
Analysis of Mirai Malicious Software
Hamdija Sinanović, Sasa Mrdovic

Faculty of Electrical Engineering
University of Sarajevo

Sarajevo, Bosnia and Herzegovina
{hsinanovic1, sasa.mrdovic}@etf.unsa.ba

Abstract—This paper tries to shed more light on Mirai mal-
ware, with an aim to facilitate its easier detection and prevention.
This malware was used in several recent high profile DDoS
attacks. Mirai is used to create and control botnet of IoT devices.
The code of this malware is analysed and explanation of its parts
provided. Virtual environment for dynamic analysis of Mirai
is created. Special settings that were needed to install, start
and use Mirai in this environment are explained. Mirai CNC
user environment with list of commands is presented. Controlled
DDoS attack was successfully executed. Traffic generated during
controlled attacks was used to generate signature for Mirai
detection. Conclusion of static and dynamic analysis is given
together with some mitigation advices.

Keywords—Mirai, malware, Internet of Things, Botnet, Dis-
tributed Denial of Service

I. INTRODUCTION

Mirai is malicious software that creates botnet of IoT
devices. It drew public attention in September 2016 after it
was used in DDoS attack against Kerbs On Security website
which reached 620 Gbps [1]. After that, it was used in attack
on French hosting company OVH that peaked at 1 Tbps [2].
However, the most prominent Mirai DDoS attack was on
DNS provider Dyn, resulting in inaccessibility of several high-
profile websites such as GitHub, Twitter, Reddit, Netflix and
many others. After analysis, Dyn estimated that there were up
to 100 000 malicious endpoints involved in the attack [3].

Mirai was an example on how big IoT insecurity problem
might be. It was an eye opener. Malicious software exists for
almost as long as a regular software. Before IoT it was mainly
limited to computers. Computer security community developed
methods and tools to fight malicious software. IoT devices do
not have full computing abilities that anti malware methods
and tools rely on. They are low price devices usually built for
one purpose with ability to communicate over network. This
ability opens an avenue for attacks. Due to lack of convenient
user interface, IoT devices often have default user names
and passwords. In addition they are not envisioned to receive
software updates, including security ones.

Mirai successfully abused IoT device properties. Analysis
of Mirai enables researchers to learn how it works. That
knowledge helps to detect and protect from the similar attacks
in the future.

In this paper we show results of static and dynamic analysis
of Mirai. We explain the function of various parts of its code
and how all the parts fit together. We have created controlled
virtual environment, that enabled us to see Mirai in action.

We explain steps we had to do in order to run Mirai in this
environment. We were able to gain some additional knowledge
that enabled us to create IDS rules for its detection. We share
our findings in belief it will help other security and IoT
researchers.

The rest of the paper is organized as follows.
Related work is addressed in section 2. Section 3 describes

our static analysis and its results. Dynamic analysis is pre-
sented in section 4. Proposal for Mirai detection based on
previous findings is provided in section 5. Short overview
of our observations and some mitigation ideas are given in
Section 6. Conclusion and discussion, as well as directions
for future research work, are in section 7.

II. RELATED WORK

Malware analysis is similar to any software analysis. In the
beginning it was mainly static analysis [4][5][6]. It is useful,
but has its limitations. The biggest limitation is inability to
guarantee that a piece of code is not malicious. It has been
shown, a long time ago that no amount of static analysis can
do that [7][8].

Dynamic code analysis is performed by executing programs
in real or, more often, virtual environment. It provides different
insight into malware behaviour. Automated dynamic analysis
in a sandboxed environment like the one described in [9],
seems the most promising. The good overview of automated
dynamic malware tools and techniques is given in [10].

IoT malware is rather recent. Most of the available literature
on IoT malware comes from non-scientific web sites and
antivirus software makers. There are some papers that were
published on recent conferences. An overview of issues in
IoT security with a proposal for research for the solutions to
the IoT security challenges is given in [11]. In [12] authors
created IoT honeypot that enabled them to analyze telnet based
attacks. Their honeypot attracted various attack on IoT devices
running on different CPU architectures.

Mirai attack attracted a lot of attention that resulted in a
number of publications. Out of non-scientific web articles we
would like to point out [13] that includes some Mirai static
code analysis partly based on [14]. Recent issue of IEEE
Computer has an article on botnets and IoT security that
includes some general Mirai analysis [15]. This years RSA
conference had a presentation with detailed analysis of Mirai,
but only slides are available [15]. Author of [16] provides
thorough analysis of IoT botnets that includes Mirai. The most

detailed analysis we found is part of master thesis project [17].
It includes source code analysis and some experiments.

We believe that there is a need for more Mirai analysis and
provide our contribution in the rest of the paper.

III. STATIC ANALYSIS

Luckily, Mirai’s source code was leaked for unknown rea-
sons, making static analysis reasonably easy [18]. First thing
to be noticed is a build script, which compiles bot source
code for ten different architectures. It can also be noticed that
source code is divided in three parts: bot, CNC server
and loader. Bot part runs on infected IoT devices. CNC
server receives connections from bots and issues com-
mands to them. Loader receives information on discovered
vulnerable IoT devices and serves them bot payload for their
architecture.

A. Bot

Bot was written entirely in C programming language.
Starting at main.c file, it can be seen that Mirai deletes
it’s exe file once it’s started, staying only in RAM. It is one
of its ways for avoiding detection. Since persistence is not
ensured, malware disables watchdog timer on infected device,
preventing it from restarting. Then it checks for and kills
another instance of the same malware already running on the
same device. Random name for it’s process is generated to
make detection harder. After that, it calls fork() system
call multiple times to create process for each module. Then
it connects to the CNC server and waits for commands to
be executed. There are three modules running beside main
process: attack, killer and scanner.

1) Attack: Attack module parses command when re-
ceived and launches DoS attack. Ten methods of DoS attack
are implemented in ten different functions. Module decides
which function to call based on command issued, and stops
its execution once duration time expires.

2) Killer: Killer module kills processes holding ports
22, 23 and 80 and reserves these ports preventing killed
applications from restarting. After that, it continually scans
memory trying to find and kill similar malware created and
started by other attackers.

3) Scanner: Scanner module uses telnet and random
generated public IP address to check for other vulnerable IoT
devices. Telnet user names and passwords are taken from table
containing 62 factory default combinations [19]. If connection
with random device is established successfully, IP address
of vulnerable IoT device is sent to the reporting server with
matching username and password.

B. CNC server

CNC server is written in Google Go programming lan-
guage. It first connects to MySql database using predefined
credentials. Then it creates two listening sockets, one takes
port 23 for telnet and other takes port 101 for API. When
connection is established, initial handler decides if it is a
connection from CNC registered user or a new bot registration.

TABLE I
VM HARDWARE CONFIGURATION

VM RAM (GB) HDD (GB)

CNC Server 2 12

Bot 2 12

DNS Server 2 12

TABLE II
VM NETWORK CONFIGURATION

VM IP address Subnet mask Default gateway

CNC server 8.8.8.1 255.255.255.0 8.8.8.1

Bot 8.8.8.2 255.255.255.0 8.8.8.1

DNS server 8.8.8.8 255.255.255.0 8.8.8.1

API handler first checks if API key is valid and if bot count is
lesser than users maximum bot count. User command sent as a
text is parsed, and byte array to be sent to bots as a command
is generated. If target list does not contain whitelisted (not
to be attacked) IP addresses, attack is queued. User handler
generates prompt for user name and password via telnet. If
user is administrator, he can use commands to add new user
or check bot count beside standard attack commands. If new
bot was detected, it is added to the client list. Client list’s
Worker() function ensures that bot list is up to date and
distributes attack command to them. NewAttack() function
parses user command sent via telnet. Build() function
generates bytes to be sent to bots as a command.

C. Loader

Loader is written in C programming language. It first creates
server for downloading precompiled payloads for various
architectures using wget or TFTP from busybox. Then it starts
acting like reporting server, listening for discovered vulnerable
IoT devices which can be compromised. When information
about potential target is received, loader connects to it via
telnet, downloads and runs payload against compromised
device, thus turning it into a new bot.

IV. DYNAMIC ANALYSIS

Dynamic analysis of malicious software requires creation of
safe virtual environment so malicious software cannot escape
created sandbox and make damage to real devices in the wild.
For this purpose, Oracle VM VirtualBox was used. Three
virtual machines were created with hardware and network
settings given in the Table I and Table II, respectively. Kubuntu
15.10 operating system was installed on all of the machines,
and they were set in internal network mode for isolation.

It can be seen that strange IP configuration was used.
It’s because malware relies on Google’s DNS server with IP
address 8.8.8.8, and it was preferred to keep as much original
configuration as possible.

1) Server configuration: Since this software part was
entirely written in Google Go programming language, it was
the first thing to be installed using command:

TABLE III
USERS

Field Type Key Default

id int(11) PRI NULL

username varchar(15) UNI NULL

password varchar(15) NULL

api key varchar(500) NULL

max bots int(11) NULL

admin int(11) NULL

wrc int(11) 0

last paid timestimpe CURRENT
TIMESTAMP

cooldown int(11) NULL

duration limit int(11) NULL

intvl int(11) 30

TABLE IV
HISTORY

Field Type Key Default

user id int(11) MUL NULL

time sent timestamp CURRENT
TIMESTAMP

duration int(11) NULL

command varchar(500) NULL

max bots int(11) NULL

TABLE V
WHITELIST

Field Type Key Default

prefix varchar(15) NULL

netmask int(11) NULL

sudo apt-get install golang

MySql driver and go-shellwords were also required, and
their installation required git.
sudo apt-get install git
go get github.com/go-sql-driver/mysql
go get github.com/mattn/go-shellwords

Static analysis showed that CNC server uses local database
”mirai”, with username ”root” and password ”password”. It
can also be noticed that database contains three tables: users,
history and whitelist. Stricture of those tables is shown
in the Table III, Table IV Table IV, respectively..

One user was inserted in created database using SQL
command:
INSERT INTO users(username, password,
api_key, max_bots, admin, last_paid,
cooldown, duration_limit) VALUES (’test’,
’test’, 12345, 2, 1, UNIX_TIMESTAMP(), 1,
0);

After that, server still could not connect to the database, so
connection string in database.go was changed to:
"%s:%s@tcp(%s:3306)/%s"
where 3306 is default port for MySql database.

2) Bot configuration: Build script for bot was simplified so
it’s compiled only for x86 architecture. It was decided to run
analysis on debug version of malware, so it’s worklflow could
be monitored through debug messages. First run showed that
there was an error somewhere in killer module. Static analysis
of this module discovered that it tries to access locked value
in constants table. Adding lines
table_unlock_val(TABLE_KILLER_STATUS);
before accessing TABLE_KILLER_STATUS and
table_lock_val(TABLE_KILLER_STATUS);
after accessing it solved this issue. Finally, to perform DoS
attack in debug mode, it was necessary to disable security
mechanisms that prevents attack in this mode. It’s done by
deleting lines

i f d e f DEBUG
i f (e r r n o != 0)

p r i n t f (” e r r n o = \%d\n ” , e r r n o) ;
b r e a k ;

e n d i f

found in files implementing attack module.

3) DNS server: Malicious software uses Google’s DNS
server with IP address 8.8.8.8 to discover CNC server’s IP
address. Virtual machine with DNS server got the same IP
address so malware can access it successfully. When doing
analysis of malicious software, it’s useful to have fake DNS
server that returns fixed IP address for any query received. For
this purpose, python script was used. The script is executed
using command
sudo python recipe-491264-1.py

Before running this script, it’s mandatory to kill dnsmasq
so port 53 can be used, and to change IP address script
returns to 8.8.8.8.

4) Running analysis: Virtual environment for Mirai analy-
sis and reproduced steps are shown in Fig.1.

1) Bot sends DNS request for CNC server domain name
2) DNS server responses with CNC server IP address
3) Bot registers itself to the CNC server
4) Botnet user issues DDoS attack command
5) Bot starts executing DoS attack on selected target

When connected to running CNC server via telnet, user is
prompted for username and password, as shown in Fig.2, first
three lines. It is interesting to notice that prompt is in Russian.
There were speculations that it proves that Mirai is Russian
made malware or that it was implemented to confuse analysts
to falsely accuse Russians.

Fig. 1. Scheme

Fig. 2. Prompt

If login was successful, initial messages and virtual terminal
are displayed.

Entering question mark as a command displays available
attacks list, which can also be seen in Fig.2. As it can be
seen, there are ten different DDoS attack methods.

1) udp and udpplain generate UDP packets with ran-
dom payload and source IP address by default.

2) syn, ack and stomp generate TCP SYN or ACK
flood.

3) http generates HTTP flood
4) use generates Valve Source Engine query flood.
5) dns uses slow drip DDoS attack to target authoritative

DNS server.
6) greeth and greip generate GRE encapsulated Eth-

ernet and IP packets.

It can be seen, in the source code, that there had been one
more attack vector planned, but was not implemented.

Fig. 3. TCP SYN flood detected

In order to test complete virtual setup operation, command
syn was used to start TCP SYN flood on IP address 8.8.8.8
for 10 seconds. This command issuance can be seen as the
last line on Fig.2. Generated network traffic was captured
using Wireshark on DNS server which served as target for
this attack.

Other types of DoS attacks generate similar network traffic.

V. DETECTION

The virtual environment that we created enabled us to
analyse network traffic generated by Mirai. The traffic analysis
made it possible to write rules for signature-based network
intrusion detection system to identify Mirai. For this purpose,
Snort IDS was used. Based on analysis, it was easy to write
rules for the particular type of DoS attack. For TCP SYN
flood, the following rule was created:
alert tcp $EXTERNAL_NET any -> $HOME_NET

any (flags: S; msg: "Possible TCP DoS";
flow: stateless; threshold: type both,
track by_dst, count 70, seconds 10; sid:
10001; rev:1;)

Detection message based on this rule is shown in Fig.3.
Similar rules were created for other DDoS attacks, with

similar detection result.
In addition to DDoS attack detection, infection attempts

could be detected. Scanner’s telnet validation can be recog-
nized in inbound or outbound network traffic. Detection rule
could be written like:
alert tcp $EXTERNAL_NET any <> $HOME_NET

any (msg: "Possible Mirai infection";
content: "/bin/busybox MIRAI"; sid: 10003;
rev:1;)

To demonstrate this rule, telnet server should be installed
and running, and virtual machine should have user with
password like one of the defaults that Mirai uses. Mirai’s
scanner detection is shown in figure Fig.4

VI. OTHER OBSERVATIONS AND MITIGATION
SUGGESTIONS

Mirai relies on default telnet username and password to
infect other devices, so the best and the easiest way to protect
device from being infected is to change it’s default remote
access settings.

Fig. 4. Telnet scanner detected

It’s relatively hard to detect using antivirus tools, since it
does not leave clean signature. It implements several obfusca-
tion techniques including sensitive strings encryption, needless
calculations and debugging symbols removal which prevents
attaching of gdb debugger.

It has mechanism for detection and removal of other in-
stances of the malware on infected device. This mechanism
checks predefined high port and kills process holding it. The
same mechanism could be used to automatically detect and
clean malware as soon as it starts running on the device.

Network exchange between bots and CNC or reporting
server is not encrypted, so it is possible to create IDS rules
for it’s detection.

Honeypots could be used as well to log commands used for
downloading and running malware, collect informations about
it’s usage and IP addresses involved.

Also, since Mirai stays in memory only, it could be removed
from device by simply turning it off and then on again.

VII. CONCLUSION

Mirai is a malware that turns infected device into bot for
executing DDoS attacks. It infects IoT devices with enabled
remote access via telnet and default username and password
kept. Mirai is divided in three parts. CNC server provides
virtual terminal for botnet users, keeps evidence of registered
bots and passes attack command to them. Loader uploads and
executes malware on reported vulnerable devices. Bot searches
for vulnerable targets and executes DoS attack on demand.
Dynamic analysis showed how bot receives command and
executes DoS attack.

Based on analysis and due to its simple network behaviour
it was possible to create IDS signatures for all parts of Mirai
operation. That seems to be the best and easiest way to detect
and stop Mirai.

Next step in research would be to create more complex
virtual environment to see how bot finds vulnerable device,
and how that device gets compromised.

REFERENCES

[1] B. Krebs, “Krebsonsecurity Hit with Record DDoS.”
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-
ddos/, 2016. [Accessed 19.5.2017.].

[2] OVH, “The DDos that didn’t break the camel’s VAC.”
https://www.ovh.com/us/news/articles/a2367.the-ddos-that-didnt-break-
the-camels-vac, 2016. [Accessed 19.5.2017.].

[3] S. Hilton, “Dyn Analysis Summary Of Friday October 21 At-
tack.” https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-
attack/, 2016. [Accessed 19.5.2017.].

[4] H. Chen and D. Wagner, “Mops: An infrastructure for examining secu-
rity properties of software,” in Proceedings of the 9th ACM Conference
on Computer and Communications Security, CCS ’02, (New York, NY,
USA), pp. 235–244, ACM, 2002.

[5] H. H. Feng, J. T. Giffin, Y. Huang, S. Jha, W. Lee, and B. P. Miller,
“Formalizing sensitivity in static analysis for intrusion detection,” in
IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004,
pp. 194–208, May 2004.

[6] H. Chen, D. Dean, and D. Wagner, “Model checking one million lines
of c code.,” in NDSS, vol. 4, pp. 171–185, 2004.

[7] K. Thompson, “Reflections on trusting trust,” Commun. ACM, vol. 27,
pp. 761–763, Aug. 1984.

[8] F. B. Cohen, A Short Course on Computer Viruses. New York, NY,
USA: John Wiley & Sons, Inc., 2nd ed., 1994.

[9] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using cwsandbox,” IEEE Security Privacy, vol. 5,
pp. 32–39, March 2007.

[10] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Comput. Surv.,
vol. 44, pp. 6:1–6:42, Mar. 2008.

[11] Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K. Chen,
and S. Shieh, “Iot security: Ongoing challenges and research opportu-
nities,” in 2014 IEEE 7th International Conference on Service-Oriented
Computing and Applications, pp. 230–234, Nov 2014.

[12] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama,
and C. Rossow, “Iotpot: Analysing the rise of iot compromises,” in
Proceedings of the 9th USENIX Conference on Offensive Technologies,
WOOT’15, (Berkeley, CA, USA), pp. 9–9, USENIX Association, 2015.

[13] I. Z. Ben Herzberg, Dima Bekerman, “Breaking Down Mirai: An
IoT DDoS Botnet Analysis.” https://www.incapsula.com/blog/malware-
analysis-mirai-ddos-botnet.html, 2016. [Accessed 20.5.2017.].

[14] D. Web, “Investigation of linux.mirai trojan family,” tech. rep., Doctor
Web, 2016.

[15] E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, vol. 50, pp. 76–79, Feb 2017.

[16] K. Angrishi, “Turning internet of things(iot) into internet of vulnerabil-
ities (iov) : Iot botnets,” CoRR, vol. abs/1702.03681, 2017.

[17] J. v. H. Ivo van der Elzen, “Techniques for detecting compromised iot
devices,” tech. rep., University of Amsterdam, 2017.

[18] Anna-senpai, “Mirai-Source-Code.” https://github.com/jgamblin/Mirai-
Source-Code, 2016. [Accessed 19.5.2017.].

[19] Anna-senpai, “Mirai-source-code/mirai/bot/scanner.c:// set
up passwords.” https://github.com/jgamblin/Mirai-Source-
Code/blob/master/mirai/bot/scanner.c#L124, 2016. [Accessed
20.5.2017.].

