Blockchain Redaction in Self-Sovereign Identity

Seila Becirovic*, épela éuékoT, Muhamed Turkanovié!, Haris gupié*, and Sasa Mrdovic*
*Faculty of Electrical Engineering, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
TFaculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia

Abstract—The development of blockchain has allowed for the
development of new concepts and ideas. A completely immutable
ledger might not be appropriate for all new applications that are
being envisaged for the blockchain. One of them is self-sovereign
identity. The aim of this paper is to analyze the possible use
cases for blockchain redaction in SSI. Main concepts of redaction
and a summary of the current research progress are given. Use
cases for redaction in SSI are categorized and described alongside
their existing solutions. Detailed proposal for possible use cases is
given and comparison is drawn between this solution and existing
solution. Future challenges are introduced.

Index Terms—blockchain, blockchain redaction, self-sovereign
identity

I. INTRODUCTION

Complete control over one’s digital identity is an approach
that garners more traction every day. Today, the concept can
be found in an identity management model known as self-
sovereign identity (SSI), that is relatively new, and as such it
still has certain issues that remain unresolved, e.g. revocation,
lost device, right to be forgotten and other. SSI is built using
distributed ledger technology, commonly blockchain. With the
rapid growth of blockchain usage, the need for changing or
erasing the data on it became evident, and so blockchain
redaction was introduced. [1].

Using review and analysis as primary methodologies, in this
paper we introduce a theoretical approach to the possible usage
of blockchain redaction for the SSI ecosystem. Prior to this
paper, usage of redaction in SSI has not been comprehensively
discussed. The aim of this work is to give the first introduction
of blockchain redaction as a possible solution to certain
issues of SSI. We identified and defined potential use cases
for blockchain redaction in SSI. Besides the use cases, we
define opportunities and challenges that can arise from using
blockchain redaction as a solution to SSI issues.

In section II SSI, blockchain and blockchain redaction will
be explained. In section III improvements over the original
redaction will be presented. In section IV potential use cases
and existing solutions in SSI will be presented. In section V
a discussion concerning the benefits and possible issues will
be given. In the final section, a conclusion will be drawn and
a proposal for future research will be given.

II. PRELIMINARIES

A. Blockchain

Blockchain is a public or private distributed ledger built
on a peer-to-peer network [2]. It enables agreements on
transactional data, data sharing across a network of untrusted
participants, without relying on a central trusted authority.

Blockchain clients that run on blockchain network nodes
verify and store transactions on the ledger. The ledger itself
represents a continuous append-only database of transactions.
In order to achieve trust, a majority of nodes needs to reach a
consensus on transactional data states. The data structure of a
blockchain is a list of identifiable blocks that store a predefined
maximum number of transactions and are cryptographically
linked to the previous block. The blocks form a chain [3].
Distributed ledger technologies (DLT) such as Blockchain can
be used as a part of an ecosystem for SSI.

One of the main characteristics of blockchain is immutabil-
ity. It is thought to be impossible to change or erase data from
the blockchain, especially if it is public and permissionless. In
certain scenarios this can be seen as a limiting characteristic
for the usage of blockchain, and so due to the necessity for
removal of sensitive and inappropriate content, blockchain
redaction was introduced.

B. Self-Sovereign Identity

Self-Sovereign Identity (SSI) is an identity management
model where each digital identity is controlled, and managed
by the entity to which the identity and related data belongs
[4]. Each user can freely control and manipulate their digital
identity, including personal information, receive and collect
verifiable credentials from the issuers and choose which infor-
mation they want to share without the reliance on any external
authority. Identity management infrastructure is somewhat
decentralized, and this eliminates a single point of failure and
enhances security, trust, and privacy. Self-Sovereign identity is
considered to be in its infancy, and there are few standards and
architectures that define it completely [5]. The development
of SSI was initiated with the developments of decentralized
technology, specifically blockchain technology, although the
later is not always needed for the SSI implementation [6].

SSI consists of elements such as decentralized identifiers
and verifiable credentials. Before further explaining certain
issues in SSI, SSI elements should be explained. W3C defines
decentralized identifiers (DIDs) as a “new type of identifier
that enables verifiable, decentralized digital identity. A DID
refers to any subject (e.g., a person, organization, thing, data
model, abstract entity, etc.) as determined by the controller of
the DID.” DIDs are URIs that associate a DID subject with a
DID document allowing trustable interactions associated with
that subject. DID document represents a set of data describing
the DID subject, including mechanisms, such as cryptographic
public keys, that the DID subject or a DID delegate can use
to authenticate itself and prove its association with the DID.

Verifiable credential is a standard data model and representa-
tion format for cryptographically-verifiable digital credentials
as defined by the W3C Verifiable Credentials specification [7].
While implementing SSI elements, such as decentralized
identifiers (DIDs) and verifiable credentials (VCs), SSI some-
times relies on the distributed ledger such as blockchain to en-
able everyone in the network to have the same source of truth
i.e., DLTs are thus used as the trust anchor, e.g., stored hashes
of DIDs or exchanged VCs. Furthermore, in some government
frameworks like the European SSI Framework (ESSIF), DLTs
are used for various registries, e.g., trusted issuer registry, DID
registry etc [8]. Using the blockchain, participating SSI entities
(identity holders, issuers and verifiers) can additionally verify
someone’s identity and credentials. With SSI development in
early stages, there are still several open questions, e.g. how
to administer a revocation list, and how to retrieve access if a
device with the wallet is lost or stolen. The ability to remove a
revoked element from the distributed registry (blockchain) can
become a useful feature and the solution for mentioned issues
in SSI implementations. One of the possible solutions for such
requirements is blockchain redaction, which represents a novel
technique, with its own advantages and challenges.

C. Blockchain Redaction

Ateniese, et al. in the first papers about redaction [1] defines
redaction as one of the following “(i) re-writing one or more
blocks, (ii) compressing any number of blocks into a smaller
number of blocks, (iii) and inserting one or more blocks not
at the end of the ledger.” Redactions can be made only by
authorized entities and under specific constraints; moreover,
redactions are publicly auditable by existing miners since they
must approve the redacted block. [1].

Removal of improper and illegal content, creting a re-
writable storage for smart contract and overlay application,
enabling the “right to be forgotten” and consolidation in
financial institutions are just some of the examples where
redactable blockchain is needed [1].

In the blockchain, a block is defined in its triple form B =
(s,x,ctr), where s € {0,1}* denotes the hash of previous
block, z € {0,1}* denotes the block content and ctr € N is
the proof of work of the block. Block B is valid if:

validblockf(B) = (H(ctr,G(s,x)) < D) A (ctr < gq) = 1.

(D
Here, H : {0,1}* — {0,1}* and G : {0,1}* — {0,1}* are
collision-resistant hash functions, and the parameter D € N is
the block’s difficulty level. The parameter ¢ € N is a bound
that in the Bitcoin implementation determines the size of the
register ctr; here it is arbitrary and represents the maximum
number of hash queries that a user is allowed to make in any
given round of the protocol. Blockchain is simply a chain or
sequence of blocks C. The rightmost block is known as the
head of the chain Head(C') := (s, z, ctr). Any chain can be
extended to a longer chain by attaching a valid block B’ :=
(s',a', ctr’), such that s’ = H(ctr, G(s,x)). The new head of
the chain becomes the latest block [9].

TABLE I
REDACTION IN PERMISSIONED AND PERMISSIONLESS SETTINGS [1]

Permissioned setting

Permissionless setting

The algorithm takes a chain and a set of
indices that represent the position of the
blocks that are going to be redacted as the
input. The algorithm receives a chameleon
hash trapdoor key.

The algorithm takes a chain and a set of
indices that represent the position of the
blocks that are going to be redacted as the
input. The trapdoor key is secretly shared
amongst a fixed set of users, that are in
charge of redacting the blockchain.

Computation of collision is performed by
central authority, and the content of the block
is replaced, which creates a new chain with
the replaced block. This chain will replace
the original.

A set of users engage in a secure multiparty
computation protocol (MPC) to complete

the algorithm in a fully distributed manner.
Using a secret sharing scheme, users receive
a share of the trapdoor key and reconstruct it.
The secret sharing scheme needs to cope with
the possibility of corrupt users submitting
incorrect shares. Each user will then calculate
the collision and construct the chain with the
replaced block.

Central authority broadcasts this chain as
a special chain, meaning that every user
should adopt it.

The redacted chain will be broadcast as a
special chain that should replace any other
chain.

The main idea for redaction (presented in Figure 1) is to
set the inner hash function (function G(s,x)) in blockchain
to be a chameleon hash function. Chameleon hashing was
introduced by Krawczyk and Rabin [10]. A chameleon hash
is a cryptographic function that contains a trapdoor. Using
the trapdoor, collisions are easily generated, but without it,
collisions are hard to find. Re-writing the content of each block
is possible by finding collisions in the hash function. Now, a
new block is defined as B := (s, z, ctr, (h,)), where the new
component (h,) is the hash/check pair for a chameleon hash.
It should be noted that the new content of the redacted block
is irrelevant, and as such represents either deletion or a change
of the data. The algorithm is different for permissionless and
permissioned settings [1].

.. Bi1 Bi |, Bis1 ..
Hash(Bj-2) Hash(Bj-1) Hash(Bj)
¢ - - _b
1
. Bi1 I |Bi-> By Biv1 .o
L
Hash(Bj-2) ! Hash(Bj-1) I Hash(Bj)
1
- == ==
- " Blil o BII - Bi+l - "
Hash(Bj-2) Hash(Bj-1) Hash(Bj)

Fig. 1. Redaction in blockchain [11]: (1) Blockchain without redaction; (2)
Redaction of middle block; (3) Redacted blockchain - links remain the same.

The basic algorithm for redaction in permissione and per-
missionless settings are given in table I.

The original concept of redaction is focused on the per-
missioned setting, while in permissionless, it suffers from
scalability issues because the trapdoor key is shared [12].

III. RELATED WORKS

Improvements over the original redaction method have been
made in papers [12]-[15].

Puddu et al. [13] presented a redactable blockchain called p
chain. The sender of the transaction encrypts different versions
of the transaction, and the decryption keys are secretly shared
among miners. One transaction among them is decrypted,
and is considered active. If the user wants to change the
transaction, he sends a request, and according to the policy,
the appropriate transaction is decrypted and becomes a new
active transaction. Redaction of a transaction allows for a
more detailed redaction over the existing redaction of an entire
block. This is beneficial to the redactions concerning one
user’s transaction data.

In [14], Deuber et al. introduced the redactable blockchain
protocol in the permissionless setting. When a redaction is pro-
posed by a user, a consensus-based voting period starts. After
obtaining enough votes, a redaction is performed. This redac-
tion is limited to certain transactions, such as OP_RETURN.
One of the core concepts of SSI is that it should not rely on
any external authority. In that case, a permissionless redaction
is required. Redaction still needs to be a strictly defined and
controlled process that does not allow the redaction of relevant
used registries and similar.

In [15], Ashritha et al. propose improvements over the
original redaction by using the Chameleon hash function
that enables modification of a block without changing other
blocks’ contents. They propose splitting the trapdoor key
among major validators and reconstructing it using Multi-
Party Computation. They also propose the creation of a second
trapdoor key that will be in the sole possession of the creator
of the block. This trapdoor key will be used when the block
redaction should not happen without the consent of the creator.
User’s transactions should be redactable with their permission.

Jing Xu et al. [12] propose an instantaneous redactable
blockchain protocol. They present a generic approach to de-
signing a redactable blockchain protocol in the permissionless
setting. It is applicable to both proof-of-stake (PoS) blockchain
and proof-of-work (PoW) blockchain. According to the exist-
ing experiments, redaction and verification in the blockchain
are instantaneous. Instantaneous redaction brings benefits to
redaction in SSI, especially in the cases of revocation and
GDPR compliance.

The only mention of redaction in SSI is in [16]. Authors pro-
pose an identity management and authentication scheme based
on redactable blockchain for mobile networks. Blockchain
is used to record the public keys of legitimate users, while
redaction is used to delete users’ information. Through ex-
perimental results, the scheme can reduce the revocation and
communication overhead.

Changing previous information in SSI is introduced in [17],
[18]. These solutions do not use blockchain as a DLT. In paper
[17], authors introduce reclaimID, a SSI solution built on the
decentralised GNU Name System (GNS) in combination with
ciphertext-policy ABE using type-1 pairings. They define the
operation of deletion as a removal of the attribute and removal
of authorized access by using attribute tag version. Revocation
is done through attribute versioning as well. When access of
a requesting party to an attribute is revoked, they increment

the attribute version and publish the encrypted attribute value
to the name system. In [18], authors propose a model in
which social media platforms such as Facebook and LinkedIn
are used as a means of requesting, generating, and revoking
credentials, along with claim presentation and revocation of
presented claims. Only attribute disclosure is supported in this
model.

Even though there exist different platforms to build SSI on,
blockchain remains the most popular one, so finding solutions
for SSI issues using blockchain is required.

IV. OVERVIEW OF USE CASES FOR REDACTION IN SSI

When we are considering the use cases for redaction, we
must observe what is stored on the ledger. From it, we
determine that the use cases can be divided into two categories.
The first category is from the issuer’s perspective. Issuer
redaction includes possible redaction of data related to public
DIDs, VC (e.g., revocations), public keys revocation, and legal
guardianship/delegation/controllership redaction. The second
category is from the holder’s perspective, i.e., for user-specific
issues, such as device revocation, holder’s data, DIDs, GDPR
compliance, right to be forgotten, etc. It should be noted that
holder and issuer roles can apply to both the individual user
and an institution. An overview of the categories is given in
Table II and an overview of the process of redaction is given
in Figure 2.

TABLE 11
AN OVERVIEW OF CATEGORIES OF REDACTION IN SSI

Issuer redaction
Registry/VC revocation
Public keys revocation

Revocation of delegation

Holder redaction
’Right to be forgotten’
Agent revocation
User data revocation

Redaction in SSI should be “instantaneous” and can be
done differently in permissioned and permissionless settings.
In permissioned settings, redaction can be done by sending
a request to the authorized user or group of users. They
will proceed with the required block redaction, as previously
explained in section II.

In permissionless settings, the initial proposer of the trans-
action in a block could have the ephemeral trapdoor key
that corresponds to a particular block. To redact, the initial
proposer or entity related to the transaction will send a request
to all validators, which were randomly selected to prevent
malicious attacks. Validators will perform a secure multi-party
computation to regenerate the secret trapdoor key. Using the
trapdoor key, redaction will be completed. As a result of the
redaction, a new chain with the redacted block will be created
and accepted as a valid one. One block will be added for
tamper-evident logging.

In the following sections, SSI issues and their current
solutions are explained. Usage of redaction is introduced as
a possible solution to the issues.

s Issuer redaction
8
me -

Central Authority (permissioned)

! Group of Verified users (permissionless) |

Request for

N Start :
holder redaction ' revocation/redaction ' Request for
' and new chain creation : issuer redaction

Issuers

! identty noider

Distributed ledger

Bi1 | B Bis1 B,
[Hash(B.5) Hash(B,.1)}

Hash(@,.)| Hash(B)

v

Fig. 2. An overview of the redaction process

A. Issuer redaction

1) Public key/DID redaction: DIDs represent identifiers
and they do not provide information about the subject. They
are used in combination with VCs where they prove to
the third parties that DID subject has ownership of certain
attestations or attributes and/or that the issuer of VC is also
a DID subject. The third-party can then use the presented
cryptographically protected proof to verify the ownership and
trustworthiness of the claims about the subject.

Public DIDs and public keys are sometimes stored on the
blockchain. They belong to entities that should be publicly
identifiable and as such they do not have a complete self-
sovereignity (government institutions, ministries, certain com-
panies, etc). When an entity loses its legal status and the legal
right to issue VCs, its publicly available keys and DIDs should
be revoked by using redaction. By redacting the publicly
available information on the blockchain, or rather, replacing it
with irrelevant data, attestations from the issuer will no longer
be possible, and every VC issued by them will not be valid.

2) Registry/VC redaction: Revocation of a credential in-
cludes deleting or updating it. When information inside a cre-
dential is no longer valid or is changed, the credential should
be revoked, and a new credential should be created. Current
revocation solutions include: (i) time-revocation: credentials
contain an expiration time, (ii) revocation list: credentials are
linked to an index of a revocation registry, which can only
be updated by the credential issuer, or (iii) a proof of non-
revocation: credentials include the zero-knowledge capability
to prove that the credential has not been revoked [8], [19],
[20]. Time-revocation is usable when a VC has an expiration
date. In the case of revoking a VC without an expiration date,
time-revocation is not usable. Revocation lists are an obvious
solution to the revocation problem. However, they are not
privacy preserving, since credentials have to be presented in a
way that they can be correlated to the revocation list, and by
doing so they can also be correlated to their presenter [19].

Revocation of credentials is currently done by using revoca-
tion registries and cryptographic accumulators in Hyperledger
Indy [19]. The revocation registry is a mathematical concept.
We can represent it as a list of numbers (factors) where each

number has an index in a row (tails file). Each of these
numbers is assigned to one VC in a way that every VC
has its unique number. All the numbers 'multiplied’ together
are the so-called accumulator (e.g., merkle trees). Verifying
a VC requires a calculation of the accumulator value on the
blockchain, using the accumulator value without the VC row
and the value of the corresponding VC row. When a VC
is revoked, the number is removed from the registry, and
the value of the accumulator changes. The issues of this
type of revocation are speed, and size of the tails file. This
type of revocation adds complexity to issuance, proving, and
verification. Currently it is not a feature of W3C’s Verifiable
Credentials, since W3C’s VC standard enforces no revocation
method, but rather the need for a revocation mechanism and
its requirements [19], [21].

We propose a following solution to this problem. When
a VC is issued, it is hashed with the public key of the
issuer and stored alongside its details on the blockchain.
As a form of verification, besides the signature proof and
the issuer verification through the public blockchain-based
registry, the computation of the VC’s hash can be used. If
the calculation matches the one on the blockchain, the VC is
verified, otherwise, it is not. This concept is simple and more
straightforward than having a constantly updated accumulator
value and a tails file. When a VC is revoked, instead of
having a large tails file with a corresponding removed row
and a new accumulator value, only the hash of the VC on
the blockchain is redacted (replaced with irrelevant data). In
that way, when a VC hash is calculated, it won’t match the
one on the blockchain; and the VC is revoked. In the case of
revocation, or rather redaction, that hash and the details will
no longer be on the ledger. Visual representation is given in

- After Revocation

RN Jss\jes ,,,,,,,, Stored in owns
vc Wallet

Institution 1 User

Shares VG

Checks DIDs and VC hash

Revoking VC { Redaction

VC hash not found

Institution 2

Distributed ledger w

Bi-1 Bj Bit1 B,

Hash(B,.z) Hash(B,.,)| Hash(B) Hash(By.q))

Fig. 3. Example of VC revocation

3) Guardianship/Delegation/Controllership redaction: A
case can be made for redaction in revocation of delegation,
guardianship, and controllership. Sovrin defines the roles as
following: (i) a delegate acts on behalf of the delegator, (ii)
guardian represents dependent, (iii) thing controller controls
things [22]. For delegation Sovrin proposes the use of their
technology stack, as they argue that the layers of SSI infras-
tructure called the Trust over IP (ToIP) [23] are uniquely suited

to support digital guardianship. They combine underlying
layers of cryptographic or “technical” trust with higher layers
of human trust as represented by legal, business, and social
frameworks. The first layer consists of the public blockchains
or other decentralized networks, which support DIDs. The
second layer is defined by SSI digital wallets, agents, and hubs
that speak the DIDComm protocol to establish peer-to-peer,
DID-to-DID connections for secure communications and data
exchange. A guardian/delegate/controller has VCs and DIDs
in its wallet that confirm the legal status of the relationship
between the parties. On layer three, human trust enters the
ToIP stack in the form of the “trust triangle” among issuers,
holders, and verifiers of digital credentials (VCs concerning
delegation/guardianship/controllership). The fourth layer is the
layer where human governance is added to the first three
layers. The only technology at this layer is the definition of a
small set of special verifiable credentials used by governance
authorities to publish governance credentials and define legal
grounds for relationships [22].

In the case of termination of the guardianship, delega-
tion, or controllership, redaction can be used for revoca-
tion. Proof of transfer of control should be stored on the
blockchain as a transaction that combines DIDs of the con-
troller/guardian/delegate with the DID of the other party.
Information such as DIDs and VCs that confirm the legal status
is still in the wallet of the guardian/controller/delegate. For
status verification, information from the blockchain is used. In
the case of revocation, guardianship/delegation/controllership
can be completely removed from the blockchain or can be
changed on the blockchain, ensuring that verification will fail.

B. Holder redaction

1) 'Right to be forgotten’ and user data redaction: Let’s
take a look at the use case for user data and the right to be
forgotten redaction. In compliance with the GDPR, a person
has a right to have their data completely removed. In the
context of blockchain immutability, no personally identifiable
information should be stored on the blockchain. As such, only
public elements of the DIDs (public keys) are stored on the
blockchain and eventual hashes in different registries. Peer
DIDs not stored on the ledger are just removed from the
device. If an institution with public DIDs decides to delete
their identity, alongside every associated interaction stored on
the ledger (public DIDs, hashes in registry), redaction could be
used. The existing public DID information would be removed.

2) Device redaction: Let us consider the deletion of an
agent. Users should be able to create their identity and use it
on multiple devices, be it phones or laptops. In their wallet
app, users store all their private data, which includes their VCs.
In case of a stolen phone, someone might abuse the data on
the phone and use it for illicit activities. For such cases, a way
to make the information on the device useless is required. One
such way is to use agent authorization policies or registering
devices of one’s identity.

In Hyperledger Indy/Sovrin, each identity has a list of used
devices/agents, and they play a role in the authentication using

public/private keys of the device. To recognize and revocate
user’s devices, Sovrin is developing agent authorization poli-
cies, which combine cryptographic accumulators and zero-
knowledge proof cryptography. In case of a stolen or a lost
device, we need a way to delete the device and prevent
someone from using the stolen device or identity. When a
device is stolen or lost, the user could use another authorized
device to write on the blockchain that his mobile phone’s
authorization is now revoked. Revoking device authorization
includes revoking the existing relationship keys of the device
with a wallet [24].

Using redaction, we can envision the following use case.
For each identity, new device is registered on the blockchain.
Each device contains its pair of keys, of which the public key
is stored on the blockchain. When a user sends a verifiable
credential, the device’s keys are used to encrypt it. This way,
we make sure that the appropriate device is the one that is
sharing information. In case of a lost/stolen device, a user
can begin the redaction process. The user can sign in using
a different device and send a request for the revocation of
the stolen device. If the user has only one device and one
wallet, there is a need for a specific device code that only
the user knows. When he starts the process of revocation, that
code is required to confirm which device is getting revoked.
The device’s public keys are redacted, and thus the data is
rendered useless. When someone sends a verifiable claim using
the device, it will be rejected due to the key pair not matching.

V. DISCUSSION

Work of Xu, et al. in [12] propose the usage of redaction
for user revocation, specifically fine-grained dynamic illegal
user revocation method instead of revocation lists. The authors
propose that if some users access network illegally, network
operators can revoke these users using redaction i.e. removing
illegal user’s registration, and prevent them from accessing
network. We expand on this solution by introducing more
possible use cases for redaction, beside user removal. Our
proposal differs from this one in the terms of having an illegal
user that registers on the network (such user does not exist),
but the concepts of using redaction instead of revocation lists
remains.

As we go through the use cases, we see that there is merit
to blockchain redaction. Its merit comes from simplifying
the existing processes. Using redaction, we avoid breaking
users’ privacy, unlike some solutions such as revocation lists.
Additionally it provides us a possible solution to the problem
of user data appearing on the ledger. The processes for revok-
ing public keys/DIDs are simplified. We know that they are
stored on the blockchain, and redacting them represents their
revocation. The same can be said with registry/VC redaction.
If a verifiable hash of the VC is kept on the ledger, redacting
it makes it non-verifiable. This removes the complexities from
the issuance, proving and verification. There is no need for a
large tails file. User privacy is preserved. A possible solution
for controllership, guardianship and delegation is shown. It
is based on storing certain information on the ledger, which

are removed when the relationship ends. By using redaction,
the problem that arises with GDPR compliance, and more
specifically, the °Right to be forgotten’, in SSI is solved.
Removing everything related to the user on the blockchain is
possible with redaction. Using redaction, the transaction cor-
relating to the VCs with their hashes are no longer available.
Unfortunately, already shared, now revoked data can still suffer
from an analog-loop, and be locally-persisted, but in the SSI
system it is not verifiable. One possible solution for a lost
device used for SSI identity is to use redaction for its public
key. In that way, the device becomes unusable.

Since this process changes the otherwise immutable data
source, it can be dangerous if not used correctly. As such,
it can only be done by a form of centralized authority or a
specifically chosen set of users. It should not be performed
lightly and by everyone. That is why there should always be a
trace, in a form of a new transaction, that there was a change
on the blockchain. Solving every problem with redaction and
enabling redaction of every transaction may completely disrupt
the entire system (i.e. removal of registries and similar). As
such, redaction should be used in strictly defined manner on a
specific set of problems. In this paper we defined a subset of
these problems that can benefit from the usage of redaction.

There are alternatives to blockchain distributed ledger for
SSI implementation. They include Hashgraph, Iota Tangle and
R3 Corda. Both Iota and Hashgraph use Directed Acyclic
Graphs (DAGs) as an alternative data structure for maintaining
the ledger. Each of the mentioned DLTs has a proposed SSI
solution [25]-[27]. Details regarding revocation of credentials
and removal of publicly available information are an active
research topic. Some explored ideas include adding a new
transaction as an update concerning revocation [25], or us-
ing the time-based revocation method. These DLTs maintain
immutability, and no data can be removed or rewritten on the
ledger.

In this paper, we have shown that not maintaining im-
mutability has its merit. Two questions remain: (i) Is it possible
to have redaction in other DLT technologies? (ii) How do we
achieve interoperability between different SSI solutions if one
uses redaction?

VI. CONCLUSION

Even though redaction is a fairly new concept still in
development, a case can be made for its use in developing
Self-Sovereign Identity (SSI). With each new data registry
added to the SSI, a new case for redaction is created. The
instantaneous redaction can reduce the existing overhead of
revocation and even communication. To integrate redaction in
SSI, thorough performance examination of different redaction
types in an SSI environment is required. Beside the redaction
in blockchain, redaction in other DLT technologies needs to
be examined.

REFERENCES

[1] G. Ateniese, B. Magri, D. Venturi, and E. Andrade, ‘“Redactable
blockchain—or—rewriting history in bitcoin and friends,” in 2017 IEEE

[2]
[3]

[4]

[5]
[6]
[7]
[8]
[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]
(22]

[23]

[24]
[25]
[26]

(27]

European symposium on security and privacy (EuroSP). IEEE,pp.
111-126, 2017

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”, Decen-
tralized Business Review, p. 21260, 2008.

F. Tschorsch, and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications Sur-
veys & Tutorials, vol. 18, no. 3, pp. 2084-2123, 2016.

K.C. Toth, and A. Anderson-Priddy, “Self-sovereign digital identity: A
paradigm shift for identity,” IEEE Security & Privacy, vol. 17, no. 3,
pp- 17-27, 2019.

S. Cucko, and M. Turkanovi¢, “Decentralized and self-sovereign iden-
tity: Systematic mapping study,” IEEE Access, pp. 1-1, 2021.

D. Van Bokkem, R. Hageman,G. Koning, L. Nguyen, and N. Zarin,
“Self-sovereign identity solutions: The necessity of blockchain technol-
ogy,” arXiv preprint arXiv:1904.12816, 2019.

[Online]. Available: https://www.w3.org/TR/did-core/

[Online]. Available:https://ec.europa.eu/cefdigital/wiki/pages/viewpage.
action?pageld=379913698

J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone proto-
col: Analysis and applications,” in Annual international conference on
the theory and applications of cryptographic techniques. Springer, pp.
281-310, 2015

H. Krawczyk, and T. Rabin, “Chameleon hashing and signatures,” 1998.
K. Rajasekhar, S.H. Yalavarthy, S. Mullapudi, and M. Gowtham,
“Redactable blockchain and it’s implementation in bitcoin,” International
Journal of Engineering Technology, vol. 7, no. 1.1, pp. 401405, 2018.
J. Xu, X. Li, L. Yin, Y. Lu, Q. Tang, and Z. Zhang, ‘“Redactable
blockchain protocol with instant redaction.” IACR Cryptol. ePrint
Arch.,vol. 2021, p. 223, 2021.

1. Puddu, A. Dmitrienko, and S. Capkun, “u chain: How to forget without
hard forks,” IACR Cryptology ePrint Archive 2017/106, 2017.

D. Deuber, B. Magri, and S.A.K. Thyagarajan, “Redactable blockchain
in the permissionless setting,” in 2019 IEEE Symposium on Security
and Privacy (SP). IEEE, 2019, pp. 124-138.

K. Ashritha, M. Sindhu, and K. Lakshmy, “Redactable blockchain using
enhanced chameleon hash function,” in 2019 5th International Confer-
ence on Advanced Computing Communication Systems (ICACCS).
IEEE, 2019, pp. 323-328.

J. Xu, K. Xue, H. Tian, J. Hong, D.S. Wei, and P. Hong, “An identity
management and authentication scheme based on redactable blockchain
for mobile networks,” IEEE Transactions on Vehicular Technology, vol.
69, no. 6, pp. 6688-6698, 2020.

M. Schanzenbach, G. Bramm, and J. Schutte, “reclaimid: Secure, self-
sovereign identities using name systems and attribute-based encryp-
tion,” in 2018 17th IEEE International Conference On Trust, Security
And Privacy In Computing And Communications/12th IEEE Inter-
national Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE).IEEE, 2018, pp. 946-957.

G. Lax, and A. Russo, “A lightweight scheme exploiting social networks
for data minimization according to the gdpr,” IEEE Transactions on
Computational Social Systems, vol. 8, no. 2, pp. 388-397, 2021.
“0011: Credential revocation.” [Online]. Available:
/Ihyperledger-indy.readthedocs.io/projects/hipe/en/latest/text/0011-
cred-revocation/README .html

[Online]. Available: https://w3c-ccg.github.io/vc-status-11-2020/
“How identity revocation on the blockchain works,” 10 2020.
[Online]. Available: https:/tykn.tech/identity-revocation-blockchain/
#WhatisRevocation

“Guardianship whitepaper,” 12 2019. [Online]. Available: https://sovrin.
org/library/guardianship-white-paper/

M. Davie, D. Gisolfi, D. Hardman, J. Jordan, D. O’Donnell, and D. Reed,
“The trust over ip stack,” IEEE Communications Standards Magazine,
vol. 3, no. 4, pp. 46-51, 2019.

“What if i lose my phone?” 05 2019. [Online]. Available: https://sovrin.
org/library/lost-phone/

J.F. Millenaar, and M. Yarger, “The case for a unified identity,” https:
//iles.iota.org/comms/IOTATheCaseforaUnifiedIdentity.pdf

L. Baird, M. Harmon, and P. Madsen, “Hedera: A public hashgraph
network & governing council,” White Paper, vol. 1, 2019.

“The case for self-sovereign identity,” 04 2020. [Online]. Available:
https://www.r3.com/blog/the-case-for-self-sovereign-identity/

https:

