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Abstract— Control design for a small-scale helicopter is quite
challenging due to its nonlinearities, unknown and unmodelled
dynamics, strong cross-coupling effects produced by the vehicles
actuators, parametric uncertainties and external disturbances.
This paper introduces the design of robust and stable dis-
turbance observer (DOB) based sliding mode control (SMC)
to meet these issues. It consists of the disturbance observer
in the inner control loop which estimates and attenuates
plant input generalized disturbance, and the sliding mode
controller in the outer control loop which enforces convergence
to the reference and stability of the equilibrium. Introduced
disturbance observer is a linear low-pass filter capable to
compensate unwanted chattering effects of the sliding mode
control. The highly nonlinear helicopter model is introduced
to illustrate effectiveness of the proposed control method.
Designed controllers are implemented in the simulation mode
and experimentally tested in a realistic environment. Obtained
results showed that developed DOB based SMC controllers
improve tracking performances over the entire range of the
helicopter output variables even in the presence of additional
parametric uncertainties, and external disturbances in the form
of wind gusts.

I. INTRODUCTION

Requirements for the high precision and accuracy operati-
ons of modern electromechanical systems become more and
more strict. Advanced control techniques play significant role
while meeting these challenges.

Helicopters are very suitable for a wide range of applicati-
ons such as air surveillance, transportation, rescue, etc. They
are also used as combat aerial vehicles. On the other hand,
unstable behaviour in the open-loop, strong cross-coupling
effects produced by the vehicle actuators, unknown and
unpredictable inputs (disturbance and noise), unmodelled and
unknown dynamics, parametric uncertainties and external
disturbances appear to be the main difficulties in control of
such systems. Therefore, the nonlinear helicopter modelling
and control techniques have been intensively developed in
the recent decades [1], [2].

Various control techniques have been applied to control
elevation and azimuth angles of the helicopter system CE
150 supplied by Humosoft [3]–[6]. Model predictive control
(MPC), linear quadratic optimal control combined with a
state estimator (LQG), and optimal linear quadratic output
control (PLQ) are applied to the helicopter system CE
150, and the comparative analysis is discussed in [5]. The

proposed control schemes have resulted in improved tracking
performances of the helicopter system in comparison with
the classical control methods.

Further improvements in controlling nonlinear helicopter
model CE 150 have been achieved using the artificial intelli-
gence methods [3], [4]. Addressed control techniques do not
practice estimation of the helicopter cross-coupling effects,
disturbances and uncertainties, thus tracking performance
and computational burden parameters are slightly degraded.

Disturbance observer (DOB) based control appeared in
the late 1980s and thereafter it attracts considerable interests
in the field of high performance positioning systems. The
DOB based control is widely used in industry [7]–[11]. Many
authors have studied effectiveness of disturbance observers
in controlling helicopter systems [12], [13] and quadrator
vehicles [14], [15]. Tracking performances of the helicopter
system CE 150 are significantly improved using DOB based
control described in [13].

This paper focuses high performance disturbance observer
based sliding mode control of the helicopter system CE
150 in the presence of unknown and unmodelled dyna-
mics, strong cross-coupling effects, parametric uncertainties
and external disturbances. Introduced disturbance observers
are linear low-pass filters capable to compensate unwanted
chattering effects of the sliding mode control. Additional
disturbance terms which represent wind gusts and 30% of
additional uncertainties on model parameters are applied
to demonstrate control performance. It will be shown that
proposed cascade control structure provides robust stability
and superior tracking performance even in the presence of
additional parametric uncertainties and external disturbances.

The paper is organized as follows. In Section II the control
strategy and helicopter modelling are presented. The sliding
mode controller for precise position tracking is developed in
Section III. Also, the disturbance observer based on position
measurements and control input is also designed in this
section. Simulation and experimental results are discussed
in Section IV. Concluding remarks are given in Section V.

II. CONTROL STRATEGY AND HELICOPTER MODELLING

As Fig. 1 shows, the overall control structure is composed
of three central parts: the PC based controllers, the interface
module and the helicopter system. Attitude controllers of
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the helicopter system are designed in MATLAB/Simulink.
The multifunctional card MF624 is used as interface module
between the helicopter system and PC based controllers. It
facilitates data acquisition and transmission with MATLAB
Real Time Toolbox. Real time experiments are performed
using MATLAB xPC Target Toolbox. The helicopter system
Humosoft CE 150 is presented in Fig. 2. It is composed
of the rigid body, two DC motors with permanent stator
magnets that drive main and tail rotors, power amplifiers
and encoders as sensors. In the following paragraphs the
simplified helicopter model will be presented.

A. Helicopter modelling

In this subsection only the main results of the helicopter
CE 150 modelling are presented. The derivation process
of its complete dynamics is too long and can be found in
[16]. The helicopter system CE 150 (supplied by Humosoft)
has two degrees of freedom: elevation (pitch) angle ψ that
represents rotation around horizontal axis, and azimuth (jaw)
angle ϕ that represents rotation around vertical axis. The
helicopter model is the nonlinear MIMO system with two
inputs (voltage of the main motor u1 and voltage of the tail
motor u2) and two outputs (elevation angle ψ and azimuth
angle ϕ). The operating ranges of the helicopter output
signals are: ψ ∈ [−45◦, 45◦] and ϕ ∈ [−130◦, 130◦]. The
elevation dynamics considers the torques in the vertical plane
yielding the equations:

aψψ̈ = τ1 + τϕ̇ − τf1 − τm + τG, (1)
τm = mgl sinψ, (2)

τϕ̇ = mlϕ̇2 sinψ cosψ, (3)

τf1 = Cψsign ψ̇ +Bψψ̇, (4)
τG = kGϕ̇ω1 cosψ, for ϕ̇� ω1. (5)

Here, aψ is the moment of inertia around the horizontal
axis, τ1 stands for the moment produced by the main motor
propeller, τϕ̇ is the centrifugal torque, τf1 represent Coulumb
and viscous friction torques, τm is the gravitation torque, τG
is the gyroscopic torque, m is the helicopter body mass, g
is the gravitational acceleration, l is the distance from the
vertical axis to main motor axis, ω1 is the main propeller
angular velocity, Bψ and Cψ represent viscous and Coulumb
friction coefficients, respectively, and kG is the gyroscopic
coefficient. Equations (1)−(5) do not consider the main
propeller speed influence to the elevation friction torque, and
air resistance variation that depends on the main propeller
angular velocity. All these unmodelled influences will be
estimated by the disturbance observer design. Considering
the torques in the horizontal plane, the azimuth dynamics is
presented with the following equations [16]:

aϕϕ̈ = τ2 − τf2 − τr, (6)
τf2 = Cϕsign ϕ̇+Bϕϕ̇, (7)
aϕ = aψ sinψ, (8)

where aϕ is the moment of inertia around vertical axis, τ2
is the moment produced by the tail motor propeller, τf2

represent Coulumb and viscous friction torques, τr is the
reaction torque of the main motor, Bϕ and Cϕ stand for
viscous and Coulumb friction coefficient, respectively, and
ω2 is the angular velocity of the tail propeller. The tail
propeller speed influence to the azimuth friction torque has
not been introduced in (7) and will be compensated with the
disturbance observer design.

B. DC motor and propeller dynamics modelling

The main DC motor dynamics can be presented by the
second order transfer function [16]:

ω1(s)

u1(s)
=

1

(T1s+ 1)2
, (9)

where ω1(s) and u1(s) are Laplace transforms of ω1(t) and
u1(t), respectively, and T1 is the main motor time constant.
The parabolic function of the angular velocity is used to
describe the main propeller torque [16]:

τ1(t) = a1ω
2
1(t) + b1ω1(t), (10)

where a1 and b1 are parameters of the main propeller
characteristic. The parameters T1, a1, b1 are considered in
the identification process. Analogue relations to (9) and (10)
can be written for the tail DC motor, replacing T2, a2, b2
with T1, a1, b1.

C. DC motors cross-coupling model

Strong cross-coupling effects between the elevation and
azimuth dynamics are the major composite feature of the
helicopter system. Reaction torque of the main motor to the
tail motor is presented by the first order transfer function
[16]:

τr(s)

u1(s)
= K

Tzs+ 1

Tps+ 1
. (11)

Unknown helicopter parameters are determined using a
simple genetic algorithm with reduced number of conducted
experiments as in [17]. Values of the helicopter parameters
used for the simulation model synthesis are listed in [13].

III. SYNTHESIS OF THE DOB BASED SMC CONTROL

This section describes synthesis of the disturbance ob-
server based sliding mode control of the helicopter system
presented in the previous section. The control task specifica-
tion includes: closed-loop system stability, reference signal
tracking, and reduced influence of parametric uncertainties,
disturbances and unmodelled dynamics.

A single degree of freedom mechanical system (either
translational or rotational) can be described with the second
order differential equation [18]:

a(q)q̈ (t) + τd (q (t) , q̇ (t) , t) = τ, (12)

where q and q̇ ≡ v stand for the state variables, position and
velocity, respectively, a(q) is bounded inertia of the system
and τd is bounded plant input disturbance that includes
Coriolis torques (forces), friction torque, gravitational torque
and external torques. Also, the acceleration and the control
torque are assumed bounded for the system (12).
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Fig. 1. Block diagram of the proposed real-time control system for the helicopter model

Fig. 2. Helicopter system CE 150

If the nominal inertia coefficient aN is known, varying
inertia ∆a(q) can be represented as ∆a(q) = a(q) − aN
and lumped into the generalized system input disturbance
τdis = τd +∆a(q)q̈, so the system (12) yields:

aN q̈ (t) + τdis (q (t) , q̇ (t) , t) = τ. (13)

The elevation dynamics (1) can be presented with (13), intro-
ducing identities: aN ≡ aψ , q ≡ ψ, τdis ≡ τf1+τm−τϕ̇−τG
and τ ≡ τ1. Also, the azimuth dynamics (7) can be described
with (13), substituting: aN ≡ aϕ, q ≡ ϕ, τdis ≡ τf2 + τr
and τ ≡ τ2. The main idea consists of forming the control
law as follows:

τ = aN q̈des + τ̂dis. (14)

The control input (14) has two components, the torque
aN q̈des induced by desired acceleration, and the estimated
generalised disturbance τ̂dis. The control torque (14) inclu-
ded in (12) cancels plant input generalized disturbance and
makes system a simple double integrator q̈ = q̈des, thus,
robust according to parametric uncertainties and disturban-
ces. Fig. 3 shows the proposed cascade control structure that
implements the control input (14) to the system (12).

A. Synthesis of the outer control loop

Assume that the control output is continuous function of
position y(q). The tracking error e(q, t) = y(q)−yref (t) is a
measure of the distance from the output y(q) to its reference

value yref . If the tracking error is equal to zero, system
output is constrained to the manifold (domain):

S =
{
q, t
∣∣ e(q, t) = y(q)− yref (t) = 0

}
. (15)

Now, the control task can be defined as requirement to
enforce convergence to the manifold (15), or to enforce the
equilibrium e(y, yref ) = 0 and stability of the equilibrium.
The generalized error σ = σ (e, ė) is introduced to provide
relative degree one with respect to control input:

σ (e, ė) = ė+ k1e, (16)

where k1 is a positive constant. The desired acceleration q̈des
needs to guarantee convergence of the output to its reference
and stability of the equilibrium. It consists of the equivalent
and the convergence acceleration, namely:

q̈des = q̈eq + q̈con. (17)

The equivalent acceleration q̈eq is selected to guarantee zero
rate of change of the distance from the equilibrium if the
initial conditions are consistent with the equilibrium σ|t=0 =
0. The convergence acceleration provides convergence to
the equilibrium solution if the initial conditions are not
consistent with the equilibrium σ|t=0 6= 0. The convergence
acceleration should fade q̈conv = 0 if equilibrium is reached
σ = 0 and the desired acceleration is equal to the equivalent
acceleration q̈des = q̈eq . Also, the desired acceleration must
be equal to the convergence acceleration q̈des = q̈con if the
equilibrium solution is not reached, thus the influence of the
equivalent acceleration q̈eq should vanish for σ 6= 0 [18].

The generalized error dynamics is calculated according to
(15) and (16):

σ̇ =
∂y

∂q

(
q̈ −

(
∂y

∂q

)−1(
ÿref −

∂2y

∂q2
q̇2 − k1ė

))
. (18)

Using σ̇ = 0 and (18) the equivalent acceleration can be
expressed as:

q̈eq =

(
∂y

∂q

)−1(
ÿref −

∂2y

∂q2
q̇2 − k1ė

)
. (19)
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Fig. 3. Cascade control structure with DOB in the inner loop and SMC in the outer loop

The convergence acceleration yields from (18):

q̈con =

(
∂y

∂q

)−1

σ̇. (20)

The generalized error rate of change σ̇ needs to be de-
termined in order to complete design of the convergence
acceleration. To this end, Lyapunov function candidate can
be selected as:

V =
σ2

2
> 0, V (0) = 0. (21)

In order to guarantee boundedness of the control input
τ for the system (12) and finite time convergence to the
equilibrium σ = 0, the first order time derivative of the
Lyapunov function (21) can be selected as:

V̇ = σσ̇ = −k2αV α, 1
2
≤ α < 1, (22)

where k is a positive Lyapunov coefficient that represents
convergence rate. The exponential convergence is provided
for α = 1 and discussed in our previous paper [13]. Relations
(21) and (22) yield:

σ
(
σ̇ + kσ2α−1

)
= 0. (23)

The exponent 2α − 1 is bounded and lies within interval
[0, 1). The expression (23) may yield imaginary solutions
if σ < 0. For the simplicity, the following analysis will
consider only values of α that provide real values for σ2α−1

and satisfy:
σ2α−1 = |σ|2α−1 sign(σ). (24)

The convergence acceleration depends on the generalized
error rate of change and can be expressed using (20), (23)
and (24):

q̈con = −k
(
∂y

∂q

)−1

|σ|2α−1 sign(σ). (25)

The sign of the convergence acceleration (25) is opposite to
the sign of the distance from the equilibrium, thus directing
motion towards the equilibrium solution σ = 0. Specially,
for α = 1

2 the desired acceleration takes a specific form:

q̈des =

(
∂y

∂q

)−1(
ÿref −

∂2y

∂q2
q̇2 − k1ė− ksign(σ)

)
.

(26)
Motion generated by the control input (26) is followed with
the high frequency oscillations around equilibrium and is

known as sliding mode motion [18]. The chattering effect of
the sliding mode control (27) will be partially compensated
with the disturbance observer design in the form of linear
low-pass filter.

If the position q is selected as output variable y(q), i.e.
y(q) = q, the desired acceleration for the helicopter control
purpose is calculated using (26):

q̈des = ÿref − k1ė− k sign (σ) . (27)

Controller parameters k and k1 are designed according to
the nominal system selected to represent a simple double
integrator Pn(s) = 1

s2 . The coefficients kψ = 4 and kϕ = 1
are applied, so the elevation and azimuth angles tend to
reference inputs as quickly as possible. Also, when the
coefficients k1ψ = 1.8 and k1ϕ = 4 are applied, the elevation
and azimuth overshoots are as small as possible.

B. Synthesis of the inner control loop

The disturbance observer design based on position measu-
rements q, known nominal inertia coefficient aN and control
torque τ will be discussed in this subsection.

We will assume that the disturbance can be modelled as
the output of a linear system with unknown initial conditions,
thus it can be represented by a polynomial of time. The
system (13) augmented with the disturbance model ϑ̇ ≈
0, ϑ = −a−1

N τdis is observable [18]. Intermediate variables
z1 and z2 can be selected as:

z1 = ϑ− l1q, l1 = const, (28)
z2 = q̇ − l2q, l2 = const. (29)

The first order time derivatives along the trajectories of the
system (13) are:

ż1 = −l1 (z2 + l2q) , (30)

ż2 = z1 − l2z2 +
(
l1 − l22

)
q + a−1

N τ. (31)

The dynamics of the observer is supposed to be the same as
dynamics of the intermediate variables:

ˆ̇z1 = −l1 (ẑ2 + l2q) , (32)
ˆ̇z2 = ẑ1 − l2ẑ2 +

(
l1 − l22

)
q + a−1

N τ. (33)

Laplace transformation of (32) and (33), after solving for ẑ1,
yields:

ẑ1 = −l1
l2sq + l1q + a−1

N τ

s2 + l2s+ l1
. (34)
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Integrating (34) in ϑ̂ = ẑ1 + l1q follows:

τ̂dis =
l1

s2 + l2s+ l1
τdis. (35)

The estimated disturbance represents output of the linear
low-pass filter (35) with the cut-off frequency determined
by the parameters l1 and l2. The selection of the filter cut-
off frequency is not tuned for the best performance, but
rather to illustrate properties of the disturbance observer. The
values l1ψ = 0.6, l2ψ = 1.7 for the elevation dynamics, and
l1ϕ = 1.2, l2ϕ = 1.7 for the azimuth dynamics are selected,
so the observer may estimate cross-coupling interactions in
the low frequency range, and chattering effects and noise
in the high frequency range. Disturbance observers for the
elevation and the azimuth dynamics provided reduction of the
2DOF helicopter system to two independent 1DOF systems,
thus the SMC controllers synthesis is performed according
to their nominal models. Implementation of the disturbance
observer (35) is shown in Fig. 4.

1− l22
l1

aN l1

l2

1

s

l1
s+ l2

aN q̈des q

τ̂dis−

− −

−

Fig. 4. Disturbance observer obtained from the desired acceleration and
the position as inputs

IV. SIMULATION AND EXPERIMENTAL RESULTS

The simulation and the experimental results of the he-
licopter CE 150 control are presented in this section. The
simulation model of the helicopter system was developed in
Simulink according to section II. Various reference signals
were tested, but step changes of the reference inputs are
selected due to comparison with the results discussed in
[13] and [3]. In all conducted simulations and experiments
elevation and azimuth reference signals are simultaneous,
and their step changes are smoothed due to the control input
(27) that includes the second order time derivative of the
reference signal.

A. Simulation results

Numerical simulations are first carried out in Simulink to
investigate the robustness of the proposed control scheme.
Presence of the additional external disturbances is assumed.
The low-frequency sinusoidal signal 10sin(0.5t)[m/s] and the
high-frequency sinusoidal signal 10sin(50t)[m/s] are added
to both the elevation and the azimuth dynamics to represent
wind gusts. These amplitudes are significantly strong for the

tested small-scale helicopter system. Furthermore, 30% un-
certainties on the model parameters are included as additional
disturbances. In Fig. 5 it can be seen that the helicopter
elevation maintains its reference value and stability of the
equilibrium, even in the presence of significant additional ex-
ternal disturbances. The elevation tracking errors are shown
in the Fig. 6 for better insight of the tracking quality. The
proposed control exhibited superior tracking performances
considering disturbances from both, internal and external
sources, and maintain the helicopter position very well.
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Fig. 5. Comparison of the elevation angle responses in the sim. mode
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Fig. 6. Comparison of the elevation tracking errors in the sim. mode

B. Experimental results

This subsection presents improvements of the DOB based
SMC control scheme through experiments, in comparison
with DOB based framework developed in our previous paper
[13]. The real helicopter system is required to track step
changes in reference signals for the elevation and azimuth
dynamics. The elevation angle response is shown in Fig.
7 and the azimuth angle response in Fig. 8. It can be
noticed that both controllers are able to deal with parametric
uncertainties and cross-coupling interactions, thus achieving
satisfactory tracking performances over the entire range
of elevation and azimuth angles. As Fig. 9 shows, lower
overshoots and steady state errors are obtained with DOB
based SMC control, especially approaching the maximum
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value of the elevation angle. It can be noticed that disturbance
observers efficiently compensate chattering effects of the
sliding mode based controllers.
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Fig. 7. Comparison of the elevation angle responses at the exp. setup
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Fig. 8. Comparison of the azimuth angle responses at the exp. setup
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Fig. 9. Comparison of the elevation angle responses at the exp. setup

V. CONCLUSIONS

In this paper disturbance observer based sliding mode
control is introduced and implemented to the nonlinear
helicopter system CE 150. The porposed control achie-
ved superior tracking performance even in the presence
of unmodelled and unknown dynamics, nonlinear friction

forces, parametric uncertainties, chattering effect and strong
cross-coupling interactions of the elevation and the azimuth
dynamics. Additional external disturbances with significant
strong amplitudes that represent wind gusts, and 30% uncer-
tainties on the model parameters are also added to the plant
input generalized disturbance, to approve robustness of the
proposed control scheme for entire range of the elevation
and azimuth angles. The validity and improvements of the
proposed cascade control structure was verified through both,
simulation and experiment.
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[4] J. Velagić and N. Osmić, “Identification and control of 2dof nonlinear
helicopter using intelligent methods,” in IEEE Conference on System,
Man and Cybernetics, Istanbul, Turkey, 2010, pp. 2267–2275.

[5] J. Balderud and D. I. Wilson, “A comparison of optimal control stra-
tegies for a toy helicopter,” in Asian Control Conference, Singapore,
Sep 2002, pp. 1432 – 1437.

[6] ——, “Application of predictive control to a toy helicopter,” in IEEE
International Conference on Control Applications, Glasgow, Scotland,
Sep 2002, pp. 1225–1229.

[7] H. S. Lee and M. Tomizuka, “Robust motion controller design for high
accuracy positioning systems,” in IEEE Transactions on Industrial
Electronics, vol. 43, 1996, pp. 48–55.

[8] C. J. Kempf and S. Kobayashi, “Disturbance observer and feedforward
design for a high-speed direct-drive positioning table,” in IEEE Tran-
sactions on Control System Technology, vol. 7, 1999, pp. 513–526.

[9] B. K. Kim and W. K. Chung, “Advanced design of disturbance
observer for high performance motion control systems,” in American
Control Conference, 2002, pp. 2112–2117.

[10] M. White, M. Tomizuka, and C. Smith, “Rejection of disk drive
vibration and shock disturbances with a disturbance observer,” in IEEE
American Control Conference, vol. 6, 1999, pp. 4127 – 4131.

[11] X. Chen, S. Komada, and T. Fukuda, “Design of nonlinear disturbance
observer,” in IEEE Transactions on Industrial Electronics, vol. 47,
2000, pp. 429–437.

[12] B. Ahmed and F. Kendoul, “Flight control of a small helicopter in
unknown wind conditions,” in Decision and Control (CDC), 2010 49th
IEEE Conference on, Dec 2010, pp. 3536–3541.

[13] A. Salihbegovic, E. Sokic, N. Osmic, and M. Hebibovic, “High
performance disturbance observer based control of the nonlinear 2dof
helicopter system,” in Information, Communication and Automation
Technologies (ICAT), 2013 XXIV International Symposium on, 2013,
pp. 1–7.

[14] L. Besnard, Y. Shtessel, and B. Landrum, “Control of a quadrotor
vehicle using sliding mode disturbance observer,” in American Control
Conference, 2007. ACC ’07, July 2007, pp. 5230–5235.

[15] S.-H. Jeong and S. Jung, “Experimental studies of a disturbance
observer for attitude control of a quad-rotor system,” in Control,
Automation and Systems (ICCAS), 2012 12th International Conference
on, Oct 2012, pp. 579–583.
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