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Multivariable sliding mode approach with enhanced robustness
properties based on the robust internal-loop compensator for a class of

nonlinear mechanical systems

Almir Salihbegovic1

Abstract— This paper proposes the synthesis of the integral
sliding mode control (I-SMC) and the robust internal-loop com-
pensator (RIC) for nonlinear multiple-input multiple-output
(MIMO) systems, introducing a generalization of the well-
known single-input single-output (SISO) case for linear systems.
The new control term is introduced in order to incorporate a
RIC structure with a multivariable I-SMC scheme for a class
of nonlinear mechanical systems affected by perturbations. The
finite-time stability of the closed-loop system is discussed using
a Lyapunov based approach. The designed algorithm is used
to control attitudes of the small-scale laboratory helicopter
system, representing a nonlinear MIMO system with significant
cross-couplings and inherently unstable characteristics. An
excellent tracking performance and robustness properties of
the proposed control method is demonstrated through both,
computer simulation and experimental testing, even in the
presence of additional internal and external disturbances.

I. INTRODUCTION

There are two major requirements in the design proce-
dure of a robust control for a system in the presence of
uncertainties and disturbances: performance specifications
of the closed-loop system and robustness properties to the
modeling uncertainties, external disturbances and physical
parameter variations. Sliding mode control has been popular
technique for robust control over many decades due to its
invariance to the matching uncertainties [1]. One of the main
disadvantages of the traditional SMC is the chattering effect
due to the discontinuous control [1]. Successful employments
of the multivariable sliding mode approach have opened
the door for its integration with other techniques for dis-
turbance compensation and chattering reduction [2]–[6]. In
order to achieve quantified trade-off between performance
specifications and robustness properties, a generalized dis-
turbance attenuation framework called robust internal-loop
compensator (RIC) is proposed [7]–[11]. It is shown that
the RIC structure ensures unified analysis of the model
based disturbance attenuation algorithms such as adaptive
robust control [8], disturbance observer [9] and sliding mode
control [11]. Although effective performances have been
demonstrated, the concepts of the RIC are presented only for
a class of linear single-input single-output (SISO) systems.

This paper presents an extension of the RIC method for
linear SISO systems, introduced in [7]–[11], to a class of
nonlinear MIMO systems affected with perturbations. The
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synthesis of the multivariable I-SMC and the RIC is proposed
through the Lyapunov redesign framework by using the new
control term, that enhances robust stability of the closed-
loop system, attenuates chattering phenomenon of the sliding
modes and provide systematic performance tuning. In addi-
tion to the disturbance observer (DOB) based SMC schemes
[12], [13], this paper discusses uniformly ultimately bound-
edness of the closed-loop system solutions, thus achieving
enhanced robustness to the disturbance compensation error.

The effectiveness of the developed control structure is
evaluated to the small-scale laboratory helicopter system
CE 150 supplied by Humosoft, which represents a highly
nonlinear MIMO system with significant cross-couplings and
modeling uncertainties. Therefore, various control techniques
[14], [15] have already been tested on the laboratory he-
licopter system CE 150, such as: linear quadratic optimal
control combined with a state estimator (LQG), fuzzy based
control, model predictive control (MPC), etc. However, pre-
sented results did not demonstrate effective compensation of
cross-coupling effects, parametric uncertainties and external
disturbances, thus tracking performances and robust stability
of the helicopter CE 150 are slightly degraded. Significant
reduction of the power consumption and improvement of
the helicopter tracking performances are achieved using the
linear disturbance observers [12]. In [13] DOB based SMC
method for the helicopter system CE 150 is evaluated in the
presence of additional external disturbances and parametric
uncertainties, and enhanced performance specifications are
presented. In this work, we expose the helicopter system
to the influence of wind gusts and 30% uncertainties on
the model parameters are applied as in [13] to verify the
robustness of the proposed control algorithm. In addition to
the previous papers [12]–[15], the additional control input
of the helicopter is employed here, which allows motion
of the small ballast along its horizontal axis, thus dynamic
changes in the center of gravity are simulated. Excellent
tracking performances will be shown through both, computer
simulation and experimental testing, even in the presence of
these external disturbances and parametric uncertainties.

The paper is organized as follows. The synthesis of the I-
SMC and the RIC for a class of nonlinear MIMO uncertain
systems is presented in Section II. Implementation of the
developed control algorithm to the laboratory helicopter
model CE 150 is presented in Section III. Simulation and
experimental results are discussed in Section IV. Concluding
remarks are given in Section V.
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II. MULTIVARIABLE I-SMC BASED ON THE RIC
This section presents the synthesis of the I-SMC scheme

and the RIC for a class of nonlinear MIMO systems with
parametric uncertainties and external disturbances.

Consider a MIMO nonlinear mechanical system (either
translational or rotational) [16]:

a(q)q̈(t) + b(q, q̇) + τd (t, q, q̇, τ) = τ (t, q, q̇) , (1)

where q(t) ∈ Rn and q̇(t) ∈ Rn represent the state
vectors, position and velocity, respectively, τ (t, q, q̇) ∈ Rn
is the control input vector, a(q) ∈ Rn×n is the nonsingular
matrix denoting inertia of the system, b(q, q̇) ∈ Rn is the
nonlinear vector representing Coriolis and friction torques,
and τd(t, q, q̇, τ) stands for the plant input disturbance vector
that includes gravitational torque and external disturbances.
The functions a(q), b(q, q̇) and τd(t, q, q̇, τ) are defined for
(t, q, q̇, τ) ∈ [0,∞) × D × D × D, where D ⊂ Rn is a
domain that contains the origin. Assume that a(q), b(q, q̇)
and τd (t, q, q̇, τ) are sufficiently smooth functions in terms
of state variables q and q̇, so that with the feedback control
τ = τ(t, q, q̇), that is sufficiently smooth control vector, the
closed-loop system will have a unique solution through every
point (t0, q0, q̇0) ∈ [0,∞)×D×D. The acceleration q̈(t) and
the state variables q(t) and q̇(t) are also assumed continuous
and bounded. The perturbed system can be described with:

anq̈(t) + bnq̇(t) + τdis (t, q, q̇, τ) = τ (t, q, q̇) , (2)

where an is the n×n matrix of nominal inertia coefficients,
bn is the n × n matrix of nominal friction coefficients,
τdis = τd + ∆a(q)q̈ + ∆b(q, q̇)q̇ denotes the generalized
disturbance vector that may include various uncertain terms
caused by model simplification and parametric uncertainties,
∆a(q)q̈ and ∆b(q, q̇)q̈ represent the torque vectors induced
by varying inertia matrix ∆a(q) = a(q) − an and varying
friction matrix ∆b(q, q̇) = b(q, q̇) − bn, respectively. The
tracking error vector e(t, q) defines the difference between
the output vector q(t) and the reference vector qref (t):

e(t, q) = q(t)− qref (t), (3)

where qref (t) is sufficiently smooth vector function. In
equilibrium, the output vector q(t) of the system should be
constrained to the manifold [16]:

S1 =
{
q
∣∣ e(t, q) = 0

}
. (4)

The generalized error vector σ (t, q, q̇) ∈ Rn is introduced
in order to provide relative degree one (r = 1) with respect
to the control vector τ :

σ (t, q, q̇) = ė(t, q) + Λ1e(t, q) + Λ

t∫
0

e(t, q) dt, (5)

where Λ1 and Λ are n × n positive constant matrices. The
integral tracking error vector is included in the generalized
error vector (5) to reduce the steady state error. Now, the goal
is to drive the outputs of the system to the integral sliding
manifold:

S2 =
{
q
∣∣σ(t, q, q̇) = 0

}
. (6)

First, we design a stabilizing controller using the nominal
model of the system (2):

anq̈n(t) + bnq̇n(t) = τn (t, q, q̇) , (7)

where qn(t) is the nominal output vector generated internally
by the nominal control vector τn (t, q, q̇). The generalized
error dynamics for the nominal system is calculated using
(5) and (7):

σ̇ = a−1n τn −
(
q̈ref + Λ1q̇ref − Λe

)
, (8)

where Λ1 = a−1n bn. The equivalent control vector is selected
to cancel right-hand side of (8) [17]:

τeq = anq̈ref + bnq̇ref − anΛe. (9)

Next, for the actual system (2) affected by disturbances τdis
we design the overall control τ as follows:

τ (t, q, q̇) = τeq (t, q, q̇) + τ̂dis (t, q, q̇) + τv (t, q, q̇) . (10)

Here, feedback control vectors τ̂dis(t, q, q̇) and τv(t, q, q̇)
need to be designed so that the overall control (10) stabilizes
the resulting closed-loop system:

anq̈ + bnq̇ = τeq + τv + τ̂dis − τdis, (11)

in the presence of parametric uncertainties and external
disturbances. The additional control vector τ̂dis is included
in the overall control (10) in order to estimate generalized
disturbances τdis and attenuate chattering phenomenon by
reducing the magnitudes of the sliding mode control. The
additional control vector τv is introduced to force sliding
mode motion toward the manifold (6) and attenuation of the
disturbance compensation error vector:

p (τdis, τ̂dis) = τdis − τ̂dis. (12)

The disturbance estimation error vector p (τdis, τ̂dis) can be
treated as the input disturbance vector in the closed-loop
system (11). Thus, the switching gains of the additional
control vector τv are only required to be grater than the
magnitudes of the disturbance compensation error vector p,
rather then that of the whole generalized disturbance vector
τdis.

For the system (11), consider a Lyapunov function candi-
date:

V =
σTσ

2
, V (0) = 0. (13)

The first order time derivative V̇ = σT σ̇ depends on the
generalized error dynamics of the perturbed system (11):

σ̇ = a−1n (τv + τ̂dis − τdis) . (14)

The function V̇ along the trajectories of the system (11) is
calculated using (14):

V̇ = a−1n σT (τv + τ̂dis − τdis) (15)

= a−1n σT (τv − p). (16)

Hence, if τ̂dis is arranged to attenuate the generalized distur-
bance vector τdis, the additional control vector τv could be
managed to cancel the effect of the disturbance estimation
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error p on V̇ in (16), so that a−1n σT (τv−p) ≤ −a−1n η20‖σ‖1
is satisfied, where η20 is a positive constant.

Suppose that with the control (10), the generalized distur-
bance vector τdis satisfies the inequality [17]:

0 ≤‖τdis‖∞ ≤ ρ(t, q, q̇) + k1‖τ̂dis‖∞ + k2‖τv‖∞ , (17)

where ρ : [0,∞)×D×D → R is a nonnegative continuous
function representing a measure of the size of disturbances,
k1 ∈ [−1, 0] and k2 ∈ [0, 1) are scalar constants. The
estimate (17) is the only information we should know about
the generalized disturbances τdis. We do not require for the
function ρ to be small, but only to be known. The control
objective is to show that with the knowledge of V, ρ, k1 and
k2, we can design additional control vectors τ̂dis and τv , so
that the overall control (10) will stabilize the actual system
(11) in the presence of parametric uncertainties and external
disturbances.

Applying the Cauchy-Schwarz inequality
∣∣σT τdis∣∣ ≤

‖σ‖1‖τdis‖∞ and the upper bound of (17) to the most right
product term of (15), it follows:

V̇ ≤ a−1n
(
σT τ̂dis + k1‖σ‖1‖τ̂dis‖∞

)
+ a−1n

(
σT τv + k2‖σ‖1‖τv‖∞ + ρ‖σ‖1

)
. (18)

We use the traditional sliding control vector τv [17]:

τv = − 1

1− k2
η2 · sgn(σ), (19)

and propose new control vector τ̂dis for disturbance attenu-
ation based on the RIC:

τ̂dis = − 1

1− k1
(η1 ∗ σ) . (20)

Here η1 = diag (η11, . . . , η1n) is a n × n matrix with
nonnegative functions η1i(t), ∀t ∈ [0,∞). η2(t, q, q̇) is
nonegative scalar function ∀(t, q, q̇) ∈ [0,∞) × D × D,
sgn(σ) =

[
sgn(σ1), . . . , sgn(σn)

]T
is a vector of signs

of sliding surfaces and η1 ∗ σ = [η11 ∗ σ1, . . . , η1n ∗ σn]
T

represents a vector of convolutions of η1i and σi, for all
i = 1, . . . , n. Applying the control vectors (19) and (20) to
(18), it yields:

V̇≤a−1n
[

k1
1− k1

‖σ‖1‖η1 ∗ σ‖∞ −
1

1− k1
σT (η1 ∗ σ)

]
+a−1n

[
k2

1− k2
η2‖σ‖1 −

1

1− k2
η2‖σ‖1 + ρ‖σ‖1

]
. (21)

The scalar function σT (η1 ∗ σ) on the right-hand side of
(21) is nonnegative, namely σT (η1 ∗ σ) =

∣∣σT (η1 ∗ σ)
∣∣,

since σi (η1i ∗ σi) are nonnegative functions for all η1i ≥
0 and i = 1, . . . , n. The bounds of the scalar function∣∣σT (η1 ∗ σ)

∣∣ could be derived using the Cauchy-Schwarz
inequality and the Young’s inequality for convolution:∣∣∣σT (η1 ∗ σ)

∣∣∣ ≤‖σ‖1‖η1 ∗ σ‖∞ ≤‖η1‖∞‖σ‖21 . (22)

The lower bound of (22) is selected as:

(ρ− p0)‖σ‖1 ≤
∣∣∣σT (η1 ∗ σ)

∣∣∣ , (23)

where p0 is a positive constant representing bounds of the
disturbance estimation error vector, namely ‖p‖∞ ≤ p0 and
ρ > p0. Here, the bounds (22) and (23) are selected such
that the function V̇ is negative definite outside the set Ωη:

Ωη =

{
‖σ‖1 ≤

ρ− p0
‖η1‖∞

}
. (24)

Using (21), (22) and (23), it follows:

V̇ ≤ a−1n
(
−
∣∣∣σT (η1 ∗ σ)

∣∣∣− η2‖σ‖1 + ρ‖σ‖1

)
(25)

≤ −a−1n η20‖σ‖1 = −a−1n η20
√

2V , (26)

where η20 is positive constant such that η20 ≤ η2−p0. Hence,
the function V̇ is negative definite along the trajectories of
the closed-loop system (11) if the inequalities:

‖η1‖∞ ≥
ρ− p0
‖σ‖1

, (27)

η2 ≥ p0 + η20, (28)

hold. The system trajectories reach the positively invariant set
(24) in finite time and remain inside thereafter. Therefore,
the solutions of the perturbed system (11) are uniformly
ultimately bounded. The radius of the boundary layer (24)
can be made small enough by increasing the magnitude
‖η1‖∞ in order to drive the system states to an arbitrarily
small neighborhood of the origin. The magnitude η1 of the
robust compensator τ̂dis should be designed so the maximum
value of the disturbance estimation error is p0. Then, the
magnitude η2 of the sliding mode control term τv should be
selected to dominate over the maximum value of disturbance
compensation error p0, instead of the whole disturbance τdis.
Thus, the magnitude of the switching control term can be
decreased in order to reduce the chattering effect.

III. APPLICATION TO THE HELICOPTER SYSTEM CE 150

The laboratory helicopter system Humosoft CE 150 con-
sists of the rigid body with the ballast, the massive support
and two propellers driven by DC motors, the power supply
unit and the interface module. The control strategy of the
helicopter is not presented here, due to the space limit. Since
it is not in focus of this paper, the detailed control strategy
is given in our previous papers [12], [13], [18].

A. Helicopter dynamics model

This subsection introduces the mathematical model of the
laboratory helicopter system CE 150 with two degrees of
freedom: the elevation (pitch) ψ and the azimuth (yaw)
ϕ. It has three inputs (the main motor voltage u1, the
tail motor voltage u2 and the servomotor voltage u3 that
controls the ballast position along the horizontal bar), and
two outputs (elevation and azimuth). The operating ranges
of the helicopter input and output variables are given in Tab.
I. Since the detailed modeling procedure of the helicopter
complete dynamics is not in scope of this paper, only the
main results are presented here.
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TABLE I: Constraints for the helicopter input and output signals

Operational range

Inputs
u1 [0, 0.6]
u2 [−0.3, 0.3]
u3 [−1, 0]

Outputs ψ [−45◦, 45◦]
ϕ [−130◦, 130◦]

Fig. 1: Torques acting on the helicopter body in the vertical plane

As Fig. 1 shows, the torques balance in the vertical plane
is used to describe the elevation dynamics [12], [13], [18]:

aψψ̈ = τ1 + τϕ̇ − τf1 − τm − τG, (29)

τϕ̇ = mlϕ̇2 sinψ cosψ, (30)

τf1 = Cψsgn ψ̇ +Bψψ̇, (31)
τm = mgl sinψ, (32)
τG = KGϕ̇ω1 cosψ, for ϕ̇� ω1. (33)

Here, aψ stands for a moment of inertia around the horizontal
axis, τ1 is a moment produced by the main propeller, τϕ̇
denotes a centrifugal torque, τf1 represents Coulumb and
viscous friction torques, τm is a gravitation torque, τG stands
for a gyroscopic torque, m is the helicopter mass, g denotes
the gravitational acceleration, l is the distance from the
vertical axis to the main motor axis, ω1 represents an angular
velocity of the main propeller, KG is the gyroscopic coef-
ficient, Bψ and Cψ stand for viscous and Coulumb friction
coefficients, respectively. Some influences are neglected in
(29)−(33), such as motor stabilizing torque and air resistance
variation, which should be compensated by the the elevation
disturbance observer.

The azimuth dynamics considers the torques in the hori-
zontal plane, yielding the equations [12], [13], [18]:

aϕϕ̈ = τ2 − τf2 − τr, (34)
τf2 = Cϕsgn ϕ̇+Bϕϕ̇, (35)
aϕ = aψ sinψ, (36)

where aϕ denotes a moment of inertia around the vertical
axis, τ2 is a moment produced by the tail propeller, τf2
represents Coulumb and viscous friction torques, τr is a
reaction torque of the main motor, ω2 denotes an angular
velocity of the tail propeller, Bϕ and Cϕ stand for viscous
and Coulumb friction coefficients. The azimuth disturbance

observer should compensate coupling effects between the
azimuth friction torque and the tail propeller speed, which
are not considered in (34)-(36).

B. The empirical model of the main DC motor and the main
propeller dynamics

Due to the helicopter body structure, which does not allow
direct physical access to the appropriate internal signals, the
main DC motor dynamics is approximated with the second
order transfer function [12], [13], [18]:

ω1(s)

u1(s)
=

1

(T1s+ 1)2
. (37)

Here, ω1(s) and u1(s) represent Laplace transforms of ω1(t)
and u1(t), respectively, and T1 is the main motor time
constant. The main propeller torque is approximated with the
parabolic function of the angular velocity [12], [13], [18]:

τ1(t) = a1ω
2
1(t) + b1ω1(t), (38)

where a1 and b1 are parameters of the main propeller
characteristic. Also, analogue relations to (37) and (38) are
applicable for the tail DC motor with parameters T2, a2 and
b2.

C. The empirical model of the cross-coupling dynamics

The precise identification of the interaction torques is not
possible for the helicopter CE 150, since no appropriate sig-
nal is available for measurements. Therefore, the main motor
reaction torque to the azimuth dynamics is approximated as
follows [12], [13], [18]:

τr(s)

u1(s)
= K

Tzs+ 1

Tps+ 1
, (39)

where Tz and Tp are time constants considered in the
identification process. A simple genetic algorithm [14] has
been designed to determine all unknown parameters. The
values of the helicopter model parameters are presented in
[12].

D. Control Design

The helicopter complete dynamics (29)-(39) could be
described by (2) introducing substitutes:

τ =

[
τ1
τ2

]
, τdis =

[
τf1 + τm + τG − τϕ̇

τf2 + τr

]
. (40)

Two disturbance observers of the first order are employed
in order to attenuate parametric uncertainties and external
disturbances of the helicopter system CE 150:

Q(s) = λ · diag
(

1

s+ λ1
,

1

s+ λ2

)
, (41)

where λ = diag(λ1, λ2) is a matrix of constants λ1 and λ2,
which represent cut-off frequencies of disturbance observers
for the elevation and the azimuth dynamics, respectively.
Then the robust compensator has the form [7]–[10]:

K(s) = anλs. (42)
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2 + bns

anΛ

−e s+
bn
an

+
Λ

s

−σ
anλ Plant

q

η2sgn(·)

qref
τeq

τ̂dis
τv

τ

τd

−

−

Fig. 2: The proposed RIC-SMC scheme for the nonlinear uncertain
MIMO systems

By comparing the Laplace representation of the control input
(20) for k1 = 0, that is τ̂dis(s) = −η1(s)σ(s), with the
additional control for the disturbance compensation based
on the RIC in [7]–[10], it follows:

η1(s) =
K(s)

s
, (43)

and the function matrix η1(t) is derived:

η1(t) = L−1
{
K(s)

s

}
= anλ. (44)

Now, the control law of the proposed algorithm for the
laboratory helicopter system CE 150 is designed as:

τ = anq̈ref + bnq̇ref − anΛe− anλσ − η2 sgn(σ). (45)

Implementation of the control law (45) is presented in
Fig. 2. It consists of the feed-forward control vector τff =
anq̈ref + bnq̇ref to improve transient performances, the
feedback control vector τfb = −anΛe to enhance stability,
the disturbance compensation vector τ̂dis = −anλσ to
attenuate the generalized disturbance vector τdis, and the
sliding control vector τv = −η2sgn(σ) to provide robustness
to the disturbance compensation error vector p.

IV. SIMULATION AND EXPERIMENTAL RESULTS

Simulations and experiments are based on the small-
scale helicopter system CE 150. Although various reference
signals were tested, the step inputs are presented here, due
to the performance comparison with the previous control
algorithms [12]–[14], which are already implemented to the
helicopter system CE 150 and reported the most promising
tracking performance. The reference inputs are simultane-
ously changed in all conducted simulations and experiments,
with the smoothed steps due to the nominal control that
includes the reference derivative. Here, the controller pa-
rameters are not tuned for the best performance, but rather
to illustrate robustness properties of the proposed control
scheme to the internal and external disturbances. All results
are presented for the following values of the controller
parameters: Λ = diag(4, 6), λ = diag(0.4, 0.7) and η2 = 5.

A. Simulation results

According to the Section II and Section III, the simulation
model of the helicopter system CE 150 and the proposed
control method were developed using MATLAB. In the

0 100 200 300 400 500 600 700
−6

−4

−2

0

2

t [s]

e ψ
[◦
]

DOB-SMC
RIC-SMC

Fig. 3: Comparison of the elevation tracking errors in the sim. mode

0 100 200 300 400 500 600 700

−10

0

10

t [s]

e ϕ
[◦
]

DOB-SMC
RIC-SMC

Fig. 4: Comparison of the azimuth tracking errors in the sim. mode

simulation mode, 30% uncertainties on the model parameters
are included. Furthermore, variable wind disturbances with
significantly strong amplitudes (speeds) of 10 m/s are repre-
sented by the periodic signals with high-frequency 50 rad/s

and the low-frequency 0.5 rad/s, which are added to both, the
elevation and azimuth dynamics in order to represent wind
gusts. The elevation and azimuth tracking errors of the RIC
based SMC scheme and the DOB based SMC algorithm
[13] are compared and presented in Fig. 3 and Fig. 4. It
can be noticed that RIC based SMC structure stabilized the
closed-loop system and maintained the helicopter attitude
over the whole domain, even in the presence of additional
external and internal disturbances. In comparison with the
DOB based SMC, the proposed method obtained superior
tracking performances, with lower overshoots and steady
state errors.

B. Experimental results

In this subsection the perturbation test is demonstrated at
the real helicopter system CE 150 to investigate tracking per-
formance of the developed control scheme and its robustness
to additional disturbances. The perturbation test is applied
by the ballast movement along its horizontal axis, thus
simulating dynamical changes in the center of gravity. At the
beginning of the test, the ballast is at the default position, that
is the middle of the axis. About 150 second of the test, the
ballast motion is started from the start point to the end point
of the horizontal axis using the third control input. The test
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Fig. 5: Comparison of the elevation angle responses at the real exp.
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Fig. 6: Comparison of the azimuth angle responses at the real exp.

results are presented in Fig. 5 and Fig. 6. In comparison
with the DOB based SMC method, the RIC based SMC
algorithm exhibited improved tracking performances under
the perturbation test, with lower overshoots and steady state
errors, especially when the elevation and the azimuth angle
limits are approached.

V. CONCLUSIONS

In this paper the synthesis of the I-SMC and the RIC is
proposed for a class of nonlinear uncertain MIMO systems.
This represents a generalisation of the well-known RIC
based control for linear SISO systems, providing a more
elegant solution than trying to utilize a decouple set of single
variable control schemes. The designed control algorithm is
implemented to the highly nonlinear small-scale helicopter
system CE 150. It has demonstrated an excellent attitude
tracking performance and robust stability in the presence
of uncertainties due to model simplifications, parameter
variations, strong cross-couplings and unknown dynamics.
Numerical simulations and real experiments have approved
the robustness of the developed control structure even to
the additional disturbances which have been added to the

system in the form of wind gusts with high amplitudes,
30% uncertainties on the model parameters, and ballast
displacements during flight tests.
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