentage with values from 0 to 100. We

first tested detection on seven days of traffic we collected

during the normal working course of our Web sites. Scores for

most of the normal packets were less than ten. There were

from one to ten non-attack packets per day that had scores

over 20. There was only one exceptional score for a non-

malicious packet in seven days, with score of 64.

In the second experiment, we considered how our algorithm

scores probes. We performed two scans with two tools for

vulnerability scanning. The first tool used was the Nessus [33]

general vulnerability scanner, and the second one was the

Nikto [34] Web server scanner. Both tools should generate

unusual traffic, not normally seen on Web servers, but both

stop short of generating attack packets that are entirely

different from HTTP traffic.

Fig. 2 shows scores for packets within one hour that

included a Nessus scan that lasted for some 25 minutes, from

the fourth to the twenty-ninth minute. Scores for the full hour

are shown to provide comparison between normal traffic and

the scan. The scan traffic can be clearly distinguished from

normal traffic, although some scan scores are not too high due

to the previously mentioned nature of scans, i.e., that they are

different but still mostly HTTP traffic. Nessus, being a general

vulnerability scanner, generated some HTTP packets that were

not really HTTP scans and those packets scored very low.

Fig. 3 shows scores for packets within one hour that

included a Nikto scan that lasted for little over six minutes,

from the sixth to the twelfth minute. Similar to the Nessus

scan, scores for normal and scan traffic are different enough

for recognizing traffic anomaly. The scan scores are generally

higher than with Nessus since Nikto is a Web vulnerability

scanner that should generate more unusual HTTP traffic.

For the third test we wanted to score real attacks. For attack

generation we used the Metasploit framework [35]. Metasploit

provides a database of various exploits for known

vulnerabilities with the possibility of using different attack

payloads depending on the wanted attack result. Using various

combinations of seven vulnerabilities and eight attack

Fig. 2. Scores for one hour of network traffic that includes Nessus scan

Fig. 3. Scores for one hour of network traffic that includes Nikto scan

TABLE I

ATTACKS WITH RELATED VULNERABILITY AND USED PAYLOAD

 No. Vulnerability / payload CVE

 Apache Chunked-Encoding 2002-0392

1 adduser

2 meterpreter-reverse_tcp

3 shell-reverse_http

 Apache mod_jk overflow 2007-0774

4 adduser

5 shell-reverse_tcp

 Apache mod_rewrite 2006-3747

6 shell-bind_tcp

7 shell-reverse_tcp

8 vncinject-reverse_http

9 vncinject-reverse_tcp

 IIS 5.0 IDQ Path Overflow 2001-0500

10 shell-reverse_http

11 shell-reverse_tcp

 IIS ISAPI w3who.dll 2004-1134

12 exec

13 shell-reverse_tcp

 Oracle 9i XDB HTTP PASS 2003-0727

14 shell-reverse_tcp

 Xitami If_Mod_Since 2007-5067

15 shell-reverse_tcp

1569110075 4

payloads we generated 15 HTTP attacks over TCP port 80.

Attacks with related vulnerabilities and used attack payloads

are given in Table I.

Fig. 4 shows scores for 15 attacks from Table I. Different

attacks generated different numbers of packets, from one to

six. All attack packets were scored. The first thing worth

noticing is that all packets for all attacks have scores much

higher than any normal traffic packet. The lowest score for any

attack packet was 55. The lowest score for the highest scoring

packet in any attack was 65. All attacks can be easily detected.

This base system thus showed excellent results with normal,

probe and attack traffic. The score gap between normal and

attack packets is wide and provides for good detection

opportunity. Setting scores above 20 to be anomalous, 100%

of attacks can be detected with single digit false positives a

day. If the boundary between good and bad traffic is set at 50

there would be, in this particular traffic, only one false positive

in a week, but that setting might allow for some undetected

attacks.

V. ADDING KEY

While experimenting with sets of delimiters, trying to find

the best one, we realized that using the same method we get

different sets of normal words for different set of delimiters.

The previously proposed set of delimiters is based on HTTP,

and it produces the biggest percentage of human language

words. From the anomaly detection point of view there is no

principal reason to use one set of delimiters over another. Each

set of delimiters will produce a unique set of normal traffic

words, byte sequences, which can be used to detect payload

anomalies, words never before seen. Set of delimiters can be

used as a key, which can be different for different sites or

servers. Attackers can and will know the method to produce

normal traffic words, but without the key, i.e., the set of

delimiters, it will be very difficult, if not impossible, to craft an

attack vector that will not be detected for a number of new

words.

In order to test this idea we concluded several tests with

different sets of delimiters, keys. Here we show results for two

characteristic cases.

A. The second set of delimiters - key

In the first test we generated 20 random numbers between 9

and 127 as ASCII values to be the set of delimiters. The

selected range represents printable ASCII characters as those

should be major of HTTP payload transmitted values. Using

this set we trained our IDS on the same set of clean traffic as

we did for the base system. Then we used the system with the

new set of learned words to test scores for the same set of

normal traffic, probes and attacks as for the base system. We

repeated the test for several random sets with similar results, of

which we present one.

The set of 20 delimiters had following ASCII values

{15, 19, 20, 30, 35, 37, 38, 41, 47, 56,

58, 63, 68, 69, 90, 97, 107, 109, 114, 122}

Fig. 5 shows the dependency of the number of words

learned on the number of hours of network traffic used for

training. There is the same general tendency that the number of

learned words stabilizes after 96 hours. The total number of

learned words was almost 42000, some 30% increase. This

could have been expected since, unlike the original set of

delimiters optimized for HTTP traffic, these delimiters were

randomly selected. The increase does not have significant

influence on the size of the hash table used to store learned

words or on the system performance.

Detection results with new the set of limiters and learned

words were very promising. The scan of normal traffic

generated scores similar to the ones with original delimiters.

Most packet scores were below ten, twenty were above 20 and

the odd packet from the original detection scored even lower,

47.

Fig. 4. Scores for each packet in 15 attacks

1569110075 5

Scores for Nessus and Nikto scans were very similar to

scores with the original delimiters, with packets in the scan

period scoring higher than normal packets. No diagram of this

data is presented here, to save space, since it is almost the

same as the original one.

Fig. 6 shows scores for 15 attacks from Table I using the

new set of limiters and learned words. Again all packets for all

attacks have scores much higher than any normal traffic

packets. The lowest score for any attack packet was again 55

and that also was the lowest score for the highest scoring

packet in any attack. Scores are on the average lower than the

original ones, but still all attack scores were far from normal

traffic scores.

Overall results with the random set of 20 delimiters, i.e., the

key, support the stated idea that the base system could be used

as an intrusion detection system with a site-selected key.

B. The third set of delimiters - key

In the second test we tried using a smaller number of

delimiters. We generated 15 random numbers between 9 and

127 as ASCII values to be the set of delimiters. Using this set

we went through the same learning and detection phase as in

the first two cases. We repeated the test for several random

sets with similar results, of which we present one.

The set of 15 delimiters had the following ASCII values

{ 9,20,34,36,53,60,63,64,66,69,71,97,103,111,116}

Fig. 7 shows the dependency of the number of words

learned on the number of hours of network traffic used for

training. There is the same general tendency that number of

learned words stabilizes after 96 hours. The total number of

learned words was almost 50000, approximately a 50%

increase from the original set of delimiters, and a 20% increase

from the second set of words. This might be result of fewer

limiters providing for more possible combinations of longer

words. The increase again, however does not have significant

influence on the size of the hash table or on system

performance.

Fig. 5. Number of learned words as a function of hours of network traffic

for the second set of delimiters (20 random values between 9 and 127)

Fig. 6. Scores for each packet in 15 attacks with the second set of delimiters (20 random values between 9 and 127)

Fig. 7. Number of learned words as a function of hours of network traffic

for the third set of delimiters (15 random values between 9 and 127)

1569110075 6

Detection results with this set of delimiters and learned

words also supported the suggested approach. The scan of

normal traffic generated scores similar to the ones with the

original delimiters. Most packet scores were below ten, 31

were above 20, and the odd packet from the original detection

scored 51.

Scores for Nessus and Nikto scans were very similar to the

scores for the original delimiters, with packets in the scan

period scoring higher than normal packets.

Fig. 8 shows scores for 15 attacks from Table I using the

third set of limiters and learned words. This time the attack

packets scored higher than with the second set. The lowest

score for any attack packet was 56. The lowest score for the

highest scoring packet in any attack was 66.

Again, results with a random set of 15 delimiters, as the key,

showed that the base system could be used as an intrusion

detection system with a site-selected key.

C. An example

We present one small and simplified example in order to

show the need for and gain from a key, i.e., a site-specific set

of delimiters. The example shows how an attacker might try to

blend in an attack payload with normal traffic words.

Knowledge of the algorithm of base system and the delimiters

helps him craft a payload with as many normal words as

possible. Such a payload would have a lower score and the

attack might pass undetected.

Attacks number 6, 7, 8 and 9 exploit Apache mod_rewrite

vulnerability with four different attack payloads. Metasploit

creates an HTTP packet for this vulnerability using the

following statement:
uri= "/#{rewritepath}/ldap://"+

rand_text_alphanumeric(rand(16))+"/"+

rand_text_alphanumeric(rand(32))+"%3f"

+rand_text_alphanumeric(rand(8))+"%3f"

+rand_text_alphanumeric(rand(8))+"%3f"

+rand_text_alphanumeric(rand(16))+"%3f"+

rand_text_alphanumeric(rand(8))+"%3f%90"

uri += payload.encoded

This means that there are six parts of the HTTP packet that

consist of random alphanumeric stream of up to 16, 32, 8, 8,

16 and 8 characters for each part respectively. At the

beginning and between the random parts are fixed byte

sequences. At the end comes “%3f%90” and the encoded

payload. Usually this encoded payload would increase the

score for the packet and the attacker would try to use

appropriate encoding to hide the attack. Since payload

encoding is out of the scope of this paper we will not do any

changes to this part of packet. Without loss of generality we

will adjust only the beginning part of the attack vector to try to

lower its score.

The original Metasploit HTTP packet payload for this

attack was:
“GET

/1/ldap://2QeT9jN5nS4QA9/HTiYB1T8LhY9Az9DT

R9%3feG%3fu%3fHT%3fk%3f%90”+

encoded.payload

The encoded payload was different for four different attack

payloads. Random characters (bolded) are most probably not

in the set of learned words and increase the scores for this

packet in addition to the scores caused by encoded payload.

The scores for these four attacks using the base system were

76, 79, 78 and 77 respectively.

Knowing the delimiters and the detection algorithm we tried

to manually create an HTTP packet with as many learned

words as possible, effectively lowering its score. Instead of a

random stream of characters we used small words we knew

were learned (GET, HTTP) with the known delimiter “.” and

tried to put as many of them as possible within the allowed

number of characters. The resulting HTTP packet was:
“GET

/1/ldap://GET.GET.GET.GET/GET.GET.GET.GET.

GET.GET.GET.GET.%3f.HTTP.%3f.HTTP.%3f.GET.

GET.GET.%3f.HTTP.%3f%90”+ encoded.payload

Fig. 8. Scores for each packet in 15 attacks with the third set of delimiters (15 random values between 9 and 127)

1569110075 7

It was still valid attack but its detection scores on base

system for four different payloads were 50, 46, 59 and 45.

These scores were significantly lower than the original ones.

They might not be low enough to avoid detection, but they do

prove the idea. Actual attack payload encoding might bring the

score even lower.

Unlike our base system, our keyed systems with the second

and the third set of delimiters were not fooled by this change

of HTTP packet. Detection scores were even higher. For the

second set of delimiters, scores for manually created packets

were 62, 63, 68 and 68, compared with 59, 55, 67 and 60 for

the original Metasploit attacks. For the third set of delimiters,

scores for manually created packets were 78, 74, 81 and 84,

compared with 71, 68 78 and 70 for the original Metasploit

attacks. The reason for this is obvious. Since the second and

the third set of delimiters were “unknown” to us we did not

know how to prepare the payload to avoid detection.

Thus, the proposed keyed IDS implementation makes it

extremely difficult for attackers to add malicious byte

sequences to packet payloads and avoid detection. Knowledge

of the algorithm being used does not help them at all, without

knowledge of the particular set of delimiters used on the site

they plan to attack. Without knowing the exact set of

delimiters, attackers do not know how to position malicious

payload parts within packet payloads.

It is important to point out that actual payload encoding is

far from trivial and sometimes effectively impossible. Our

manual packet creation used a very convenient vulnerability

just as proof of concept and support for the proposed keyed

IDS. In a general case our base system could detect most of the

automated attacks.

VI. CONCLUSION

Applying Kerckhoffs’ principle for intrusion detection could

give the upper hand to the detection side, over attackers.

Practical application of the principle is presented through

implementation. The results show that implementation is not

less good at detection and not more complicated to implement

than other currently proposed anomaly detection network

intrusion detection systems. The presented system can protect

HTTP traffic from intrusions that try to evade anomaly

detection. This protection is based on different keys, sets of

delimiters, used to create sets of words seen in attack-free

traffic. Each particular site can have a different key, and thus a

different set of normal words.

The issue, known from cryptography, of key maintenance

might need further research. A procedure for key (delimiters)

changes due to compromise or time limit on use needs to be

developed. It requires creating a set of normal words with a

new set of delimiters. The learning process is short, requiring

only minutes, and can be fully automated, but it requires

keeping records of normal traffic. As a matter of fact normal

traffic records should also be kept current due to its dynamic

nature, and a set of normal words needs to be updated on

regular basis regardless of key change. This is one of direction

of our future research.

The stated idea can be generalized and applied to protocols

other than HTTP, and other than text-based. Every network

packet payload could be tokenized using a set of token

boundaries, delimiters. Certainly, issues of selection of

delimiters need further research. Similar to cryptographic keys,

there might be good and weak keys, and the number of

delimiters, i.e., the size of the set will impact performance and

security.

REFERENCES

[1] R. Chinchani, E.V.D. Berg, "A fast static analysis approach to detect

exploit code inside network flows," International Symposium on Recent

Advances in Intrusion Detection (RAID), 2005

[2] T. Ptacek and T. Newsham, “Insertion, evasion, and denial of service:

eluding network intrusion detection,” Technical report, Secure Networks

Inc., January 1998.

[3] P.Fogla, et al., “Polymorphic Blending Attacks”, USENIX Security,

Boston, MA., 2006.

[4] C.Kruegel, T.Toth, E.Kirda, "Service specific anomaly detection for

network intrusion detection", In: Proc. of ACM Symposium on Applied

Computing, pp. 201-208, 2002

[5] T. Toth and C. Kruegel, "Accurate buffer overflow detection via abstract

payload execution," RAID, 2002.

[6] M. Mahoney, "Network traffic anomaly detection based on packet

bytes," ACM-SAC, 2003.

[7] K. Wang and S.J. Stolfo, "Anomalous Payload-based Network Intrusion

Detection," RAID, 2004.

[8] Federal Information Processing Standards, “Data Encryption Standard

(DES)”, Publication 46 – 3, 1999.

[9] Federal Information Processing Standards, “Advanced Encryption

Standard (AES)”, Publication 197, Nov 2001

[10] D. Wagner and D. Dean, "Intrusion Detection via Static Analysis," IEEE

Security & Privacy, 2001.

[11] M.Rash, A.Orebaugh, G.Clark, B.Pinkard, J.Babbin, “Intrusion

Prevention and Active Response : Deploying Network and Host IPS”

Syngress Publishing; 1 edition, February 1, 2005

[12] SANS Institute, “SANS Top-20 2007 Security Risks (2007 Annual

Update)”, http://www.sans.org/top20/

[13] R.Sekar, et al., “Specification-based Anomaly Detection: A New

Approach for Detecting Network Intrusions”, in ACM Conference on

Computer and Communications Security, Washington, D.C., 2002.

[14] R.Vargiya, P.Chan, "Boundary detection in tokenizing network

application payload for anomaly detection", In: Proc. of ICDM

Workshop on Data Mining for Computer Security, pp. 50-59, 2003

[15] S.Zanero, S.M.Savaresi, "Unsupervised learning techniques for an

intrusion detection system", In: Proc. of ACM Symposium on Applied

Computing, 2004.

[16] C.Kruegel, G.Vigna, "Anomaly detection of web-based attacks", In:

Proc. of 10th ACM Conf. on Computer and Communications Security,

pp. 251-261, 2003

[17] C. Kruegel, et al., “Polymorphic Worm Detection Using Structural

Information of Executables”, Symposium on Recent Advances in

Intrusion Detection, Seattle, WA., 2005

[18] X. Wang., et al., “SigFree: A Signature-free Buffer Overflow Attack

Blocker”,USENIX Security, Boston, MA., 2006.

[19] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. D. Anagnostakis,

“Stride: Polymorphic sled detection through instruction sequence

analysis”, In Proceedings of the 20th IFIP International Information

Security Conference (IFIP/SEC 2005), 2005.

[20] K. Wang, G.Cretu, S.Stolfo, "Anomalous payload-based worm detection

and signature generation", In: Recent Advances in Intrusion Detection

(RAID), 2005

[21] K. Wang, J. Parekh, S. Stolfo, "Anagram: A content anomaly detector

resistant to mimicry attack," RAID, 2006

[22] K. Rieck, P. Laskov, "Language Models for Detection of Unknown

Attacks in Network Traffic," Journal in Computer Virology, Vol. 2, No.

4. , pp. 243-256., February 2007

1569110075 8

[23] D. Wagner and P. Soto, "Mimicry Attacks on Host-Based Intrusion

Detection Systems," ACM CCS. 2002.

[24] K.M.C. Tan, K.S. Killourhy, and R.A. Maxion, "Undermining an

Anomaly-Based Intrusion Detection System Using Common Exploits,"

RAID, 2002.

[25] O. Kolesnikov, D. Dagon, and W. Lee, "Advanced Polymorphic Worms:

Evading IDS by Blending in with Normal Traffic," Technical Report

GIT-CC-04-13, College of Computing, Georgia Tech, 2004.

[26] P. Fogla P, W. Lee, "Evading network anomaly detection systems:

formal reasoning and practical techniques," ACM Conference on

Computer and Communications Security (CCS), 2006

[27] A. Kerckhoffs, "La cryptographie militaire," Journal des sciences

militaires, vol. IX, pp. 5–83, Jan. 1883, pp. 161–191, Feb. 1883.

(http://petitcolas.net/fabien/kerckhoffs/)

[28] C. Shannon, "Communication theory of secrecy systems," Bell Systems

Techn. Journal, 28:656-715, 1949.

[29] J.D. Saltzer, M.D. Schroeder, “The Protection of Information in

Computer Systems,” in Proceedings of the IEEE, v 63 no 9, pp 1278–

1308., 1975.

[30] M. Barreno, et al. "Can Machine Learning Be Secure?" ASIACCS,

2006.

[31] M. Roesch, "Snort: Lightweight intrusion detection for networks",

USENIX Large Installation System Administration Conference LISA,

pp. 229-238, 1999

[32] SourceFire Inc. Snort rules. 2008 [cited 2008 Feb 28]; Available from:

http://www.snort.org/pub-bin/downloads.cgi

[33] The Nessus vulnerability scanner, Tenable Network Security, available

online, http://www.nessus.org

[34] Web server scanner, available online,

http://www.cirt.net/code/nikto.shtml

[35] The Metasploit project, available online, http://www.metasploit.com

