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Summary of Contents: Explore the use of a simple processor communication method in an 
embedded system. The embedded system evaluated deploys multiple microprocessors where one 
or more microprocessors are viewed as slave devices. Specific implementation involves a 
master/slave multi-processor embedded system. The master device consists of an application 
residing in an embedded operating system environment. The slave devices consist of a 
microprocessor with a single processing thread. The goal is to provide a robust, yet simple method 
of communications between the two microprocessor devices. The communication method should be 
extendable to include a single master communicating with multiple slave devices. The discussion of 
this paper will include some problems that may be encountered and potential solutions. 
 
 
 
 

 
 
 
 
 

Introduction 
The market place is bursting at the seams with miniature microprocessors. The technology boom in 
all areas of our fast-paced society has resulted in a multitude of embedded system environments 
utilizing a myriad of microprocessors. Many of these microprocessors contain a small amount of 
on-chip flash and RAM, and thus are not suitable for most stand-alone embedded systems. 
However, when remotely combined with an embedded system application utilizing a more 



2    
 

substantial microprocessor, sufficient resources and a multi-threaded operating system, we have the 
makings of a versatile embedded control system. These control systems are able to tackle such 
tasks as home automation control systems, navigation control systems (more commonly known as 
autopilots), automated teller machines, robotics and many others. The application for such control 
systems is limitless. The nature of control systems dictates a variety of remote tasks - sensor 
monitoring, dampers control, servo management, and pulse width modulation (motor speed 
control), just to mention a few. To perform these remote tasks, the need presented itself to utilize 
small inexpensive microprocessor devices, and along with these devices, a method to communicate 
and control them as well as retrieve information. Due to the simplicity of the devices, the 
communications method had to be simple both in hardware and software requirements. The 
interface method of choice in the industry for this environment is the Serial Peripheral Interface 
(SPI). This interface is simple and very cost effective in both hardware and software resource 
requirements. 

Description 
The SPI employs four signals: data clock (SCLK); master data output, slave data input (MOSI); 
master data input, slave data output (MISO); and slave select (SS). These signals can be used with 
a single master/single slave configuration as seen in figure 1. 

 
 

 
 
   Figure 1 
 
They can also be used in a single master/multiple slave configuration as illustrated in figure 2.  
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   Figure 2 
 
In a single master slave configuration, the slave select signal can be omitted for additional 
simplification. In this mode the one slave is always enabled. SCLK is generated by the master and 
is an input to all slave devices. SCLK can be generated by hardware using a costlier, more 
sophisticated implementation. Most commonly, a clock pulse is generated via software control and 
thus has a variable baud rate. MOSI carries data from the master to the slave. MISO carries data 
from the slave back to the master. This is performed in a full duplex mode, which means the data 
flows in both directions simultaneously. The signals are easily implemented using GPIO signals 
already available on most microprocessors. 

In a multiple slave environment, a specific slave device can be selected by asserting its SS signal. 
Once a slave is selected, then the master can send data over the MOSI signal and receive data over 
the MISO signal. As serial data is clocked by the master along the MOSI data signal line, the same 
SCLK signal also clocks the data from the slave’s data register to the master over the MISO data 
line. The entire communications operation is controlled by the master as the name implies. The 
data register is basically a shift register, and as a bit is shifted into the register from the master, one 
is shifted out from the slave. The internal SPI contains a bit counter and, when it is full (usually 8 
data bits), the slave’s microprocessor is signaled to read the register.  

Because the master microprocessor is controlling the bit transmission, it also knows when the 
returning data is available to be read. The data unit sent from the slave to the master can be 
assembled in RAM or memory mapped register by testing the state of the MISO data line, and 
inserting the state in the form of a bit in the RAM location or register. There is no requirement of a 
special purpose register on the master as usually found on the slave. 

Implementation 
Implementing an SPI is best handled by hardware support for the control lines in the form of a 
discrete register, FPGA or GPIO, a data register and a bit counter. The data register is part of the 
slave microprocessor system and is used as a repository for the data transmitted from the master. 
The master transfers data to the slave by setting the state of the MOSI signal for a bit and then 
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changing the state of the SCLK signal. The opposing SCLK transition is normally used to transfer a 
data bit from the slave to the master and completes the clock pulse. This is repeated until the entire 
unit size number of bits is transferred. A counter maintains the number of bits transmitted to the 
slave device and will signal the device, usually via an interrupt, when the last bit is strobed into the 
data register. The data register supports both read and write capabilities, allowing the slave to read 
the data placed in the register and then response data can be placed in the register. This data will be 
sent to the master on the next sequence of clocks. When deciding to use an SPI for device 
communications, it should be noted that it is not a good interface for transferring large amounts of 
data. It is also not an appropriate interface to use when flow control is required. 

Problem 
SPIs are efficient for simple, inter-processor communication in a master/slave environment. The 
simplicity is a definite advantage. But data integrity problems can occur and are difficult to detect 
or correct in such a simple interface. The most likely cause of a data integrity problem is 
electrostatic discharge. A discharge entering the device can cause an extra strobe or multiple 
strobes on the SCLK signal of the interface. When this occurs, an extra bit or multiple bits are 
shifted into the data register corrupting its contents. If the data register is not full and an erroneous 
bit is strobed in, the bit counter is incremented based on the number of erroneous clock strobes. 
Thus, the next data unit to be sent to the slave from the master will appear to be complete before 
the entire data unit is transmitted. Other conditions, such as noise generated by other signals, can 
also create false strobes. Electronic noise can be created by other devices or surges due to motor 
startup and other sudden high amperage requirements, possibly resulting in power fluctuations on 
the controller. 

Solution 
Ideally, it is best to alleviate the effects of the electrostatic discharge or electronic noise through a 
clean hardware design and implementation as part of the development process. However, normally 
these issues are not discovered until the control system is completed and in a test environment - or 
worse, in the hands of the customer. Attempting to retrofit the hardware to eliminate a data 
corruption issue may include shielding the communications cable, grounding, adding capacitance 
and the use of ferrites. These can be considered band-aids only and may be costly. Additionally, if 
a problem is exposed in the field, hardware modification is usually not an option.  

A software solution implementing a simple protocol can improve robustness and, in my experience, 
totally prevent the misinterpretation of corrupted data. It is important to point out that a software 
solution is a recovery, not a correction method. Data corruption still occurs, but the intent of the 
software solution is to detect that corruption and retry until there is a clean data transfer. Most slave 
devices utilize a small microprocessor such as an Atmel Tiny-26 with only 2K of flash for the 
system code. Thus, any solution must use a minimum of resources.  

Attempting to implement a sophisticated CRC algorithm is out of the question. Implementation of a 
simpler communications protocol for an SPI is the industry recommended method. Proper 
implementation requires knowledge of the available resources and a maximum latency for the slave 
to read and update the data register. This is required so the master can properly delay between each 
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data unit (normally a byte). The most prevalent protocol used in an SPI implementation is a 
command/response protocol, which can be used to verify the data integrity of the actual data 
transmission. This command/response protocol can be implemented using a small amount of code 
space and limited RAM storage on the slave device (in my experience with the Atmel part less than 
100 bytes). 

The command consists of a single command byte that is sent from the master to the slave. At this 
time, the byte returned to the master is considered garbage and ignored. On the slave device the 
command is read from the register and then written back to the register, or in many applications the 
register retains the last byte written. Either way, the command byte is in the SPI data register. The 
command byte is then followed by an ACK from the master. The ACK byte is used to flush the 
previous command byte back to the master for verification. Once the command is verified, 
subsequent bytes are sent for the command and each one is verified by an ACK sent by the master 
to return the byte sent. If, at any time, the byte returned back to the master did not match the one 
sent by the master, then a SYNC command is sent to reset the command sequence.  

The assumption with this mechanism is that the corruption takes place as part of the bit 
transmission and not in the register itself nor internal to the slave device after it is read. Each 
command is known by both the master and the slave, so there is no need for a length command. 
Once a complete transmission of the command sequence is successful, an execute command is sent 
and verified via the ACK mechanism. This command response mechanism can be used to retrieve 
status from the slave device as well. One of the defined commands can be a status command and 
after verification using the ACK method, the slave writes the status byte into the data register and a 
subsequent ACK is sent to return the status byte back to the master. You can see the importance of 
the master’s delay between bytes. The slave being a single thread, it is usually an easy process to 
determine a reasonable delay, and if implemented using interrupt processing, it should be almost 
instantaneous, that is to say in the low microseconds. The command structure can be tailored for 
your specific needs and can be expanded to accommodate status responses longer than a byte if 
desired. 

Additional Uses 
Another issue that can arise with a control system using the master slave configuration and a 
command status protocol over an SPI is lack of software synchronization on multiple 
microprocessors when the devices are updated independently. Many microprocessors, such as the 
Atmel series, provide a mechanism to program the flash either via the SPI or other control lines. 
This opens the door for using the master as the one that determines the version of software to run 
on the slave(s), and allows the master to program the slave if the version is not compatible. 

Resources 
Internal document figures 1 and 2 as well as signal definitions were gathered from the following 
web site: http://www.embedded.com/story/OEG20020124S0116 
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