
© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6412078&url=http%3A
%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6412078

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6412078&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6412078
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6412078&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6412078

Issue of resource usage in content-based image
retrieval algorithms

Vedran Ljubovic, Haris Supic
vljubovic@etf.unsa.ba, hsupic@etf.unsa.ba

Elektrotehnicki fakultet Sarajevo
Zmaja od Bosne bb

71000 Sarajevo, Bosnia and Herzegovina

Abstract-Content-based image retrieval (CBIR) is a field
of active research for almost 20 years. This timeframe has
seen several generations of hardware and corresponding
changes in computer usage patterns. It is therefore prudent
to periodically reevaluate known methods in the context of
modern hardware and usage patterns. Overall the issue of
resource usage in CBIR is somewhat neglected. In this
paper some extremes in this area are benchmarked and
results presented. Specifically, paper is focused on usage
scenario of indexing a personal image collection.

Keywords: content-based image retrieval

I. INTRODUCTION

Content-based image retrieval (CBIR) is a study of methods
and algorithms used to extract certain features from raster still
images, in order to be able to compare and search such images
without dependence on accurate metadata. It's a special class of
information retrieval (IR) problems.

The block diagram of a CBIR system is given in Figure 1.
Typical CBIR system performs two operations: indexing of
images (storing their features in a database) and querying this
database for an image that presents a closest match. Both
operations involve a feature extraction step where image data is
analyzed and certain transformations applied to obtain a feature
vector. This step is therefore a computational bottleneck in

indexing.
The issue of handling large amounts of traffic in CBIR

systems is recognized in literature. [1] Several papers
presenting new methods also discuss computational complexity
and provide some benchmarks (see e.g. [4], [5], [6]). Some
papers discuss use of hardware support to improve processing
speed. [7] [1] However, no comprehensive comparative study
of CBIR performance and resource usage is provided.

One possible reason for this could be that the problem of
indexing a large number of images is an “embarrassingly
parallel” problem in that extracting feature vectors from each
image is computationally independent from the next image.
However, literature [1] notes that a possible use-case for CBIR
could be, for example, desktop applications enabling users to
index and search their personal image collection. In such
applications, responsiveness may prove to be a limiting factor
in choice of CBIR approach.

Here it is important to note that many older papers in the
area of CBIR are still relevant and useful. However,
benchmarking data included in these papers is consistent with
hardware abilities and usage patterns at the time of writing of
these papers. This time period has seen development of several
generations of hardware. It is further noted that even the
cheapest digital cameras today provide resolutions in excess of
6 MP (6 million pixels), while popular phones have cameras
with resolution between 4 and 8 MP. [8] [9] Also it is noted
that most consumer computers today have multi-core
processors that support hyperthreading feature.

It is therefore prudent to periodically revisit methods
presented in older papers that were proven to give useful
results and benchmark them in the context of modern hardware
and usage patterns.

For brevity, this paper will focus on indexing operation, and
thus on feature extraction algorithm. Computational
complexity of searching operation seems to be dominated by
calculation of distance between feature vectors. [7] Several
algorithms from literature are chosen to represent extremes in
performance.

II. COMPRESSED DOMAIN IMAGE RETRIEVAL

Discrete Cosine Transform (DCT) is an algorithm closely
related to Fourier transform, finding use in multimedia
compression. Specifically, DCT is a core element of JPEG Figure 1: Block diagram of CBIR query-by-example processes

Indexing

Retrieval

Images
Feature

Extraction

Database

Query
Image

Feature
Extraction

Database

Similar
Images

compression. [10] Researchers have long ago noted that DCT
has certain properties that might be useful in CBIR. [11]

Most images on the Internet are in JPEG format.
Specifically, most consumer digital cameras provide photos in
JPEG format. Therefore, a number of papers address the
possibility of using DCT coefficients from partially
decompressed JPEG data as a starting point for feature
extraction. These methods are promising to deliver fast and
resource efficient feature extraction.

Naturally, such algorithms only work with images in JPEG
format. Images in other formats need to first be transcoded into
JPEG format.

Some of the more recent papers proposing CBIR schemes
operating in JPEG compressed domain are [12], [13], [14] and
[15].

Typically, the process of decoding a JPEG file for the
purpose of, for example, display on a computer screen consists
of the following steps (see Figure 2 and [10]):

1. decode incoming bitstream using Huffman coding
algorithm;

2. differential coding of the first (DC) coefficient;
3. zig-zag transformation;
4. dequantization;
5. inverse DCT;
6. translation from Y'CbCr color space into a more common

RGB space.
CBIR methods operating in compressed domain terminate

this process after step 4 to obtain DCT coefficients pertaining
to Y'CbCr color space. In that way, computationally intensive
parts of JPEG decoding are skipped and a reduction in CPU
usage is obtained compared to algorithms operating in RGB
pixel domain. The Y'CbCr color space is a variant of YUV
space which more closely models human vision and therefore
is better suited for computer vision algorithms.

Most consumer and scientific software uses a reference
open-source implementation of JPEG (de/en)coder developed
by Independent JPEG Group (IJG), named libjpeg. [16] This
decoder is a highly efficient library written in C. It is extremely
difficult to match, let alone surpass the performance offered by
this library. Therefore, for the purpose of testing image
retrieval in compressed domain, a modified version of libjpeg
was developed where IDCT and color space transformation are

omitted. Such library provides raw DCT coefficients which can
then be statistically analyzed and features extracted in an
efficient way.

For this paper, algorithm presented in [5] is implemented.
This scheme proposes extraction of two feature vectors: First
vector provides a color histogram extraction from DCT
coefficients representing a reduced resolution image (4x4
blocks). Second vector represents texture and direction
information using certain coefficients as inspired by literature.
Distance for both vectors is calculated and combined using a
weighted formula. Mentioned calculations have very low
computational complexity compared to certain other methods,
and use a low amount of memory (48 values per image).

With minor modifications to the algorithm that are not
relevant for the purpose of this paper, experimental results
presented in [5] were reproduced using popular Wang
SIMPLIcity dataset. [2]

In order to further stress the multiprocessing abilities of
modern computers, a multithreaded version of this application
was developed. Four threads are launched at start, each of them
extracting features from separate JPEG images.

III. PERSONAL IMAGE RETRIEVAL

As previously mentioned, this paper will focus on the use-
case of indexing a personal image collection. To this purpose a
number of solutions were evaluated that meet the following
criteria: (1) there is a desktop application with a user-friendly
interface, suggesting that indexing a personal collection is one
potential use-case foreseen by the authors, (2) source code is
open so the principle of operation can be verified, (3) the
algorithms and methods are published in a peer-reviewed
journal.

Also, very outdated systems were not evaluated.
This evaluation produced two viable tools: LIRe [4] and

GIFT [17].
LIRe is a flexible Java library for CBIR implementing a

range of state of the art methods for feature extraction and
comparison. It uses a popular Lucene engine for indexing and
search, enabling easy integration into a more general hybrid

Figure 2: Steps in a JPEG decoding process [10] and feature extraction
CBIR
feature

extraction

Raw RGB
pixel data

Color space
conversionIDCTDequantize

Huffman
decoding DPCM
Huffman
decoding

JPEG
File

multimedia retrieval system.
Through extensive testing of various methods and

parameters, a subset of three features is chosen, labeled “fast”,
“slow” and “recommended”.

The fastest method offered by LIRe (“fast”) was found to be
color histogram in RGB space. This is a well documented and
researched CBIR method. JPEG decoding is by far the most
computationally intensive part of feature extraction, therefore
experimental results for this method can be considered an
approximation of a minimal overhead for working in RGB
domain.

We further tested this hypothesis by developing a C program
that uses an unmodified libjpeg to extract a simple histogram of
RGB values with 512 bins from each image. Performance from
this program is labeled as “C histogram”.

By default, LIRe uses Color and edge directivity descriptor
(CEDD) described in [18]. This method gives overall the best
performance in unspecific image search, while offering decent
speed, therefore this method was labeled “recommended”.

Finally, color correlograms [19] are used as an example of a

highly sophisticated “slow” method for image retrieval.
In this paper, version 0.9 of LIRe was used.
The GIFT project is the result of work of the Vision Group

(Viper) at CUI (computer science center) of the University of
Geneva. This project was officially finished in 2002. and no
new releases of GIFT were published since 2005. However the
program is still usable and can be downloaded from the GIFT
site [20] Version 0.1.14 of GIFT was used in this paper.

There is no configuration options to GIFT indexing part. To
have more meaningful results, after each indexing in GIFT the
folder gift-indexing-data was deleted.

IV. TESTING RESULTS

For the purpose of testing, two datasets were used. Wang
SIMPLIcity dataset [2] is often cited in literature and used. It
consists of 1000 images. However it must be noted that this
dataset was developed in 2001. and therefore it features images
of relatively low resolution (256x384 or 384x256 pixels). To

Figure 4: Resource usage in typical run of indexing a personal
photo collection using method by Lu et al. (four threads)

Figure 6: Resource usage in typical run of indexing a personal
photo collection using simple color histogram in Java (LIRe)

Figure 5: Resource usage in typical run of indexing a personal
photo collection using simple color histogram method in C

Figure 3: Resource usage in typical run of indexing a personal
photo collection using method by Lu et al. (single thread)

simulate workload more representative of modern usage, a
second dataset was created consisting of 1427 images, each of
10 MP (10 million pixels) resolution.

All tests were performed on a PC with Intel Core i5 (2400)
CPU. This processor features 4 cores and 4 threads, has 6 MB
cache and runs at 3.1 GHz. The computer further has 7GB
RAM and a 7200 rpm hard disk. Operating system used was
Ubuntu Linux 12.04.

Performance testing of LIRe was performed according to the
instructions provided by its authors, [21] while C programs
were compiled at highest optimization settings available for the
platform (-O3) and executed in command line.

Each of the folders were fully indexed with given tools, and
the times required are given in Table 1. Tests were repeated
five times, mean and standard deviation calculated.

Another possible topic for discussion of LIRe benchmark
results is the impact of using Java versus C. To this purpose we
created a dummy Java image reader which simply reads images
in folder into a BufferedImage object and then discards said
object. Test results for Java dummy reader are given as “Java
dummy” in Table 1.

Further, Figures 3, 4, 5 and 6 show CPU load (in percent of
processor time for each of four cores), memory and swap usage
(in GB) and disk throughput (in read/write operations per
second). Figure 3 illustrates a typical run of single-threaded
version of algorithm by Lu et al. while indexing our second
dataset with 1427 10 MP images. Figure 4 uses the multi-
threaded version of same algorithm, Figure 5 depicts a typical
run of our plain histogram application in C, while Figure 6
depicts same method using LIRe indexer.

Please note that the disk throughput graph is scaled
differently between figures.

Graphs for the smaller SIMPLIcity dataset are not provided
because, apparently, the entire dataset gets loaded into disk
cache and thus disk usage becomes negligible, while CPU
usage is fairly constant, and the execution run is too short to
provide valuable insights.

Dataset

Method

SIMPLIcity
(1000 img @ 100kP)

Personal collection
(1427 img @ 10 MP)

Mean time σ Mean time σ

Lu et al.
(single thread)

814 ms 5,5 ms 160516 ms 519 ms

Lu et al.
(four threads)

306 ms 6,3 ms 142884 ms 4572 ms

C histogram 1580 ms 4,5 ms 308717 ms 1176 ms

Java dummy 2457 ms 21,4 ms 288599 ms 1424 ms

LIRe “fast” 4529 ms 140 ms 329804 ms 3921 ms

LIRe
“recommend”

11508 ms 43 ms 394331 ms 2511 ms

LIRe “slow” 42059 ms 1047 ms ~14 min. /

GIFT 196369 ms 421 ms ~half hour /

Table 1: Mean time and standard deviation of time required

to complete indexing operation using methods presented in text

V. DISCUSSION

 Table 1 demonstrates that, when faced with a modern usage
situation of a personal photo collection, all of the tested CBIR
applications delivered poor indexing time. That said, an
algorithm in compressed domain (Lu et al.) significantly
outperforms even the most primitive algorithm in RGB domain
(color histogram). Also, the range between slowest and fastest
application is several orders of magnitude.

This demonstrates that further research into algorithms
operating in compressed domain is desirable.

The multi-threaded version, as expected, further outperforms
all other algorithms. In a typical desktop use-case, user could
be able to choose how many indexing threads to launch,
enabling a trade-off between faster indexing and higher system
responsiveness.

Image input-output in C outperforms Java when working
with a large number of smaller files. However, as file size
grows to a more realistic 10 megapixels, this difference wanes.
Overall it can be concluded that choice of platform doesn't
influence performance in a significant way.

Figure 3 shows that, even when working in compressed
domain, CPU is still a bottleneck in indexing performance,
although less so than with methods operating in RGB space
(Figures 5 and 6). This indicates that further work in
optimizing this method is desirable.

Figure 4 however suggests that, for the multi-threaded
version, disk throughput is becoming a limiting factor. This is
also indicated by higher standard deviation for the “Personal
collection” dataset, since different disk caching states over a
large folder of images gave varying effect on speed.

This can be explained by the fact that the tested CBIR
implementation used a fairly naïve approach to multi-
threading. An approach where disk reading thread is separated
from decompression thread(s) should probably give better
parallelization.

Both figures 3 and 4 show negligible memory usage due to
very compact feature vectors used in the method by Lu et al.
Java approach (LIRe) however features higher memory usage,
as indicated by a depression in graph (corresponding to about
512 MB) at the point when program ends. This is due to JVM
parameters given in [21] that are optimized for speed rather
than memory usage.

Overall memory usage doesn't seem to be a concern given
typical memory specifications of modern PCs.

Also it must be noted that JVM performance improves
slightly with each subsequent run, which again is reflected in a
higher standard deviation for all LIRe tests.

VI. CONCLUSIONS AND FUTURE WORK

 Content-based image retrieval (CBIR) is an old field, but is
nevertheless facing new challenges. As computer performance
increases, the usage patterns change as well, prompting a

reevaluation of established methods and algorithms.
This paper demonstrates usefulness of continued research

into area of image retrieval methods operating in compressed
domain. A broad evaluation of methods operating in
compressed domain should be made, from the aspect of
precision and recall as well as computer resource usage.

Also, the issue of search performance must be further
researched. The use-case of a busy server responding to a large
number of queries must be evaluated as well. This requires
further inquiry into methods for indexing and distance vector
calculation. A number of papers exist on this topic as well that
should be critically evaluated.

REFERENCES

[1] Ritendra Datta, Dhiraj Joshi, Jia Li, James Z. Wang, “Image
retrieval: Ideas, influences, and trends of the new age”, ACM Computing
Surveys (CSUR), Vol 40 Issue 2, April 2008.
[2] James Z. Wang, Jia Li, Gio Wiederhold, “SIMPLIcity: Semantics-
sensitive Integrated Matching for Picture Libraries”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol 23, No 9, pp. 947-963, 2001.
[3] L. Fei-Fei, P. Perona, “A Bayesian Hierarchical Model for Learning
Natural Scene Categories”, Proceedings of IEEE Computer Vision and Pattern
Recognition, pp. 524-531, 2005.
[4] Mathias Lux, Savvas A. Chatzichristofis, “LIRe Lucene Image
Retrieval – An Extensible Java CBIR Library”, Proceedings of the 16th ACM
International Conference on Multimedia, pp. 1058-1088, 2008.
[5] Zhe Ming Lu, Su-Zhi Li, Hans Burkhardt, “A content-based image
retrieval scheme in JPEG compressed domain”, International Journal of
Innovative Computing, Information and Control, Vol 2, No 4, pp. 831-839,
August 2006.
[6] H. B. Kekre, Sudeep D. Threpade, Ashkay Maloo, “Image Retrieval
using Fractional Coefficients of Transformed Image using DCT and Walsh
Transform”, International Journal of Engineering Science and Technology,
Vol. 2(4), pp. 362-371, 2010.
[7] Rayan Chikhi, Steven Derrien, Auguste Noumsi, Patrice Quinton,
“Combining Flash Memory and FPGAs to Efficiently Implement a Massively

Paralel Algorithm for Content-Based Image Retrieval”, Reconfigurable
Computing: Architectures, Tools and Applications, Vol. 4419/2007, pp. 247-
258, 2007.
[8] http://dpbestflow.org/camera/sensor#megapixels (Retrieved on:
August 15th, 2012)
[9] http://www.flickr.com/cameras/ (Retrieved on: August 15th, 2012)
[10] Information Technology – Digital Compression and Coding of
Continuous-Tone Still Images – Requirements and Guidelines, ITU CCITT
Recommendation T.81, ITU 1993.
[11] Hee-Jung Bae, Sung-Hwan Jung, “Image retrieval using texture
based on DCT”, Proceedings of the International Conference on Information,
Communications and Signal Processing, pp. 1065 – 1068, 1997.
[12] Vidya R. Khapli, Anjali S. Bhalchandra, “Fast Image Retrieval
Using VQ for Compressed and Uncompressed Images”, Computer Vision And
Information Technology: Advances and Applications, pp. 149-156, 2010.
[13] Daan He, “Efficient image retrieval in DCT domain by hypothesis
testing”, 16th International Conference on Image Processing (ICIP), pp. 225-
228, Nov. 2009.
[14] P. Poursistani, H. Nezamabadi-pour, R. Askari Moghadam, M.
Saeed, “Image indexing and retrieval in JPEG compressed domain based on
vector quantization”, Mathematical and Computer Modelling, 2011.
[15] Yuanjian Zhou, Liu Wien, “Image retrieval method based on color
feature of diagonal sub-image in DCT domain”, 2nd International Conference
on Information Science and Engineering (ICISE), pp. 1249-1251, 2010.
[16] http://www.ijg.org/ and http://www.jpeg.org/jpeg/ (Retrieved on
August 15th, 2012.)
[17] David M. Squire, Wolfgang Müller, Henning Müller, Thierry Pun,
“Content-based query of image databases: inspirations from text retrieval”,
Pattern Recognition Letters, Vol 21, Issues 13-14, pp. 1193-1198, December
2000.
[18] Savvas A. Chatzichristofis, Yiannis S. Boutalis, “CEDD: Color and
Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and
Retrieval”, Computer Vision Systems, Lecture Notes in Computer Science, Vol.
5008/2008, pp. 312-322, 2008.
[19] Jing Huang, S. R. Kumar, M. Mitra, Wei-Jing Zhu, R. Zabih,
“Image indexing using color correlograms”, Proceedings of the 1997
Conference on Computer Vision and Pattern Recognition (CVPR 97), pp. 762-
768, 1997.
[20] http://www.gnu.org/software/gift/ (Retrieved on August 15th,
2012.)
[21] http://www.semanticmetadata.net/wiki/doku.php?id=lire:lire
(Retrieved on August 15th, 2012.)

