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Abstract—One of the basic principles of cryptography is that 

the security of a system must depend not on keeping secret the 

algorithm, but only the key. This principle is known as 

Kerckhoffs’ Principle. In this paper we propose application of 

this principle in intrusion detection systems. The fact that 

attackers know the intrusion detection algorithm will not help 

them if there is a secret key for each implementation that makes it 

different enough from the others. Implementation of network 

packet payload anomaly detection IDS that enables application of 

the idea is presented. Results for various keys confirm excellent 

detection capabilities. Proof of concept mimicry attack protection 

example is provided. 

 
Index Terms—anomaly detection, Kerckhoffs’ principle, 

network intrusion detection, word models. 

 

I. INTRODUCTION 

HE history of intrusion detection systems has been 

compared to an arms race [1]. Similar to any protection 

system, when the defenders find a method to discover a certain 

type of attack, the attackers study the method and find ways to 

get around it. There are numerous examples in the IDS arena 

and, to name only a few, in academic papers, like [2], which 

pointed out serious flaws in all NIDS of the time, or more 

recently [3], which showed how [4], [5], [6], [7] anomaly 

detection methods could be evaded. 

Cryptography put an effective stop to this type of arms race 

following the principle that the security of a system must 

depend not on keeping secret the algorithm, but only the key. 

Modern cryptographic algorithms passed the test of time. Data 

Encryption Standard (DES) [8] was the US encryption 

standard and de facto standard in the rest of the world for 25 

years, from 1977 to 2002. The DES algorithm was practically 

never broken. It was replaced with Advanced Encryption 

Standard (AES) [9] mainly because the DES key was not big 

enough for current brute force computing power. 

A mimicry attack is first defined in [10] as malicious exploit 

code that mimics the operation of the application thus evading 

detection by anomaly detectors. This definition was given in 

the context of host IDS, but the idea applies to network IDS as 

well. For NIDS, a mimicry attack tries to make attack sessions 

look like normal ones. This should prevent their identifications 

as anomalous and therefore detection. Knowing how a 
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detection method creates the model of a normal session could 

enable attackers to create attack sessions that mimic normal 

ones. But if there is a secret key for each implementation of 

the detection method that makes it different enough from the 

others, attackers will not be able to mimic normal behavior 

without knowledge of the key. 

In this paper, we propose using this cryptography principle 

for intrusion detection. We present this novel and original idea 

and one practical implementation. First we implement a base 

system, simple and efficient state of the art anomaly detection 

network intrusion detection system. Then we show how a key 

can be added to the base system detection algorithm, 

implementing Kerckhoffs’ principle. We provide detection 

results for the base system and keyed systems with proof of 

concept showing how the proposed implementation prevents 

mimicry attack. 

 

II. RELATED WORK 

Payload analysis of network packets to detect intrusions 

became a necessity. It enables detection of application level 

attacks. Those attacks make up the majority of current 

computer attacks [11] for two basic reasons. Most of the 

current vulnerabilities that create opportunities for attacks are 

in user applications [12]. Most intrusions at a lower level of 

the network protocol stack could now be efficiently prevented 

using properly configured standard network protection 

equipment like firewalls. Techniques of anomaly-based 

network intrusion detection have been proposed that analyze 

payloads of packets and connections [4], [6], [13], [14], [15].  

HTTP oriented analysis is given in [16]. Detection of byte 

sequences that resemble code is proposed in [17] and [18]. 

Syntax and semantic information is used in [1] and [19]. 

Single byte frequencies in payload as a basis for the model are 

used in [7] with improvements in [20]. Recent research uses 

frequencies of more than one byte, n-grams, [21] or language 

model based on words, consecutive bytes in payload separated 

by delimiters [22].  

General issues and difficulties with NIDS and evasion ideas 

are best given in [2]. The first actual mimicry attacks are given 

in [23] and [24]. Specific ideas on how to avoid anomaly 

based NIDS detection are given in [25] and [26]. Polymorphic 

blending attacks that evade most of currently proposed 

payload analysis method are described in [3].  

As we already said, it is an arms race. There are very few 

ideas for fighting mimicry attacks on anomaly detection NIDS. 

One practical implementation of protection against general 

Kerckhoffs’ Principle for Intrusion Detection 

Sasa Mrdovic, Branislava Perunicic 

T 



1569110075 2 

mimicry attacks is presented in [21]. We are not aware of any 

general approaches like the one we suggest. 

 

III. KERCKHOFFS’ PRINCIPLE 

In 1883 Kerckhoffs suggested six principles of design of 

practical cryptographic ciphers [27]. The second of those 

principles is known as Kerckhoffs’ principle and states that the 

design of a system should not require secrecy, and compromise 

of the system should not inconvenience the correspondents. 

Shannon later restated that it should always be assumed that 

"the enemy knows the system being used" and this statement is 

known as Shannon’s maxim [28]. The idea that security of the 

cryptographic system rests in the keys, not in the algorithm, is 

one of the main concepts in modern cryptography. In 

cryptography, a key can be compromised, and can be replaced 

with different one without a need to redesign algorithm. This 

concept, that if there was a compromise of secrecy whatever is 

compromised should be easily replaceable, applies to security 

in general. Saltzer and Schroeder [29] include it in their eight 

principles for the design and implementation of security 

mechanisms and call it “Open design”. They say that design 

should not be secret and that mechanisms should not depend 

on the ignorance of potential attackers, but rather on the 

possession of specific, more easily protected, keys or 

passwords. In physical security if a door key is lost or stolen, 

only locks need to be changed, or sometimes a lock can simply 

be reprogrammed, as in hotels. This is not just more 

convenient but is also more secure if the key space is large 

enough. 

We suggest applying the same principle when designing 

intrusion detection systems. Most intrusion detection schemes 

can be defeated with careful crafting of attack vectors for the 

particular defense mechanism. If the detection algorithm is 

known but the actual detection of attack depends on some 

piece of information unknown to attacker, this makes it very 

difficult if not impossible to create an attack that will not be 

detected.  

 

IV. BASE SYSTEM 

Our base system detects anomalies in network packet 

payload. Packet payload analysis divides payload into groups 

of consecutive bytes, n-grams. It has been shown that using 

higher order n-grams for payload modeling yields better 

detection results [21] than using 1-gram model [7]. Selection 

of optimal length of n-grams is no easy task and the result 

might depend on the network protocol being modeled and the 

particular traffic dataset. Using words, byte sequences 

separated with boundary symbols, for text-based protocols like 

HTTP, SMTP and FTP achieves marginally less accurate 

results than modeling with several n-gram lengths at once, but 

with much smaller computational load [22]. We used words as 

the basis for our model, following advice given in [22] to limit 

byte sequence length to 16 bytes in absence of delimiters.  

A. Learning 

Initial research focused on HTTP protocol with a set, 

extended from [14], of 20 delimiters we found to be the most 

appropriate, since they provide the biggest number of 

meaningful words: 

CR LF TAB SPACE , . : / \ & ? = ( ) [ ] " ; < > 

We trained our system using supervised learning. 

Supervised learning should be performed on normal, attack 

free, traffic. Obtaining a clean data set might be difficult. 

Collection of normal production network traffic for a period of 

time does not guarantee that it is attack free and also does not 

guarantee that all possible normal packets will be seen. The 

duration of time required to collect enough traffic might also 

be longer than desired. A detection method should be able to 

cope with those realistic limitations on learning. A good 

overview of the machine learning issues and possible solutions 

is given in [30]. 

We used a semi-automated process to obtain attack-free 

traffic from collected network traffic. HTTP traffic collected 

from our department Web servers was scanned using the 

signature-based network intrusion detection, Snort [31]. A 

scan was performed with all rules activated and with the latest 

signature content of Snort rules obtained from [32]. In this way 

we were able to obtain traffic that can be considered clean 

enough for training. 

After some experimenting with various amounts of traffic 

used for training, we found that after learning for 96 hours, the 

number of learned words increases very little with additional 

traffic. At this point we concluded that there would be little 

gain from further training. Fig. 1 shows the dependency of the 

number of words learned on the number of hours of network 

traffic used for training.  

We parsed only incoming HTTP traffic since we want to 

detect attack by recognizing incoming traffic that our servers 

have never seen. This provides for smaller number of words 

and faster processing without significant negative impact on 

detection, as will be shown later. Our total number of learned 

normal words was little over 33 000. 

 
Fig. 1.  Number of learned words as a function of hours of network traffic  
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All words found in normal traffic are stored in a hash table, 

together with the frequencies with which they appear. At this 

point word frequencies are not used, but we have certain ideas 

for future use of those frequencies. 

B. Detection 

In the detection phase, we tokenize to words incoming 

HTTP network traffic payloads using the same delimiters used 

during the learning phase. For each of the words we check if it 

is in a set of learned words. Then we a use simple formula 

similar to the one suggested in [21] for packet scoring.  

Score = New / Total 

New is the number of new words, not in a set of learned 

words, in a packet. Total is the total number of words in a 

packet. This score is a measure of packet anomaly. The score 

is expressed as a percentage with values from 0 to 100. We 

first tested detection on seven days of traffic we collected 

during the normal working course of our Web sites. Scores for 

most of the normal packets were less than ten. There were 

from one to ten non-attack packets per day that had scores 

over 20. There was only one exceptional score for a non-

malicious packet in seven days, with score of 64. 

In the second experiment, we considered how our algorithm 

scores probes. We performed two scans with two tools for 

vulnerability scanning. The first tool used was the Nessus [33] 

general vulnerability scanner, and the second one was the 

Nikto [34] Web server scanner. Both tools should generate 

unusual traffic, not normally seen on Web servers, but both 

stop short of generating attack packets that are entirely 

different from HTTP traffic. 

Fig. 2 shows scores for packets within one hour that 

included a Nessus scan that lasted for some 25 minutes, from 

the fourth to the twenty-ninth minute. Scores for the full hour 

are shown to provide comparison between normal traffic and 

the scan. The scan traffic can be clearly distinguished from 

normal traffic, although some scan scores are not too high due 

to the previously mentioned nature of scans, i.e., that they are 

different but still mostly HTTP traffic. Nessus, being a general 

vulnerability scanner, generated some HTTP packets that were 

not really HTTP scans and those packets scored very low. 

Fig. 3 shows scores for packets within one hour that 

included a Nikto scan that lasted for little over six minutes, 

from the sixth to the twelfth minute. Similar to the Nessus 

scan, scores for normal and scan traffic are different enough 

for recognizing traffic anomaly. The scan scores are generally 

higher than with Nessus since Nikto is a Web vulnerability 

scanner that should generate more unusual HTTP traffic.   

For the third test we wanted to score real attacks. For attack 

generation we used the Metasploit framework [35]. Metasploit 

provides a database of various exploits for known 

vulnerabilities with the possibility of using different attack 

payloads depending on the wanted attack result. Using various 

combinations of seven vulnerabilities and eight attack 

 
Fig. 2.  Scores for one hour of network traffic that includes Nessus scan 

 
Fig. 3.  Scores for one hour of network traffic that includes Nikto scan 

TABLE I 

ATTACKS WITH RELATED VULNERABILITY AND USED PAYLOAD 

 No. Vulnerability / payload  CVE 

  Apache Chunked-Encoding 2002-0392 

1 adduser   

2 meterpreter-reverse_tcp   

3 shell-reverse_http   

  Apache mod_jk overflow 2007-0774 

4 adduser   

5 shell-reverse_tcp   

  Apache mod_rewrite 2006-3747 

6 shell-bind_tcp   

7 shell-reverse_tcp   

8 vncinject-reverse_http   

9 vncinject-reverse_tcp   

  IIS 5.0 IDQ Path Overflow  2001-0500  

10 shell-reverse_http   

11 shell-reverse_tcp   

  IIS ISAPI w3who.dll  2004-1134 

12 exec   

13 shell-reverse_tcp   

  Oracle 9i XDB HTTP PASS  2003-0727 

14 shell-reverse_tcp   

  Xitami If_Mod_Since 2007-5067 

15 shell-reverse_tcp   
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payloads we generated 15 HTTP attacks over TCP port 80. 

Attacks with related vulnerabilities and used attack payloads 

are given in Table I.   

Fig. 4 shows scores for 15 attacks from Table I. Different 

attacks generated different numbers of packets, from one to 

six. All attack packets were scored. The first thing worth 

noticing is that all packets for all attacks have scores much 

higher than any normal traffic packet. The lowest score for any 

attack packet was 55. The lowest score for the highest scoring 

packet in any attack was 65. All attacks can be easily detected. 

This base system thus showed excellent results with normal, 

probe and attack traffic. The score gap between normal and 

attack packets is wide and provides for good detection 

opportunity. Setting scores above 20 to be anomalous, 100% 

of attacks can be detected with single digit false positives a 

day. If the boundary between good and bad traffic is set at 50 

there would be, in this particular traffic, only one false positive 

in a week, but that setting might allow for some undetected 

attacks.  

 

V. ADDING KEY 

While experimenting with sets of delimiters, trying to find 

the best one, we realized that using the same method we get 

different sets of normal words for different set of delimiters. 

The previously proposed set of delimiters is based on HTTP, 

and it produces the biggest percentage of human language 

words. From the anomaly detection point of view there is no 

principal reason to use one set of delimiters over another. Each 

set of delimiters will produce a unique set of normal traffic 

words, byte sequences, which can be used to detect payload 

anomalies, words never before seen. Set of delimiters can be 

used as a key, which can be different for different sites or 

servers. Attackers can and will know the method to produce 

normal traffic words, but without the key, i.e., the set of 

delimiters, it will be very difficult, if not impossible, to craft an 

attack vector that will not be detected for a number of new 

words.  

In order to test this idea we concluded several tests with 

different sets of delimiters, keys. Here we show results for two 

characteristic cases. 

A. The second set of delimiters - key 

In the first test we generated 20 random numbers between 9 

and 127 as ASCII values to be the set of delimiters. The 

selected range represents printable ASCII characters as those 

should be major of HTTP payload transmitted values. Using 

this set we trained our IDS on the same set of clean traffic as 

we did for the base system. Then we used the system with the 

new set of learned words to test scores for the same set of 

normal traffic, probes and attacks as for the base system. We 

repeated the test for several random sets with similar results, of 

which we present one. 

The set of 20 delimiters had following ASCII values  

{15, 19, 20, 30, 35, 37, 38, 41, 47, 56,  

58, 63, 68, 69, 90, 97, 107, 109, 114, 122} 

Fig. 5 shows the dependency of the number of words 

learned on the number of hours of network traffic used for 

training. There is the same general tendency that the number of 

learned words stabilizes after 96 hours. The total number of 

learned words was almost 42000, some 30% increase. This 

could have been expected since, unlike the original set of 

delimiters optimized for HTTP traffic, these delimiters were 

randomly selected. The increase does not have significant 

influence on the size of the hash table used to store learned 

words or on the system performance. 

Detection results with new the set of limiters and learned 

words were very promising. The scan of normal traffic 

generated scores similar to the ones with original delimiters. 

Most packet scores were below ten, twenty were above 20 and 

the odd packet from the original detection scored even lower, 

47. 

 
Fig. 4.  Scores for each packet in 15 attacks 
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Scores for Nessus and Nikto scans were very similar to 

scores with the original delimiters, with packets in the scan 

period scoring higher than normal packets. No diagram of this 

data is presented here, to save space, since it is almost the 

same as the original one. 

Fig. 6 shows scores for 15 attacks from Table I using the 

new set of limiters and learned words. Again all packets for all 

attacks have scores much higher than any normal traffic 

packets. The lowest score for any attack packet was again 55 

and that also was the lowest score for the highest scoring 

packet in any attack. Scores are on the average lower than the 

original ones, but still all attack scores were far from normal 

traffic scores. 

Overall results with the random set of 20 delimiters, i.e., the 

key, support the stated idea that the base system could be used 

as an intrusion detection system with a site-selected key. 

B. The third set of delimiters - key 

In the second test we tried using a smaller number of 

delimiters. We generated 15 random numbers between 9 and 

127 as ASCII values to be the set of delimiters. Using this set 

we went through the same learning and detection phase as in 

the first two cases. We repeated the test for several random 

sets with similar results, of which we present one. 

The set of 15 delimiters had the following ASCII values  

{ 9,20,34,36,53,60,63,64,66,69,71,97,103,111,116} 

Fig. 7 shows the dependency of the number of words 

learned on the number of hours of network traffic used for 

training. There is the same general tendency that number of 

learned words stabilizes after 96 hours. The total number of 

learned words was almost 50000, approximately a 50% 

increase from the original set of delimiters, and a 20% increase 

from the second set of words. This might be result of fewer 

limiters providing for more possible combinations of longer 

words. The increase again, however does not have significant 

influence on the size of the hash table or on system 

performance. 

 
Fig. 5.  Number of learned words as a function of hours of network traffic 

for the second set of delimiters (20 random values between 9 and 127) 

 
Fig. 6.  Scores for each packet in 15 attacks with the second set of delimiters (20 random values between 9 and 127) 

 
Fig. 7.  Number of learned words as a function of hours of network traffic 

for the third set of delimiters (15 random values between 9 and 127) 
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Detection results with this set of delimiters and learned 

words also supported the suggested approach. The scan of 

normal traffic generated scores similar to the ones with the 

original delimiters. Most packet scores were below ten, 31 

were above 20, and the odd packet from the original detection 

scored 51. 

Scores for Nessus and Nikto scans were very similar to the 

scores for the original delimiters, with packets in the scan 

period scoring higher than normal packets.  

Fig. 8 shows scores for 15 attacks from Table I using the 

third set of limiters and learned words. This time the attack 

packets scored higher than with the second set. The lowest 

score for any attack packet was 56. The lowest score for the 

highest scoring packet in any attack was 66.  

Again, results with a random set of 15 delimiters, as the key, 

showed that the base system could be used as an intrusion 

detection system with a site-selected key. 

C. An example 

We present one small and simplified example in order to 

show the need for and gain from a key, i.e., a site-specific set 

of delimiters. The example shows how an attacker might try to 

blend in an attack payload with normal traffic words. 

Knowledge of the algorithm of base system and the delimiters 

helps him craft a payload with as many normal words as 

possible. Such a payload would have a lower score and the 

attack might pass undetected. 

Attacks number 6, 7, 8 and 9 exploit Apache mod_rewrite 

vulnerability with four different attack payloads. Metasploit 

creates an HTTP packet for this vulnerability using the 

following statement: 
uri= "/#{rewritepath}/ldap://"+ 

rand_text_alphanumeric(rand(16))+"/"+ 

rand_text_alphanumeric(rand(32))+"%3f" 

+rand_text_alphanumeric(rand(8))+"%3f" 

+rand_text_alphanumeric(rand(8))+"%3f" 

+rand_text_alphanumeric(rand(16))+"%3f"+ 

rand_text_alphanumeric(rand(8))+"%3f%90"  

 

uri += payload.encoded 

 

This means that there are six parts of the HTTP packet that 

consist of random alphanumeric stream of up to 16, 32, 8, 8, 

16 and 8 characters for each part respectively. At the 

beginning and between the random parts are fixed byte 

sequences. At the end comes “%3f%90” and the encoded 

payload. Usually this encoded payload would increase the 

score for the packet and the attacker would try to use 

appropriate encoding to hide the attack. Since payload 

encoding is out of the scope of this paper we will not do any 

changes to this part of packet. Without loss of generality we 

will adjust only the beginning part of the attack vector to try to 

lower its score. 

The original Metasploit HTTP packet payload for this 

attack was: 
“GET 

/1/ldap://2QeT9jN5nS4QA9/HTiYB1T8LhY9Az9DT

R9%3feG%3fu%3fHT%3fk%3f%90”+ 

encoded.payload 

The encoded payload was different for four different attack 

payloads. Random characters (bolded) are most probably not 

in the set of learned words and increase the scores for this 

packet in addition to the scores caused by encoded payload. 

The scores for these four attacks using the base system were 

76, 79, 78 and 77 respectively. 

Knowing the delimiters and the detection algorithm we tried 

to manually create an HTTP packet with as many learned 

words as possible, effectively lowering its score. Instead of a 

random stream of characters we used small words we knew 

were learned (GET, HTTP) with the known delimiter “.” and 

tried to put as many of them as possible within the allowed 

number of characters. The resulting HTTP packet was: 
“GET 

/1/ldap://GET.GET.GET.GET/GET.GET.GET.GET.

GET.GET.GET.GET.%3f.HTTP.%3f.HTTP.%3f.GET.

GET.GET.%3f.HTTP.%3f%90”+ encoded.payload 

 

 
Fig. 8.  Scores for each packet in 15 attacks with the third set of delimiters (15 random values between 9 and 127) 
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It was still valid attack but its detection scores on base 

system for four different payloads were 50, 46, 59 and 45. 

These scores were significantly lower than the original ones. 

They might not be low enough to avoid detection, but they do 

prove the idea. Actual attack payload encoding might bring the 

score even lower. 

Unlike our base system, our keyed systems with the second 

and the third set of delimiters were not fooled by this change 

of HTTP packet.  Detection scores were even higher. For the 

second set of delimiters, scores for manually created packets 

were 62, 63, 68 and 68, compared with 59, 55, 67 and 60 for 

the original Metasploit attacks. For the third set of delimiters, 

scores for manually created packets were 78, 74, 81 and 84, 

compared with 71, 68 78 and 70 for the original Metasploit 

attacks. The reason for this is obvious. Since the second and 

the third set of delimiters were “unknown” to us we did not 

know how to prepare the payload to avoid detection. 

Thus, the proposed keyed IDS implementation makes it 

extremely difficult for attackers to add malicious byte 

sequences to packet payloads and avoid detection. Knowledge 

of the algorithm being used does not help them at all, without 

knowledge of the particular set of delimiters used on the site 

they plan to attack. Without knowing the exact set of 

delimiters, attackers do not know how to position malicious 

payload parts within packet payloads.  

It is important to point out that actual payload encoding is 

far from trivial and sometimes effectively impossible. Our 

manual packet creation used a very convenient vulnerability 

just as proof of concept and support for the proposed keyed 

IDS. In a general case our base system could detect most of the 

automated attacks. 

VI. CONCLUSION 

Applying Kerckhoffs’ principle for intrusion detection could 

give the upper hand to the detection side, over attackers. 

Practical application of the principle is presented through 

implementation. The results show that implementation is not 

less good at detection and not more complicated to implement 

than other currently proposed anomaly detection network 

intrusion detection systems. The presented system can protect 

HTTP traffic from intrusions that try to evade anomaly 

detection. This protection is based on different keys, sets of 

delimiters, used to create sets of words seen in attack-free 

traffic. Each particular site can have a different key, and thus a 

different set of normal words.  

The issue, known from cryptography, of key maintenance 

might need further research. A procedure for key (delimiters) 

changes due to compromise or time limit on use needs to be 

developed. It requires creating a set of normal words with a 

new set of delimiters. The learning process is short, requiring 

only minutes, and can be fully automated, but it requires 

keeping records of normal traffic. As a matter of fact normal 

traffic records should also be kept current due to its dynamic 

nature, and a set of normal words needs to be updated on 

regular basis regardless of key change. This is one of direction 

of our future research.  

The stated idea can be generalized and applied to protocols 

other than HTTP, and other than text-based. Every network 

packet payload could be tokenized using a set of token 

boundaries, delimiters. Certainly, issues of selection of 

delimiters need further research. Similar to cryptographic keys, 

there might be good and weak keys, and the number of 

delimiters, i.e., the size of the set will impact performance and 

security. 
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