Writing S-Functions

Version 6

Simulink

Simulation and Model-Based Design

Modeling
Simulation

Implementation

Q‘\The MathWorks

X LB

How to Contact The MathWorks:

www.mathworks.com
comp.soft-sys.matlab

support@mathworks.com
suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

508-647-7000
508-647-7001

The MathWorks, Inc.

Web
Newsgroup

Technical support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

Phone
Fax

Mail

3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Writing S-Functions
© COPYRIGHT 1998 - 2004 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or Docu-
mentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modifica-
tion, reproduction, release, performance, display, and disclosure of the Program and Documentation by the
federal government (or other entity acquiring for or through the federal government) and shall supersede any
conflicting contractual terms or conditions. If this License fails to meet the government's needs or is incon-
sistent in any respect with federal procurement law, the government agrees to return the Program and Docu-
mentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Revised for Simulink 3.0 (Release 11)
Revised for Simulink 4.0 (Release 12)

Printing History: October 1998 First printing
November 2000 Second printing

July 2002 Third printing Revised for Simulink 5.0 (Release 13)
April 2003 Online only Revised for Simulink 5.1 (Release 13SP1)
April 2004 Online only Revised for Simulink 5.1.1 (Release 13SP1+)
June 2004 Online only Revised for Simulink 6.0 (Release 14)
October 2004 Online only Revised for Simulink 6.1 (Release 14SP1)

Overview of S-Functions

1]

What Is an S-Function? 1-2
Using S-FunctionsinModels 1-3
Passing Parameters to S-Functions 14
When to Use an S-Function 1-5
How S-Functions Work 1-6
Mathematics of Simulink Blocks 1-6
Simulation Stages 1-6
S-Function Callback Methods 1-9
Implementing S-Functions 1-10
M-File S-Functions00, 1-10
MEX-File S-Functions 1-11
S-Function Concepts 1-13
Direct Feedthrough 1-13
Dynamically Sized Arrays, 1-13
Setting Sample Times and Offsets 1-15
S-Function Examples 1-18

Writing M S-Functions

2

Level-1 Versus Level-2 M-File S-Functions 2-2
Writing Level-2 M-File S-Functions 2-3
Writing Level-1 M-File S-Functions 2-4

S-Function Argumentsc.iiuin.... 2-4

Contents

S-Function Outputs oin.. 2-5

Defining S-Function Block Characteristics 2-6
Processing S-Function Parameters 2-7
Examples of Level-1 M-File S-Functions 2-8

Writing S-Functions in C

3|

Introduction 3-2
Creating C MEX S-Functions 3-3
Building S-Functions Automatically 3-5
Setting the Include Path 39
S-Function Builder DialogBox 3-10
Parameters/S-Function Name Pane 3-11
Port/Parameter Pane 3-11
Initialization Pane, 3-12
Data Properties Pane 3-14
Input PortsPane 3-15
Output Ports Pane 3-16
Parameters Pane 3-17
Data Type Attributes Pane 3-18
Libraries Pane i i 3-19
Outputs Pane 3-20
Continuous Derivatives Pane 3-24
Discrete Update Pane 3-26
BuildInfoPane 3-27
Example of a Basic C MEX S-Function 3-29
Defines and Includes 3-31
Callback Implementations 3-31
Simulink/Real-Time Workshop Interface 3-33
Building the Timestwo Example 3-34
Templates for C S-Functions 3-35
S-Function Source File Requirements 3-35

ii Contents

The SimStruct 3-37

Compiling C S-Functions, 3-38
How Simulink Interacts with C S-Functions 3-39
Process View 3-39
DataView e 3-43
Writing Callback Methods 3-47
Converting Level 1 C MEX S-Functions to Level 2 3-48
Obsolete Macros 3-50

4

Source File Format 4-2
Making C++ Objects Persistent 4-6
Building C++ S-Functions 4-7

5

Introduction 5-2
Ada S-Function Source File Format 5-3
Ada S-Function Specification 5-3
Ada S-FunctionBody 54
Writing Callback MethodsinAda 5-6
Callbacks Invoked by Simulink 5-6
Implementing Callbacks 5-7
Omitting Optional Callback Methods 5-7

iii

iv

Contents

SimStruct Functions 5-7

Building an Ada S-Function 5-9
Ada Compiler Requirements 5-9
Example of an Ada S-Function 5-10

Creating Fortran S-Functions

6

Introduction 6-2
Level 1 Versus Level 2 S-Functions 6-2
Creating Level 1 Fortran S-Functions 6-3
The Fortran MEX Template File 6-3
Example 6-3
Inline Code Generation Example 6-6
Creating Level 2 Fortran S-Functions 6-7
Template File 6-7
C/Fortran Interfacing Tips 6-7
Constructingthe Gateway 6-11
Example C-MEX S-Function Calling Fortran Code 6-13
Porting LegacyCode 6-14
FindtheStates 6-14
Sample Times it 6-14
Multiple Instances0 ... 6-14
Use Flints If Needed, 6-15
Considerations for Real Time 6-15

Implementing Block Features

7|

Dialog Parameters 7-2
Tunable Parameters 7-3
Run-Time Parameters 7-6
Creating Run-Time Parameters 7-7
Updating Run-Time Parameters 7-8
Tuning Runtime Parameters 7-9
Creating Input and OQutput Ports 7-10
Creating Input Ports 7-10
Creating Output Ports 7-12
Scalar Expansion of Inputs 7-13
Masked Multiport S-Functions 7-15
CustomDataTypes.................... 7-16
SampleTimes 7-17
Block-Based Sample Timeso.... 7-18
Specifying Port-Based Sample Times 7-21
Hybrid Block-Based and Port-Based Sample Times 7-24
Multirate S-Function Blocks 7-25
Synchronizing Multirate S-Function Blocks 7-27
Specifying Model Reference Sample Time Inheritance 7-27
Work Vectors i, 7-30
Work Vectors and Zero Crossings 7-32
Example Involving a Pointer Work Vector 7-32
Memory Allocationc.oitiiiiienennnn... 7-34
Function-Call Subsystems 7-35
Handling Errors00 iiiiiiinnnnnnnnn. 7-37
Exception Free Code, 7-37
ssSetErrorStatus Termination Criteria 7-39
Checking ArrayBounds 7-39

S-Function Examples 7-40

vi

Contents

Example of a Continuous State S-Function 7-40

Example of a Discrete State S-Function 7-45
Example of a Hybrid System S-Function 7-49
Example of a Variable-Step S-Function 7-53
Example of a Zero Crossing S-Function 7-57

Example of a Time-Varying Continuous Transfer Function .. 7-68

S-Function Callback Methods

8

mdlCheckParameters 8-2
mdlDerivatives 8-4
mdlGetTimeOfNextVarHit 8-5
mdlInitializeConditions 8-6
mdlInitializeSampleTimes 8-8
mdlInitializeSizes i i 8-12
mdlOutputs 8-16
mdlProcessParameters 8-17
mdlIRTW ... 8-19
mdlSetDefaultPortComplexSignals 8-20
mdlSetDefaultPortDataTypes 8-21
mdlSetDefaultPortDimensionInfo 8-22
mdlSetInputPortComplexSignal 8-23
mdlSetInputPortDataType 8-24
mdlSetInputPortDimensionInfo 8-25
mdlSetInputPortFrameData 8-27
mdlSetInputPortSampleTime 8-28
mdlSetInputPortWidth 8-30
mdlSetOutputPortComplexSignal 8-31
mdlSetOutputPortDataType 8-32
mdlSetOutputPortDimensionInfo 8-33
mdlSetOutputPortSampleTime 8-35
mdlSetOutputPortWidth 8-36
mdlSetWorkWidths 8-37
mdlSimStatusChange 8-38
mdlStart 8-39
mdlTerminate 8-40
mdlUpdate 8-41

mdlZeroCrossingscoit it 8-42

SimStruct Functions

9

Introduction 9-2
Language Support 9-2
The SimStruct 9-2

SimStruct Macros and Functions Listed by Usage 9-3
Miscellaneous it i 9-3
Error Handlingand Status 9-3
T/OPort ... 9-4
Dialog Box Parameters v, 9-9
Run-Time Parameters, 9-10
Sample Time i 9-11
State and Work Vector 9-13
Simulation Information 9-17
Function Call 9-19
Data Typeot e e e e 9-19
Real-Time Workshop, 9-20

Function Reference 9-22
FssCallExternalModeFen 9-23
ssCallSystemWithTid 9-24
ssDisableSystemWithTid 9-25
ssEnableSystemWithTid 9-26
ssGetAbsTol 9-28
ssGetBlockReduction 9-29
ssGetContStateAddress, 9-30
ssGetContStatest 9-31
ssGetDataTypeld 9-32
ssGetDataTypeNameiiiiinee.... 9-33
ssGetDataTypeSize 9-34
ssGetDataTypeZero, 9-35
ssGetDiscStates i 9-36
ssGetDTypeldFromMxArrayccovvviennnnn .. 9-37

vii

viil Contents

ssGetDWork o 9-39

ssGetDWorkComplexSignal 9-40
ssGetDWorkDataType 9-41
ssGetDWorkName i, 9-42
ssGetDWorkRTWIdentifier 9-43
ssGetDWorkRTWStorageClass 9-44
ssGetDWorkRTWTypeQualifier 9-45
ssGetDWorkUsedAsDState 9-46
ssGetDWorkWidth 9-47
SSGetdX 9-48
ssGetErrorStatus 9-49
ssGetExplicitFCSSCtrl 9-50
ssGetlnlineParameters 9-51
ssGetInputPortBufferDstPort 9-52
ssGetInputPortComplexSignal 9-53
ssGetInputPortConnected 9-54
ssGetlnputPortDataType 9-55
ssGetInputPortDimensions 9-56
ssGetInputPortDirectFeedThrough 9-57
ssGetInputPortFrameData 9-58
ssGetInputPortNumDimensions 9-59
ssGetInputPortOffsetTime 9-60
ssGetInputPortOptimOpts 9-61
ssGetInputPortOverWritable 9-62
ssGetInputPortRealSignal 9-63
ssGetInputPortRealSignalPtrs 9-65
ssGetInputPortRequiredContiguous 9-66
ssGetInputPortSampleTime 9-67
ssGetInputPortSampleTimelndex 9-68
ssGetlnputPortSignal 9-69
ssGetInputPortSignalAddress 9-70
ssGetInputPortSignalPtrs 9-71
ssGetInputPortWidth 9-72
ssGetIWork 9-73
ssGetIWorkValue 9-74
ssGetModelName i, 9-75
ssGetModeVectort 9-76
ssGetModeVectorValue 9-77
ssGetNonsampledZCs0 .. 9-78
ssGetNumContStates 9-79

ssGetNumDataTypes 9-80

ssGetNumDiscStates i, 9-81
ssGetNumDWork 9-82
ssGetNumInputPorts 9-83
ssGetNumIWork 9-84
ssGetNumModesc0iiiiiiiiiii 9-85
ssGetNumNonsampledZCso, 9-86
ssGetNumOutputPorts 9-87
ssGetNumParameters 9-88
ssGetNumRunTimeParams 9-89
ssGetNumPWork, 9-90
ssGetNumRWork 9-91
ssGetNumSampleTimes, 9-92
ssGetNumSFenParams, 9-93
ssGetOffsetTime o 9-94
ssGetOutputPortBeingMerged 9-95
ssGetOutputPortComplexSignal 9-96
ssGetOutputPortConnected 9-97
ssGetOutputPortDataType 9-98
ssGetOutputPortDimensions 9-99
ssGetOutputPortFrameData 9-100
ssGetOutputPortNumDimensions 9-101
ssGetOutputPortOffsetTime 9-102
ssGetOutputPortOptimOpts 9-103
ssGetOutputPortRealSignal 9-104
ssGetOutputPortSampleTime 9-105
ssGetOutputPortSignal 9-106
ssGetOutputPortSignalAddress 9-107
ssGetOutputPortWidth 9-108
ssGetParentSS 9-109
ssGetPath 9-110
ssGetPlacementGroup, 9-111
ssGetPortBasedSampleTimeBlockIsTriggered 9-112
ssGetPWork 9-113
ssGetPWorkValue 9-114
ssGetRealDiscStates, 9-115
ssGetRootSS 9-116
ssGetRunTimeParamInfo 9-117
ssGetRWork 9-118
ssGetRWorkValue 9-119

ix

Contents

ssGetSampleTime, 9-120

ssGetSampleTimeOffset 9-121
ssGetSampleTimePeriod 9-122
ssGetSFenParam 9-123
ssGetSFenParamsCount 9-124
ssGetSImMode 9-125
ssGetSolverMode i 9-126
ssGetSolverNamet 9-127
ssGetStateAbsTol i 9-128
ssGetStopRequested 9-129
ssGetT ... 9-130
ssGetTaskTime 9-131
ssGetTFinal 0 ... 9-132
SSGEtTINEXt . . oot 9-133
ssGetTStart i 9-134
ssGetUserData 9-135
ssIsContinuousTask 9-136
ssIsFirstInitCond 9-137
ssIsMajorTimeStep, 9-138
ssIsMinorTimeStep, 9-139
ssIsSampleHit 9-140
ssIsSpecialSampleHit 9-141
ssIsVariableStepSolver 9-142
ssPrintf 9-143
ssRegDlgParamAsRunTimeParam 9-144
ssRegAllTunableParamsAsRunTimeParams 9-145
ssRegisterDataType i, .. 9-146
ssSampleAndOffsetAreTriggered 9-147
ssSetBlockReduction 9-148
ssSetCallSystemQutput 9-149
ssSetDataTypeSizeo, 9-150
ssSetDataTypeZeroc.oiuiiiiennnnennnn.. 9-151
ssSetDWorkComplexSignal 9-153
ssSetDWorkDataType 9-154
ssSetDWorkNamet .. 9-155
ssSetDWorkRTWIdentifier 9-156
ssSetDWorkRTWStorageClass 9-157
ssSetDWorkRTWTypeQualifier 9-158
ssSetDWorkUsedAsDState 9-159
ssSetDWorkWidth 9-160

ssSetErrorStatus 9-161

ssSetExplicitFCSSCtrl 9-162
ssSetExternalModeFen L. 9-163
ssSetInputPortComplexSignal 9-164
ssSetInputPortDataType 9-165
ssSetInputPortDimensionInfo 9-166
ssSetInputPortDirectFeedThrough 9-168
ssSetInputPortFrameData 9-169
ssSetInputPortMatrixDimensions 9-170
ssSetInputPortOffsetTime 9-171
ssSetInputPortOptimOpts 9-172
ssSetInputPortOverWritable 9-173
ssSetInputPortRequiredContiguous 9-174
ssSetInputPortSampleTime 9-175
ssSetInputPortVectorDimension 9-176
ssSetInputPortWidth 9-177
ssSetIWorkValue 9-178
ssSetModelReferenceSampleTimelnheritanceRule 9-179
ssSetModeVectorValue 9-180
ssSetNumContStates 9-181
ssSetNumDiscStates 9-182
ssSetNumDWork 9-183
ssSetNumlInputPorts 9-184
ssSetNumIWork 9-185
ssSetNumModest 9-186
ssSetNumNonsampledZCs 9-187
ssSetNumOutputPorts 9-188
ssSetNumPWork 9-189
ssSetNumRunTimeParams 9-190
ssSetNumRWork 9-191
ssSetNumSampleTimes, 9-192
ssSetNumSFenParams 9-193
ssSetOffsetTimettt 9-194
ssSetOneBasedIndexInputPort 9-195
ssSetOneBasedIndexOutputPort 9-196
SSSetOptions e 9-197
ssSetOutputPortComplexSignal 9-201
ssSetOutputPortDataType 9-202
ssSetOutputPortDimensionInfo 9-203
ssSetOutputPortFrameData 9-204

xi

xii

Contents

ssSetOutputPortMatrixDimensions 9-205

ssSetOutputPortOffsetTime 9-206
ssSetOutputPortOptimOpts 9-207
ssSetOutputPortOverwritesInputPort 9-208
ssSetOutputPortSampleTime 9-209
ssSetOutputPortVectorDimension 9-210
ssSetOutputPortWidth 9-211
ssSetParameterNamecccouu.... 9-212
ssSetParameterTunable 9-213
ssSetPlacementGroup, 9-214
ssSetPWorkValue 9-215
ssSetRWorkValue 9-216
ssSetRunTimeParamInfo 9-217
ssSetSampleTime, 9-220
ssSetSFenParamNotTunable 9-221
ssSetSFenParamTunable 9-222
ssSetSolverNeedsReset 9-223
ssSetStopRequested 9-225
ssSetTNext e e 9-226
ssSetUserDatac i, 9-227
ssSetVectorModeot 9-228
ssSetZeroBasedIndexInputPort 9-229
ssSetZeroBasedIndexOutputPort 9-230
ssUpdateAllTunableParamsAsRunTimeParams 9-231
ssUpdateRunTimeParamData 9-232
ssUpdateDlgParamAsRunTimeParam 9-233
ssUpdateRunTimeParamInfo 9-234
ssSWarning e 9-235
ssWriteRTW2dMatParam 9-236
ssWriteRTWMx2dMatParam 9-237
ssWriteRTWMxVectParam 9-238
ssWriteRTWParameters 9-239
ssWriteRTWParamSettings 9-243
ssWriteRTWScalarParam 9-247
ssWriteRTWStr 9-248
ssWriteRTWStrParam 9-249
ssWriteRTWStrVectParam 9-250
ssWriteRTWVectParam 9-251
ssWriteRTWWorkVect 9-252

Overview of S-Functions

S-functions (system-functions) provide a powerful mechanism for extending the capabilities of
Simulink®. The following sections explain what an S-function is and when and why you might use
one and how to write your own S-functions.

What Is an S-Function? (p. 1-2) Brief overview of S-functions.

Using S-Functions in Models (p. 1-3) How to insert S-functions as blocks in a model and pass
parameters to them.

How S-Functions Work (p. 1-6) How Simulink invokes S-functions when simulating a
model that includes them.

Implementing S-Functions (p. 1-10) How to write S-functions.

S-Function Concepts (p. 1-13) Some key concepts needed to write certain types of
S-functions.

S-Function Examples (p. 1-18) Examples that illustrate the creation of various types of
S-functions and S-function features.

1 Overview of S-Functions

What Is an S-Function?

1-2

An S-function is a computer language description of a Simulink block.
S-functions can be written in MATLAB®, C, C++, Ada, or Fortran. C, C++, Ada,
and Fortran S-functions are compiled as MEX-files using the mex utility (see
“Building MEX-Files” in the online MATLAB documentation). As with other
MEX-files, they are dynamically linked into MATLAB when needed.

S-functions use a special calling syntax that enables you to interact with
Simulink equation solvers. This interaction is very similar to the interaction
that takes place between the solvers and built-in Simulink blocks. The form of
an S-function is very general and can accommodate continuous, discrete, and
hybrid systems.

S-functions allow you to add your own blocks to Simulink models. You can
create your blocks in MATLAB, C, C++, Fortran, or Ada. By following a set of
simple rules, you can implement your algorithms in an S-function. After you
write your S-function and place its name in an S-Function block (available in
the User-Defined Functions block library), you can customize the user interface
by using masking.

You can use S-functions with the Real-Time Workshop®. You can also
customize the code generated by the Real Time Workshop for S-functions by
writing a Target Language Compiler (TLC) file. See“Writing S-Functions for
Real-Time Workshop” in the Real-Time Workshop documentation for more
information.

Using S-Functions in Models

Using S-Functions in Models

To incorporate an S-function into a Simulink model, drag an S-Function block
from the Simulink User-Defined Functions block library into the model. Then
specify the name of the S-function in the S-function name field of the
S-Function block’s dialog box, as illustrated in the following figure.

S-function dialog box

Block Parameters: 5-Function
- 5-Function-
User-definable block. Blocks may be wiitten in M., C or Fortran and must
conform to S-function standards. tx.u and flag are automatically passed ta
the S-function by Simulink. "“Extra"’ parameters may be specified in the
'S-function parameters' field,

S-function source file

Farameters -
S-function name: _
. mysfun

A model that includes two lsf ; *

R -function parameters: *
S-function blocks] MYSFUN

*/
Apply 1 Revert Help] Close Vid The. follo
File Edit Simulation Format #define S_FU
Functionl dialog box -
S Functonl dilog bo C MEX file

S-Function

Block Parameters: 5-Functionl

—5-Function- or
S Fundtiond User-definable block. Blocks may be wiitten in M., C or Fortraerahd must
rneten conform to S-function standards. tx.u and flag are auterfiatically passed ta .
the S-function by Simulink. "'Extra" parameters el be specified in the function[sys .
'S-function parameters' field. % mysfun M-file
; %
Parameters- switch(flag)
S-function name: .
]mysfun .
S-function parameters:

Apply 1 Revert ‘ Help] Cloge] | M flle

Figure 1-1: Relationship Between an S-Function Block, Its Dialog Box, and the
Source File That Defines the Block’s Behavior

In this example, the model contains two instances of an S-Function block. Both
blocks reference the same source file (mysfun, which can be either a C MEX-file
or an M-file). If both a C MEX-file and an M-file have the same name, the C
MEX-file takes precedence and is the file that the S-function uses.

1 Overview of S-Functions

14

Passing Parameters to S-Functions

The S-function block’s S-function parameters field allows you to specify
parameter values to be passed to the corresponding S-function. To use this
field, you must know the parameters the S-function requires and the order in
which the function requires them. (If you do not know, consult the S-function’s
author, documentation, or source code.) Enter the parameters, separated by a
comma, in the order required by the S-function. The parameter values can be
constants, names of variables defined in the model’s workspace, or MATLAB
expressions.

The following example illustrates usage of the S-function parameters field to
enter user-defined parameters.

'IF\U = limintm fs :l
Sing Wave "~ S-Function , Spope T~ - .
L. ' . See
LemnT) ' . el -
Block Parameters: S-Function 1 F

lemop e ABE B L =

— S-Function

User-definable block. Blocks may be wiitten in M, C, Fortran or Ada and
must conform to S-function standards. tx.u and flag are automatically
pazzed to the S-function by Simulink, "'Extra’ parameters may be
specified in the 'S-function parameters' field.

=
F

S-function name:
S-function parameters;
|23.25

QK I Cancel | Help | Apply |

The model in this example incorporates 1imintm, a sample S-function that
comes with Simulink. The function’s source code resides in
toolbox/simulink/blocks. The limintm function accepts three parameters: a
lower bound, an upper bound, and an initial condition. It outputs the time
integral of the input signal if the time integral is between the lower and upper
bounds, the lower bound if the time integral is less than the lower bound, and
the upper bound if the time integral is greater than the upper bound. The
dialog box in the example specifies a lower and upper bound and an initial
condition of 2, 3, and 2.5, respectively. The scope shows the resulting output
when the input is a sine wave of amplitude 1.

Using S-Functions in Models

See “Processing S-Function Parameters” on page 2-7 and “Handling Errors” on
page 7-37 for information on how to access user-specified parameters in an
S-function.

You can use the Simulink masking facility to create custom dialog boxes and
icons for your S-function blocks. Masked dialog boxes can make it easier to
specify additional parameters for S-functions. For discussions of additional
parameters and masking, see the Using Simulink documentation.

When to Use an S-Function

The most common use of S-functions is to create custom Simulink blocks. You
can use S-functions for a variety of applications, including

¢ Adding new general purpose blocks to Simulink

¢ Adding blocks that represent hardware device drivers

¢ Incorporating existing C code into a simulation

® Describing a system as a set of mathematical equations

¢ Using graphical animations (see the inverted pendulum demo, penddemo)
An advantage of using S-functions is that you can build a general purpose block

that you can use many times in a model, varying parameters with each
instance of the block.

1-5

1 Overview of S-Functions

How S-Functions Work

1-6

To create S-functions, you need to know how S-functions work. Understanding
how S-functions work, in turn, requires understanding how Simulink
simulates a model, and this, in turn requires an understanding of the
mathematics of blocks. This section therefore begins by explaining the
mathematical relationship between a block’s inputs, states, and outputs.

Mathematics of Simulink Blocks

A Simulink block consists of a set of inputs, a set of states, and a set of outputs,
where the outputs are a function of the sample time, the inputs, and the block’s
states.

u X > Y
(Input) (sates) foutput)

The following equations express the mathematical relationships between the
inputs, outputs, and the states.

X, = fy(t,x,u) (Derivative)

xg = f(txw) (Update)
where x = X, +X;

Simulation Stages

Execution of a Simulink model proceeds in stages. First comes the
initialization phase. In this phase, Simulink incorporates library blocks into
the model, propagates widths, data types, and sample times, evaluates block
parameters, determines block execution order, and allocates memory. Then
Simulink enters a simulation loop, where each pass through the loop is referred
to as a simulation step. During each simulation step, Simulink executes each
of the model’s blocks in the order determined during initialization. For each

How S-Functions Work

block, Simulink invokes functions that compute the block’s states, derivatives,
and outputs for the current sample time. This continues until the simulation is
complete.

1-7

l Overview of S-Functions

The following figure illustrates the stages of a simulation.

Initialize model

Calculate time of next sample hit
(only for variable sample time blocks)

Calculate outputs

|

Update discrete states

2

§ > Clean up at final

= time step

.S

:g Calculate derivatives

i

n

Calculate outputs > Integration

(minor time step)

Calculate derivatives

Locate zero crossings

Figure 1-2: How Simulink Performs Simulation

1-8

How S-Functions Work

S-Function Callback Methods

An S-function comprises a set of S-function callback methods that perform
tasks required at each simulation stage. During simulation of a model, at each
simulation stage, Simulink calls the appropriate methods for each S-Function
block in the model. Tasks performed by S-function methods include

¢ Initialization — Prior to the first simulation loop, Simulink initializes the
S-function. During this stage, Simulink

= Initializes the SimStruct, a simulation structure that contains
information about the S-function

= Sets the number and dimensions of input and output ports
= Sets the block sample times
= Allocates storage areas and the sizes array

¢ Calculation of next sample hit — If you’ve created a variable sample time
block, this stage calculates the time of the next sample hit; that is, it
calculates the next step size.

e Calculation of outputs in the major time step — After this call is complete,
all the output ports of the blocks are valid for the current time step.

¢ Update of discrete states in the major time step — In this call, all blocks
should perform once-per-time-step activities such as updating discrete states
for next time around the simulation loop.

¢ Integration — This applies to models with continuous states and/or
nonsampled zero crossings. If your S-function has continuous states,
Simulink calls the output and derivative portions of your S-function at minor
time steps. This is so Simulink can compute the states for your S-function. If
your S-function (C MEX only) has nonsampled zero crossings, Simulink calls
the output and zero-crossings portions of your S-function at minor time steps
so that it can locate the zero crossings.

Note See “How Simulink Works” in the Using Simulink documentation for
an explanation of major and minor time steps.

1-9

1 Overview of S-Functions

Implementing S-Functions

1-10

You can implement an S-function as either an M-file or a MEX file. The
following sections describe these alternative implementations and discuss the
advantages of each.

M-File S-Functions
An M-file S-function consists of a MATLAB function of the following form:

[sys,x0,str,ts]=f(t,x,u,flag,p1,p2,...)

where f is the S-function’s name, t is the current time, x is the state vector of
the corresponding S-function block, u is the block’s inputs, flag indicates a task
to be performed, and p1, p2, ... are the block’s parameters. During simulation
of a model, Simulink repeatedly invokes f, using f1lag to indicate the task to be
performed for a particular invocation. Each time the S-function performs the
task, it returns the result in a structure having the format shown in the syntax
example.

A template implementation of an M-file S-function, sfuntmpl.m, resides in
matlabroot/toolbox/simulink/blocks. The template consists of a top-level
function and a set of skeleton subfunctions, each of which corresponds to a
particular value of flag. The top-level function invokes the subfunction
indicated by flag. The subfunctions, called S-function callback methods,
perform the tasks required of the S-function during simulation. The following
table lists the contents of an M-file S-function that follows this standard
format.

Simulation Stage S-Function Routine Flag
Initialization mdlInitializeSizes flag = 0
Calculation of next sample md1GetTimeOfNextVarHit flag = 4
hit (variable sample time

block only)

Calculation of outputs mdlOutputs flag = 3
Update of discrete states mdlUpdate flag = 2

Implementing S-Functions

Simulation Stage S-Function Routine Flag
Calculation of derivatives mdlDerivatives flag = 1
End of simulation tasks mdlTerminate flag = 9

We recommend that you follow the structure and naming conventions of the
template when creating M-file S-functions. This makes it easier for others to
understand and maintain M-file S-functions that you create. See Chapter 2,
“Writing M S-Functions,” for information on creating M-file S-functions.

MEX-File S-Functions

Like an M-file S-function, a MEX-file function consists of a set of callback
routines that Simulink invokes to perform various block-related tasks during
a simulation. Significant differences exist, however. For one, MEX-file
functions are implemented in a different programming language: C, C++, Ada,
or Fortran. Also, Simulink invokes MEX S-function routines directly instead of
via a flag value as with M-file S-functions. Because Simulink invokes the
functions directly, MEX-file functions must follow standard naming
conventions specified by Simulink.

Other key differences exist. For one, the set of callback functions that MEX
functions can implement is much larger than can be implemented by M-file
functions. A MEX function also has direct access to the internal data structure,
called the SimStruct, that Simulink uses to maintain information about the
S-function. MEX-file functions can also use the MATLAB MEX-file API to
access the MATLAB workspace directly.

A C MEX-file S-function template, called sfuntmpl _basic.c, resides in the
matlabroot/simulink/src directory. The template contains skeleton
implementations of all the required and optional callback routines that a C
MEX-file S-function can implement. For a more amply commented version of
the template, see sfuntmpl_doc.c in the same directory.

MEX-File Versus M-File S-Functions

M-file and MEX-file S-functions each have advantages. The advantage of M-file
S-functions is speed of development. Developing M-file S-functions avoids the
time-consuming compile-link-execute cycle required by development in a
compiled language. M-file S-functions also have easier access to MATLAB and
toolbox functions.

1-11

1 Overview of S-Functions

The primary advantage of MEX-file functions is versatility. The larger number
of callbacks and access to the SimStruct enable MEX-file functions to
implement functionality not accessible to M-file S-functions. Such functionality
includes the ability to handle data types other than double, complex inputs,
matrix inputs, and so on.

1-12

S-Function Concepts

S-Function Concepts

Understanding these key concepts should enable you to build S-functions
correctly:

¢ Direct feedthrough
¢ Dynamically sized inputs

¢ Setting sample times and offsets

Direct Feedthrough

Direct feedthrough means that the output (or the variable sample time for
variable sample time blocks) is controlled directly by the value of an input port.
A good rule of thumb is that an S-function input port has direct feedthrough if

¢ The output function (nd10utputs or flag==3) is a function of the input u.
That is, there is direct feedthrough if the input u is accessed in md10utputs.
Outputs can also include graphical outputs, as in the case of an XY Graph
scope.

¢ The “time of next hit” function (md1GetTimeOfNextVarHit or flag==4) of a
variable sample time S-function accesses the input u.

An example of a system that requires its inputs (i.e., has direct feedthrough) is
the operation y = k x u, where u is the input, % is the gain, and y is the output.

An example of a system that does not require its inputs (i.e., does not have
direct feedthrough) is this simple integration algorithm

Outputs: y = x
Derivative: ¥ = u

where x is the state, x is the state derivative with respect to time, u is the
input, and y is the output. Note that x'is the variable that Simulink integrates.
It is very important to set the direct feedthrough flag correctly because it
affects the execution order of the blocks in your model and is used to detect
algebraic loops.

Dynamically Sized Arrays

S-functions can be written to support arbitrary input dimensions. In this case,
the actual input dimensions are determined dynamically when a simulation is

1-13

1 Overview of S-Functions

1-14

started by evaluating the dimensions of the input vector driving the S-function.
The input dimensions can also be used to determine the number of continuous
states, the number of discrete states, and the number of outputs.

M-file S-functions can have only one input port and that input port can accept
only one-dimensional (vector) signals. However, the signals can be of varying
widths.Within an M-file S-function, to indicate that the input width is
dynamically sized, specify a value of -1 for the appropriate fields in the sizes
structure, which is returned during the mdlInitializeSizes call. You can
determine the actual input width when your S-function is called by using
length(u). If you specify a width of 0, the input port is removed from the
S-function block.

A C S-function can have multiple I/O ports and the ports can have different
dimensions. The number of dimensions and the size of each dimension can be
determined dynamically.

For example, the following illustration shows two instances of the same
S-Function block in a model.

hux ——f] mystem

s S-Function
®—> system
Elndk S-Function

The upper S-Function block is driven by a block with a three-element output
vector. The lower S-Function block is driven by a block with a scalar output. By
specifying that the S-Function block has dynamically sized inputs, the same
S-function can accommodate both situations. Simulink automatically calls the
block with the appropriately sized input vector. Similarly, if other block
characteristics, such as the number of outputs or the number of discrete or
continuous states, are specified as dynamically sized, Simulink defines these
vectors to be the same length as the input vector.

C S-functions give you more flexibility in specifying the widths of input and
output ports. See “Creating Input and Output Ports” on page 7-10.

S-Function Concepts

Setting Sample Times and Offsets

Both M-file and C MEX S-functions allow a high degree of flexibility in
specifying when an S-function executes. Simulink provides the following
options for sample times:

¢ Continuous sample time — For S-functions that have continuous states
and/or nonsampled zero crossings (see “How Simulink Works” in Using
Simulink for explanation of zero crossings). For this type of S-function, the
output changes in minor time steps.

¢ Continuous but fixed in minor time step sample time — For S-functions that
need to execute at every major simulation step, but do not change value
during minor time steps.

® Discrete sample time — If your S-Function block’s behavior is a function of
discrete time intervals, you can define a sample time to control when
Simulink calls the block. You can also define an offset that delays each
sample time hit. The value of the offset cannot exceed the corresponding
sample time.

A sample time hit occurs at time values determined by the formula
TimeHit = (n * period) + offset

where n, an integer, is the current simulation step. The first value of n is
always zero.

If you define a discrete sample time, Simulink calls the S-function md10utput
and md1lUpdate routines at each sample time hit (as defined in the above
equation).

Variable sample time — A discrete sample time where the intervals between
sample hits can vary. At the start of each simulation step, S-functions with
variable sample times are queried for the time of the next hit.

Inherited sample time — Sometimes an S-Function block has no inherent
sample time characteristics (that is, it is either continuous or discrete,
depending on the sample time of some other block in the system). You can
specify that the block’s sample time is inherited. A simple example of this is
a Gain block that inherits its sample time from the block driving it.

A block can inherit its sample time from
= The driving block
= The destination block

1-15

1 Overview of S-Functions

1-16

= The fastest sample time in the system

To set a block’s sample time as inherited, use -1 in M-file S-functions and
INHERITED_SAMPLE_TIME in C S-functions as the sample time. For more
information on the propagation of sample times, see “Sample Time Colors” in
Using Simulink.
S-functions can be either single or multirate; a multirate S-function has
multiple sample times.

Sample times are specified in pairs in this format: [sample time,
offset_time]. The valid sample time pairs are

[CONTINUOUS_SAMPLE_TIME, 0.0]
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
[discrete _sample time period, offset]
[VARIABLE_SAMPLE_TIME, 0.0]

where

CONTINUOUS_SAMPLE_TIME = O.
FIXED_IN_MINOR_STEP_OFFSET
VARIABLE_SAMPLE_TIME = -2.0

0
=1.0

and the italics indicate that a real value is required.

Alternatively, you can specify that the sample time is inherited from the
driving block. In this case the S-function can have only one sample time pair

[INHERITED_SAMPLE_TIME, 0.0]

or

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

where
INHERITED_SAMPLE_TIME = -1.0
The following guidelines might help you specify sample times:
¢ A continuous S-function that changes during minor integration steps should

register the [CONTINUOUS SAMPLE_TIME, 0.0] sample time.

¢ A continuous S-function that does not change during minor integration steps
should register the
[CONTINUOUS SAMPLE TIME, FIXED _IN MINOR_STEP_ OFFSET] sample time.

S-Function Concepts

¢ A discrete S-function that changes at a specified rate should register the
discrete sample time pair, Wiscrete sample time period,offset],
where

discrete_sample period > 0.0

and
0.0 < offset < discrete_sample period

¢ A discrete S-function that changes at a variable rate should register the
variable step discrete sample time.

[VARIABLE_SAMPLE_TIME, 0.0]

The md1GetTimeOfNextVarHit routine is called to get the time of the next
sample hit for the variable step discrete task.

If your S-function has no intrinsic sample time, you must indicate that your
sample time is inherited. There are two cases:

® An S-function that changes as its input changes, even during minor
integration steps, should register the [INHERITED SAMPLE_TIME, 0.0]
sample time.

¢ An S-function that changes as its input changes, but doesn’t change during
minor integration steps (that is, remains fixed during minor time steps),
should register the
[INHERITED SAMPLE_TIME, FIXED IN _MINOR_STEP OFFSET] sample time.

The Scope block is a good example of this type of block. This block should run
at the rate of'its driving block, either continuous or discrete, but should never
run in minor steps. If it did, the scope display would show the intermediate
computations of the solver rather than the final result at each time point.

1-17

1 Overview of S-Functions

S-Function Examples

Simulink comes with a library of S-function examples.

To run an example:
1 Enter sfundemos at the MATLAB command line.

MATLAB displays the S-function demo library

Z1Library: sfundemos L I] 5

File Edit Yiew Format Help

M-iles G+ CHiks Ada Fortran
M-file St il Ada Fortran
S-functions S-unctions S-functions S-functions S-unctions

Each block represents a category of S-function examples.

2 Click a category to display the examples that it includes.

L7 Uit ary: sfumsbermes, -l & s

a0zl

3 Click a block to open and run the example that it represents.

1-18

S-Function Examples

It might be helpful to examine some sample S-functions as you read the next
chapters. Code for the examples is stored in these subdirectories under the
MATLAB root directory:

M-files toolbox/simulink/blocks
C, C++, and Fortran simulink/src
Ada simulink/ada/examples

1-19

1 Overview of S-Functions

M-File S-Function Examples

The simulink/blocks directory contains many M-file S-functions. Consider
starting off by looking at these files.

Filename

Description

csfunc.m
dsfunc.m

vsfunc.m

mixed.m

vdpm.m

simom.m

simom2.m

limintm.m

sfun_varargm.m

Define a continuous system in state-space format.
Define a discrete system in state-space format.

IMlustrates how to create a variable sample time block.
This block implements a variable step delay in which
the first input is delayed by an amount of time
determined by the second input.

Implement a hybrid system consisting of a continuous
integrator in series with a unit delay.

Implement the Van der Pol equation (similar to the
demo model, vdp).

Example state-space M-file S-function with internal A,
B, C, and D matrices. This S-function implements

dx/at = Ax + By
y = Cx + Du

where x is the state vector, u is the input vector, and y
is the output vector. The A, B, C, and D matrices are
embedded in the M-file.

Example state-space M-file S-function with external A,
B, C, and D matrices. The state-space structure is the
same as in simom.m, but the A, B, C, and D matrices are
provided externally as parameters to this file.

Implement a continuous limited integrator where the
output is bounded by lower and upper bounds and
includes initial conditions.

Example M-file S-function showing how to use the
MATLAB vararg facility.

1-20

S-Function Examples

Filename

Description

vlimintm.m

vdlimintm.m

Example of a continuous limited integrator S-function.
This illustrates how to use the size entry of —1 to build
an S-function that can accommodate a dynamic
input/state width.

Example of a discrete limited integrator S-function.
This example is identical to viimint.m, except that the
limited integrator is discrete.

C S-Function Examples

The simulink/src directory also contains examples of C MEX S-functions,
many of which have an M-file S-function counterpart. These C MEX
S-functions are listed in this table.

Filename Description

barplot.c Access simulink signals without using the
standard block inputs.

csfunc.c Example C MEX S-function for defining a
continuous system.

dlimint.c Implement a discrete-time limited integrator.

dsfunc.c Example C MEX S-function for defining a discrete

fcncallgen.c

limintc.c

mixedm.c

mixedmex.c

system.

Execute function-call subsystems n times at the
designated rate (sample time).

Implement a limited integrator.

Implement a hybrid dynamic system consisting of
a continuous integrator (1/s) in series with a unit
delay (1/z).

Implement a hybrid dynamic system with a single
output and two inputs.

1-21

1 Overview of S-Functions

1-22

Filename

Description

quantize.c

resetint.c

sdotproduct

sftable2.c

sfun_atol.c

sfun_bitop.c

sfun_cplx.c

sfun_directlook.c

sfun_dtype_io.c

sfun_dtype_param.c

sfun_dynsize.c

sfun_errhdl.c

sfun_fcncall.c

sfun_frmad.c

Example MEX-file for a vectorized quantizer
block. Quantizes the input into steps as specified
by the quantization interval parameter, q.

A reset integrator.

Compute dot product (multiply-accumulate) of
two real or complex vectors.

Two-dimensional table lookup in S-function form.

Set different absolute tolerances for each
continuous state.

Perform the bitwise operations AND, OR, XOR, left
shift, right shift, and one's complement on uints,
uint16, and uint32 inputs.

Complex signal add with one input port and one
parameter.

Direct 1-D lookup.

Example of the use of Simulink data types for
inputs and outputs.

Example of the use of Simulink data types for
parameters.

Simple example of how to size outputs of an
S-function dynamically.

Simple example of how to check parameters using
the md1CheckParams S-function routine.

Example of an S-function that is configured to
execute function-call subsystems on the first and
third output elements.

Frame-based A/D converter.

S-Function Examples

Filename

Description

sfun_frmda.c

sfun_frmdft.c

sfun_frmunbuff.c

sfun_multiport.c

sfun_manswitch.c

sfun_matadd.c

sfun_multirate.c

sfun_psbbreaker.c

sfun_psbcontc.c
sfun_psbdiscc.c
sfun_runtimel.c
sfun_runtime2.c

sfun_zc.c

sfun_zc_sat.c

sfunmem.c

Frame-based D/A converter.

Multichannel frame-based Discrete-Fourier
transformation (and its inverse).

Frame-based unbuffer block.

S-function that has multiple input and output
ports.

Manual switch.

Matrix add with one input port, one output port,
and one parameter.

Demonstrate how to specify port-based sample
times.

Implement the logic for the breaker block in the
Power System Blockset.

Continuous implementation of state-space system.
Discrete implementation of state-space system.
Run-time parameter example.

Run-time parameter example.

Demonstrate use of nonsampled zero crossings to
implement abs (u). This S-function is designed to
be used with a variable-step solver.

Saturation example that uses zero crossings.

A one-integration-step delay and hold memory
function.

1-23

1 Overview of S-Functions

1-24

Filename

Description

simomex.c

smatrxcat.c
sreshape.c

stspace.c

stvctf.c

stvdct.f

stvmgain.c
table3.c

timestwo.c

Implements a single-output, two-input state-space
dynamic system described by these state-space
equations

dx/dt = Ax + Bu
y = Cx + Du

where x is the state vector, u is vector of inputs,
and y is the vector of outputs.

Matrix concatenation.
Reshape the input signal.

Implement a set of state-space equations. You can
turn this into a new block by using the S-Function
block and mask facility. This example MEX-file
performs the same function as the built-in
State-Space block. This is an example of a
MEX-file where the number of inputs, outputs,
and states is dependent on the parameters passed
in from the workspace. Use this as a template for
other MEX-file systems.

Implement a continuous-time transfer function
whose transfer function polynomials are passed in
via the input vector. This is useful for continuous
time adaptive control applications.

Implement a discrete-time transfer function
whose transfer function polynomials are passed in
via the input vector. This is useful for
discrete-time adaptive control applications.

Time-varying matrix gain.
3-D lookup table.
Basic C MEX S-function that doubles its input.

S-Function Examples

Filename Description

vdlmint.c Implement a discrete-time vectorized limited
integrator.

vdpmex.c Implement the Van der Pol equation.

vlimint.c Implement a vectorized limited integrator.

vsfunc.c IMlustrate how to create a variable sample time

block in Simulink. This block implements a
variable-step delay in which the first input is
delayed by an amount of time determined by the
second input.

Fortran S-Function Examples
The following table lists sample Fortran S-functions.

Filename Description

sfun_timestwo for. Sample Level 1 Fortran representation of a C

for timestwo S-function.

sfun_atmos.c Calculation of the 1976 standard atmosphere to
86 km.

vdpmexf.for Van der Pol system.

C++ S-Function Examples
The following table lists sample C++ S-functions.

Filename Description

sfun_counter_cpp.cpp Store a C++ object in the pointers vector PWork.

1-25

1 Overview of S-Functions

Ada S-Function Examples

The simulink/ada/examples directory contains the following examples of
S-functions implemented in Ada.

Directory Name Description

matrix_gain Implement a Matrix Gain block.
multi_port Multiport block.

simple lookup Lookup table. Illustrates use of a wrapper

S-function that wraps stand-alone Ada code (i.e.,
Ada packages and procedures) both for use with
Simulink as an S-function and directly with Ada
code generated using the RTW Ada Coder.

times_two Output twice its input.

1-26

Writing M S-Functions

The following sections explain how to use MATLAB’s M programming language to create S-functions.

Level-1 Versus Level-2 M-File Contrasts two approaches to using M code to create
S-Functions (p. 2-2) S-functions.

Writing Level-2 M-File S-Functions Explains the recommended approach for developing new
(p. 2-3) M-file S-functions.

Writing Level-1 M-File S-Functions Explains an older approach to writing M-file S-functions
(p. 2-4) that you may need to know to maintain S-functions
written for earlier releases of Simulink.

2 Writing M S-Functions

Level-1 Versus Level-2 M-File S-Functions
Simulink supports two approaches to creating M-file S-functions:

e Tevell
® Level 2

Level 1 is the earlier of the two approaches (see “Writing Level-1 M-File
S-Functions”). It provides very limited access to Simulink custom block
features. Simulink supports it primarily to enable custom blocks developed
with previous releases to work with the current release. By contrast, Level 2
provides complete access to custom block features. It is the approach of choice
for implementing M-file S-functions for use in the current and future releases
of Simulink.

2-2

Writing Level-2 M-File S-Functions

Writing Level-2 M-File S-Functions

The Level-2 M-file S-function API supports all Simulink features, including
frames, matrices, and non-double datatypes.

A self-documenting template for writing Level-2 M-file S-functions resides at

<matlabroot>/toolbox/simulink/blocks/msfuntmpl.m

To create an M-file S-function, make a copy of the template and edit the copy
as necessary to reflect the desired behavior of the S-function you are creating.
The comments in the template explain how to do this. To create an instance of
the S-function in a model, first create an instance of the M-File (level-2)
S-Function block in the model. Then open the block’s parameter dialog box and
enter the name of the M-file that implements your S-function in the dialog
box’s M-file name field. If your function uses any additional parameters, enter
their values as a comma-separated list in the dialog box’s Parameters field.

Generating code from a model containing a Level-2 M-file S-function requires
that you provide a corresponding TLC file. You do not need a TLC file to run a
model in accelerated mode as the Simulink Accelerator runs Level-2 M-file
S-functions in interpreted mode.

2-3

2 Writing M S-Functions

2-4

Writing Level-1 M-File S-Functions

A Level-1 M-file S-function consists of a MATLAB function of the following
form

[sys,x0,str,ts]=f(t,x,u,flag,pl,p2,...)

where f is the name of the S-function. During simulation of a model, Simulink
repeatedly invokes f, using the flag argument to indicate the task (or tasks)

to be performed for a particular invocation. Each time the S-function performs
the task and returns the results in an output vector.

A template implementation of an M-file S-function, sfuntmpl.m, resides in
matlabroot/toolbox/simulink/blocks. The template consists of a top-level
function and a set of skeleton subfunctions, called S-function callback methods,
each of which corresponds to a particular value of flag. The top-level function
invokes the subfunction indicated by flag. The subfunctions perform the
actual tasks required of the S-function during simulation.

S-Function Arguments

Simulink passes the following arguments to an S-function:

t Current time

X State vector

u Input vector

flag Integer value that indicates the task to be performed by the
S-function

Writing level-1 M-File S-Functions

The following table describes the values that flag can assume and lists the
corresponding S-function method for each value.

Table 2-1: Flag Argument

Flag S-Function Routine

Description

0 mdlInitializeSizes

1 mdlDerivatives

2 mdlUpdate

3 md1lOutputs

4 mdlGetTimeOfNextVarHit
9 mdlTerminate

Defines basic S-Function block
characteristics, including sample
times, initial conditions of
continuous and discrete states, and
the sizes array.

Calculates the derivatives of the
continuous state variables.

Updates discrete states, sample
times, and major time step
requirements.

Calculates the outputs of the
S-function.

Calculates the time of the next hit
in absolute time. This routine is
used only when you specify a
variable discrete-time sample time
inmdlInitializeSizes.

Performs any necessary
end-of-simulation tasks.

S-Function Outputs

An M-file returns an output vector containing the following elements:

® sys, a generic return argument. The values returned depend on the flag
value. For example, for flag = 3, sys contains the S-function outputs.

® x0, the initial state values (an empty vector if there are no states in the
system). x0 is ignored, except when flag = 0.

2-5

2 Writing M S-Functions

¢ str, reserved for future use. M-file S-functions must set this to the empty
matrix, [].

® ts, a two-column matrix containing the sample times and offsets of the block
(see “Specifying Sample Time” in the online documentation for information
on how to specify a block’s sample time and offset).

For example, if you want your S-function to run at every time step
(continuous sample time), set ts to [0 0]. If you want your S-function to run
at the same rate as the block to which it is connected (inherited sample time),
set ts to [-1 0]. If you want it to run every 0.25 seconds (discrete sample
time) starting at 0.1 seconds after the simulation start time, set ts to [0.25
0.1].

You can create S-functions that do multiple tasks, each at a different sample
rate (i.e., a multirate S-function). In this case, ts should specify all the
sample rates used by your S-function in ascending order by sample time. For
example, suppose your S-function performs one task every 0.25 second
starting from the simulation start time and another task every 1 second
starting 0.1 second after the simulation start time. In this case, your
S-function should set ts equalto [.25 0; 1.0 .1]. This will cause Simulink
to execute the S-function at the following times: [0 0.1 0.25 0.5 0.75 1
1.1 ...]. Your S-function must decide at every sample time which task to
perform at that sample time.

You can also create an S-function that performs some tasks continuously
(i.e., at every time step) and others at discrete intervals. See “Example -
Hybrid System S-Function” on page 2-15) for an example of how to
implement such a hybrid block.

Defining S-Function Block Characteristics

For Simulink to recognize an M-file S-function, you must provide it with
specific information about the S-function. This information includes the
number of inputs, outputs, states, and other block characteristics.

To give Simulink this information, call the simsizes function at the beginning
of mdlInitializeSizes.

sizes = simsizes;

This function returns an uninitialized sizes structure. You must load the
sizes structure with information about the S-function. The table below lists

2-6

Writing level-1 M-File S-Functions

the fields of the sizes structure and describes the information contained in
each field.

Table 2-2: Fields in the sizes Structure

Field Name Description
sizes.NumContStates Number of continuous states
sizes.NumDiscStates Number of discrete states
sizes.NumOutputs Number of outputs
sizes.NumInputs Number of inputs
sizes.DirFeedthrough Flag for direct feedthrough
sizes.NumSampleTimes Number of sample times

After you initialize the sizes structure, call simsizes again:

Sys = simsizes(sizes);

This passes the information in the sizes structure to sys, a vector that holds
the information for use by Simulink.

Processing S-Function Parameters

When invoking an M-file S-function, Simulink always passes the standard
block parameters, t, x, u, and flag, to the S-function as function arguments.
Simulink can pass additional block-specific parameters specified by the user to
the S-function. The user specifies the parameters in the S-function
parameters field of the S-function’s block parameter dialog (see “Passing
Parameters to S-Functions” on page 1-4). Ifthe block dialog specifies additional
parameters, Simulink passes the parameters to the S-function as additional
function arguments. The additional arguments follow the standard arguments
in the S-function argument list in the order in which the corresponding
parameters appear in the block dialog. You can use this block-specific
S-function parameter capability to allow the same S-function to implement
various processing options. See the 1imintm.m example in the
toolbox/simulink/blocks directory for an example of an S-function that uses
block-specific parameters in this way.

2-7

2 Writing M S-Functions

Examples of Level-1 M-File S-Functions

The easiest way to understand how S-functions work is to look at examples.
This section starts off with a s simple example (timestwo) that has no states.
Most S-Function blocks require the handling of states, whether continuous or
discrete. The sections that follow discuss four common types of systems you can
model in Simulink using S-functions:

¢ Continuous

® Discrete

¢ Hybrid

¢ Variable-step

All examples are based on the M-file S-function template found in sfuntmpl.m.

Simple Level-1 M-File S-Function Example
This block takes an input scalar signal, doubles it, and plots it to a scope.

ﬁu P timeshuo —b-:l
Sine Wrave S-Function Scope

The M-file code that contains the S-function is modeled on an S-function
template called sfuntmpl.m, which is included with Simulink. By using this
template, you can create an M-file S-function that is very close in appearance

to a C MEX S-function. This is useful because it makes a transition from an
M-file to a C MEX-file much easier.

Below is the M-file code for the timestwo.m S-function.

function [sys,x0,str,ts] = timestwo(t,x,u,flag)

% Dispatch the flag. The switch function controls the calls to
% S-function routines at each simulation stage.

switch flag,

case 0
[sys,x0,str,ts] = mdlInitializeSizes; % Initialization

case 3
sys = mdlOutputs(t,x,u); % Calculate outputs

2-8

Writing level-1 M-File S-Functions

case {1, 2, 4, 9}
sys = []; % Unused flags

otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end;
% End of function timestwo.

Below are the S-function subroutines that timestwo.m calls.

unction mdlInitializeSizes initializes the states, sample
imes, state ordering strings (str), and sizes structure.

o°
~+ M

function [sys,x0,str,ts] = mdlInitializeSizes

% Call function simsizes to create the sizes structure.
sizes = simsizes;

% Load the sizes structure with the initialization information.
sizes.NumContStates= 0;

sizes.NumDiscStates= 0;

sizes.NumOutputs= 1;

sizes.NumInputs= 1;

sizes.DirFeedthrough=1;

sizes.NumSampleTimes=1;

% Load the sys vector with the sizes information.

Sys = simsizes(sizes);

i)

X0 = []; % No continuous states

o
i

str = []; % No state ordering

o
©

ts = [-1 0]; % Inherited sample time
% End of mdlInitializeSizes.

function sys = mdlOutputs(t,x,u)
Sys = 2*u;

% End of mdlOutputs.

2-9

2 Writing M S-Functions

To test this S-function in Simulink, connect a sine wave generator to the input
of an S-Function block. Connect the output of the S-Function block to a Scope.
Double-click the S-Function block to open the dialog box.

Block Parameters: 5-Function
— S-Function

User-definable block. Blocks may be wiitten in M., C or Fortran and must
conform to S-function standards. tx.u and flag are automatically passed ta
the S-function by Simulink. "“Extra"’ parameters may be specified in the
'S-function parameters' field,

=
F

S-function name:

ftimestuo Enter the function name here. In this
S-function parameters: example, enter timestwo.

| If you have additional parameters to
pass to the block, enter their names
here, separating them with commas. In
this example, there are no additional
parameters.

Apply Rewvert Help Cloze

You can now run this simulation.

Example - Continuous State S-Function

Simulink includes a function called csfunc.m, which is an example of a
continuous state system modeled in an S-function. Here is the code for the
M-file S-function.

function [sys,x0,str,ts] = csfunc(t,x,u,flag)
s CSFUNC An example M-file S-function for defining a system of
continuous state equations:
x' = AXx + Bu
% y = Cx + Du

o° o°

o°

o°

o°

Generate a continuous linear system:

A=[-0.09 -0.01
1 0];
B=[1 -7
0 -2];
c=[O 2
1 -51;
D=[-3 0
1 0];

2-10

Writing level-1 M-File S-Functions

o°

% Dispatch the flag.

o°

switch flag,

case O
[sys,x0,str,ts]=mdlInitializeSizes(A,B,C,D); % Initialization

case 1
sys = mdlDerivatives(t,x,u,A,B,C,D); % Calculate derivatives

case 3
sys = mdlOutputs(t,x,u,A,B,C,D); % Calculate outputs

case { 2, 4, 9 } % Unused flags
sys = [1];
otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end
% End of csfunc.

% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the
% S-function.

function [sys,x0,str,ts] = mdlInitializeSizes(A,B,C,D)

% Call simsizes for a sizes structure, fill it in and convert it
% to a sizes array.

sizes = simsizes;
sizes.NumContStates
sizes.NumDiscStates
sizes.NumOutputs
sizes.NumInputs
sizes.DirFeedthrough
sizes.NumSampleTimes
Sys = simsizes(sizes);

©

I}
-

1l
- =N DMNMODN

-

; % Matrix D is nonempty.

2-11

2 Writing M S-Functions

% Initialize the initial conditions.

o°

x

0 = zeros(2,1);

o°

o°

str is an empty matrix.

o°

str = [1;

o°

o°

Initialize the array of sample times; in this example the sample
time is continuous, so set ts to 0 and its offset to O.

o°

o°

ts = [0 0];
% End of mdlInitializeSizes.

o°

o°

mdlDerivatives
Return the derivatives for the continuous states.

o°

o°

function sys = mdlDerivatives(t,x,u,A,B,C,D)
sys = A*X + B*u;
End of mdlDerivatives.

o°

o°

md1lOutputs
Return the block outputs.

o® of

o°

o°

function sys = mdlOutputs(t,x,u,A,B,C,D)
sys = C*x + D*u;
% End of mdlOutputs.

The preceding example conforms to the simulation stages discussed earlier in
this chapter. Unlike timestwo.m, this example invokes md1Derivatives to
calculate the derivatives of the continuous state variables when flag = 1. The
system state equations are of the form

x'= AX + Bu
y = Cx + Du

so that very general sets of continuous differential equations can be modeled
using csfunc.m. Note that csfunc.mis similar to the built-in State-Space block.

2-12

Writing level-1 M-File S-Functions

This S-function can be used as a starting point for a block that models a
state-space system with time-varying coefficients.

Each time the md1Derivatives routine is called it must explicitly set the values
of all derivatives. The derivative vector does not maintain the values from the
last call to this routine. The memory allocated to the derivative vector changes
during execution.

Example - Discrete State S-Function

Simulink includes a function called dsfunc.m, which is an example of a discrete
state system modeled in an S-function. This function is similar to csfunc.m, the
continuous state S-function example. The only difference is that md1lUpdate is
called instead of md1Derivatives. mdlUpdate updates the discrete states when
flag = 2. Note that for a single-rate discrete S-function, Simulink calls the
mdlUpdate, md1Outputs, and md1GetTimeOfNextVarHit (if needed) routines
only on sample hits. Here is the code for the M-file S-function.

function [sys,x0,str,ts] = dsfunc(t,x,u,flag)

An example M-file S-function for defining a discrete system.
% This S-function implements discrete equations in this form:
% x(n+1) = Ax(n) + Bu(n)

% y(n) = Cx(n) + Du(n)

o°

% Generate a discrete linear system:
A=[1.3839 0.5097

1.0000 0];
B=[2.5559 0
0 4.2382];
c=[0 2.0761
0 7.7891];
D=[0.8141 2.9334
1.2426 0];

switch flag,
case O
sys = mdlInitializeSizes(A,B,C,D); % Initialization

case 2
sys = mdlUpdate(t,x,u,A,B,C,D); % Update discrete states

2-13

2 Writing M S-Functions

case 3
sys = mdlOutputs(t,x,u,A,B,C,D); % Calculate outputs

case {1, 4, 9} % Unused flags
sys = [1;

otherwise
error(['unhandled flag = ',num2str(flag)]); % Error handling
end
% End of dsfunc.

function [sys,x0,str,ts] = mdlInitializeSizes(A,B,C,D)

% Call simsizes for a sizes structure, fill it in, and convert it
% to a sizes array.

sizes = simsizes;
sizes.NumContStates
sizes.NumDiscStates
sizes.NumQutputs
sizes.NumInputs
sizes.DirFeedthrough
sizes.NumSampleTimes
Sys = simsizes(sizes);

x0 = ones(2,1); % Initialize the discrete states.
str = [1; % Set str to an empty matrix.

ts = [1 0]; % sample time: [period, offset]

% End of mdlInitializeSizes.

; % Matrix D is nonempty.

|
- = NDMNMDNO

H

function sys = mdlUpdates(t,x,u,A,B,C,D)
sys = A*X + B*u;
% End of mdlUpdate.

2-14

Writing level-1 M-File S-Functions

function sys = mdlOutputs(t,x,u,A,B,C,D)
sys = C*x + D*u;
% End of mdlOutputs.

The above example conforms to the simulation stages discussed earlier in
chapter 1. The system discrete state equations are of the form

X(n+1) = Ax(n) + Bu(n)
y(n) = Cx(n) + Du(n)

so that very general sets of difference equations can be modeled using
dsfunc.m. This is similar to the built-in Discrete State-Space block. You can
use dsfunc.mas a starting point for modeling discrete state-space systems with
time-varying coefficients.

Example - Hybrid System S-Function

Simulink includes a function called mixedm.m, which is an example of a hybrid
system (a combination of continuous and discrete states) modeled in an
S-function. Handling hybrid systems is fairly straightforward; the flag
parameter forces the calls to the correct S-function subroutine for the
continuous and discrete parts of the system. One subtlety of hybrid S-functions
(or any multirate S-function) is that Simulink calls the md1lUpdate,
md1lOutputs, and md1GetTimeOfNextVarHit routines at all sample times. This
means that in these routines you must test to determine which sample hit is
being processed and only perform updates that correspond to that sample hit.

mixed.m models a continuous Integrator followed by a discrete Unit Delay. In
Simulink block diagram form, the model looks like this.

O— - —*; ()

In

Integrator Unit Delay Hut

Here is the code for the M-file S-function.

function [sys,x0,str,ts] = mixedm(t,x,u,flag)

% A hybrid system example that implements a hybrid system

% consisting of a continuous integrator (1/s) in series with a
% unit delay (1/z).

2-15

2 Writing M S-Functions

o°

% Set the sampling period and offset for unit delay.
dperiod = 1;
doffset = 0;
switch flag,

case O % Initialization
[sys,x0,str,ts] = mdlInitializeSizes(dperiod,doffset);

case 1
sys = mdlDerivatives(t,x,u); % Calculate derivatives

case 2
sys = mdlUpdate(t,x,u,dperiod,doffset); % Update disc states

case 3
sys = mdlOutputs(t,x,u,doffset,dperiod); % Calculate outputs
case {4, 9}
sys = [1; % Unused flags
otherwise
error(['unhandled flag = ',num2str(flag)]); % Error handling
end

% End of mixedm.

o°

o°

mdlInitializeSizes
Return the sizes, initial conditions, and sample times for the
% S-function.

o°

o°

function [sys,x0,str,ts] = mdlInitializeSizes(dperiod,doffset)
sizes = simsizes;
sizes.NumContStates =
sizes.NumDiscStates =
sizes.NumOutputs
sizes.NumInputs
sizes.DirFeedthrough
sizes.NumSampleTimes
Sys = simsizes(sizes);
x0 = ones(2,1);

I non
NO = a4 a

2-16

Writing level-1 M-File S-Functions

str = [1;

ts = [0, 0 % sample time
dperiod, doffset];

% End of mdlInitializeSizes.

% mdlDerivatives
% Compute derivatives for continuous states.

function sys = mdlDerivatives(t,x,u)

sys = u;
% end of mdlDerivatives.

%

0/ __
m===

% mdlUpdate
% Handle discrete state updates, sample time hits, and major time
% step requirements.

function sys = mdlUpdate(t,x,u,dperiod,doffset)

% Next discrete state is output of the integrator.

% Return next discrete state if we have a sample hit within a

% tolerance of 1e-8. If we don't have a sample hit, return [] to
% indicate that the discrete state shouldn't change.

if abs(round((t-doffset)/dperiod)-(t-doffset)/dperiod) < 1e-8

sys = x(1); % mdlUpdate is "latching" the value of the
% continuous state, x(1), thus introducing a delay.
else
sys = [1; % This is not a sample hit, so return an empty
end % matrix to indicate that the states have not

% changed.
% End of mdlUpdate.

% mdlOutputs
% Return the output vector for the S-function.

2-17

2 Writing M S-Functions

[
“©

function sys = mdlOutputs(t,x,u,doffset,dperiod)
Return output of the unit delay if we have a
sample hit within a tolerance of 1e-8. If we
don't have a sample hit then return [] indicating
that the output shouldn't change.

0 o° o° o°

o°

if abs(round((t-doffset)/dperiod)-(t-doffset)/dperiod) < 1e-8

sys = x(2);
else
sys = []; % This is not a sample hit, so return an empty
end % matrix to indicate that the output has not changed

% End of mdlOutputs.

Example - Variable Sample Time S-Function

This M-file is an example of an S-function that uses a variable sample time.
This example, in an M-file called vsfunc.m, calls md1GetTimeOfNextVarHit
when flag = 4. Because the calculation of a next sample time depends on the
input u, this block has direct feedthrough. Generally, all blocks that use the
input to calculate the next sample time (flag = 4) require direct feedthrough.
Here is the code for the M-file S-function.

function [sys,x0,str,ts] = vsfunc(t,x,u,flag)

This example S-function illustrates how to create a variable
step block in Simulink. This block implements a variable step
delay in which the first input is delayed by an amount of time
determined by the second input.

0 o° o° o° o°

.

dt = u(2)
y(t+dt)

o°

Il
c
—_
~+
~

o°

switch flag,

case O
[sys,x0,str,ts] = mdlInitializeSizes; % Initialization

case 2
sys = mdlUpdate(t,x,u); % Update Discrete states

2-18

Writing level-1 M-File S-Functions

case 3
sys = mdlOutputs(t,x,u); % Calculate outputs

case 4
sys = mdlGetTimeOfNextVarHit(t,x,u); % Get next sample time

case {1, 9 }
sys = []; % Unused flags
otherwise
error(['Unhandled flag = ',num2str(flag)]); % Error handling
end
% End of vsfunc.

% mdlInitializeSizes
% Return the sizes, initial conditions, and sample times for the
% S-function.

function [sys,x0,str,ts] = mdlInitializeSizes

% Call simsizes for a sizes structure, fill it in and convert it
% to a sizes array.

sizes = simsizes;
sizes.NumContStates
sizes.NumDiscStates
sizes.NumOutputs
sizes.NumInputs
sizes.DirFeedthrough

I}
-

-

1]
AN = =2 O

I}
-

o°

flag=4 requires direct feedthrough
if input u is involved in
calculating the next sample time
hit.

o° o° o°

sizes.NumSampleTimes
Sys = simsizes(sizes);

E

o°

o°

Initialize the initial conditions.

o°

x0 = [0];

o°

2-19

2 Writing M S-Functions

% Set str to an empty matrix.

str = [1];

% Initialize the array of sample times.

ts = [2 0]; % variable sample time

% End of mdlInitializeSizes.

% mdlUpdate

% Handle discrete state updates, sample time hits, and major time
% step requirements.

o°

function sys = mdlUpdate(t,x,u)
sys = u(1);
% End of mdlUpdate.

% mdlOutputs
% Return the block outputs.

function sys = mdlOutputs(t,x,u)
sys = x(1);
% end mdlOutputs

% mdlGetTimeOfNextVarHit
% Return the time of the next hit for this block. Note that the
% result is absolute time.

o°

function sys = mdlGetTimeOfNextVarHit(t,x,u)
sys =t + u(2);
% End of mdlGetTimeOfNextVarHit.

md1GetTimeOfNextVarHit returns the time of the next hit, the time in the
simulation when vsfunc is next called. This means that there is no output from

2-20

Writing level-1 M-File S-Functions

this S-function until the time of the next hit. In vsfunc, the time of the next hit
issettot + u(2), which means that the second input, u(2), sets the time when
the next call to vsfunc occurs.

2-21

2 Writing M S-Functions

2-22

Writing S-Functions in C

The following sections explain how to use the C programming language to create S-functions.

Introduction (p. 3-2)

Building S-Functions Automatically
(p. 3-5)

S-Function Builder Dialog Box (p. 3-10)

Example of a Basic C MEX S-Function
(p. 3-29)

Templates for C S-Functions (p. 3-35)

How Simulink Interacts with C
S-Functions (p. 3-39)

Writing Callback Methods (p. 3-47)

Converting Level 1 C MEX S-Functions
to Level 2 (p. 3-48)

Overview of writing a C S-function.

How to use the S-Function Builder to generate
S-functions automatically from specifications that you
supply.

Describes the S-Function Builder dialog box

Illustrates the code needed to create a C S-function.

Describes code templates that you can use as
startingpoints for writing your own C S-functions.

Describes how Simulink interacts with a C S-function.
This is information that you need to know in order to
create and debug your own C S-functions.

How to write methods that Simulink calls as it executes
your S-function.

How to convert S-functions written for earlier releases of
Simulink to work with the current version.

3 Writing S-Functions in C

3-2

Introduction

A C MEX-file that defines an S-Function block must provide information about
the model to Simulink during the simulation. As the simulation proceeds,
Simulink, the ODE solver, and the MEX-file interact to perform specific tasks.
These tasks include defining initial conditions and block characteristics, and
computing derivatives, discrete states, and outputs.

As with M-file S-functions, Simulink interacts with a C MEX-file S-function by
invoking callback methods that the S-function implements. Each method
performs a predefined task, such as computing block outputs, required to
simulate the block whose functionality the S-function defines. Simulink
defines in a general way the task of each callback. The S-function is free to
perform the task according to the functionality it implements. For example,
Simulink specifies that the S-function’s md10utput method must compute that
block’s outputs at the current simulation time. It does not specify what those
outputs must be. This callback-based API allows you to create S-functions, and
hence custom blocks, of any desired functionality.

The set of callback methods, hence functionality, that C MEX-files can
implement is much larger than that available for M-file S-functions. See
Chapter 8, “S-Function Callback Methods” for descriptions of the callback
methods that a C MEX-file S-function can implement. Unlike M-file
S-functions, C MEX-files can access and modify the data structure that
Simulink uses internally to store information about the S-function. The ability
to implement a broader set of callback methods and to access internal data
structures allows C-MEX files to implement a wider set of block features, such
as the ability to handle matrix signals and multiple data types.

C MEX-file S-functions are required to implement only a small subset of the
callback methods that Simulink defines. If your block does not implement a
particular feature, such as matrix signals, you are free to omit the callback
methods required to implement a feature. This allows you to create simple
blocks very quickly.

The general format of a C MEX S-function is shown below:

#define S_FUNCTION_NAME your sfunction_name_here
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"

static void mdlInitializeSizes(SimStruct *S)

Introduction

{
}

<additional S-function routines/code>

static void mdlTerminate(SimStruct *S)

{

}
#ifdef MATLAB_MEX FILE /* Is this file being compiled as a

MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration

function */
ffendif

mdlInitializeSizes is the first routine Simulink calls when interacting with
the S-function. Simulink subsequently invokes other S-function methods (all
starting with md1). At the end of a simulation, Simulink calls md1Terminate.

Note Unlike M-file S-functions, C MEX S-function methods do not each have
a flag parameter. This is because Simulink calls each S-function method
directly at the appropriate time during the simulation.

Creating € MEX S-Functions

The easiest way to create a C MEX S-function is to use the S-Function Builder

(see “Building S-Functions Automatically” on page 3-5). This tool builds a C

MEX S-function from specifications and code fragments that you supply. This
eliminates the need for you to build the S-function from scratch.

The following sections provide information on writing C MEX S-functions from
scratch:

¢ “Example of a Basic C MEX S-Function” on page 3-29 provides a step-by-step
example of how to write a simple S-function from scratch.

3-3

3 Writing S-Functions in C

¢ “Templates for C S-Functions” on page 3-35 describes a complete skeleton
implementation of a C S-function that you can use as a starting point for
creating your own S-functions.

3-4

Building S-Functions Automatically

Building S-Functions Automatically

The S-Function Builder is a Simulink block that builds an S-function from
specifications and C code that you supply. The S-Function Builder also serves
as a wrapper for the generated S-function in models that use the S-function.
This section explains how to use the S-Function Builder to build simple C MEX
S-functions.

Note For examples of using the S-Function Builder to build S-functions, see
the “C S-functions” section of the S-function demos provided with Simulink. To
display the demos, enter sfundemo at the MATLAB command line (see
“S-Function Examples” on page 1-18 for more information)

To build an S-function with the S-Function Builder:

1 Set the MATLAB current directory to the directory in which you want to
create the S-function.

Note This directory must be on the MATLAB path.

2 Create a new Simulink model.

3 Writing S-Functions in C

3 Copy an instance of the S-Function Builder block from the Simulink
User-Defined Functions library into the new model.

Eluntitled = - 10] =]
File Edit ¥iew Simulation Format Tools Help
OD=E&E e = 2 REL®| > =

[
=ymtam
S-FPunction Builder
Re [100% [adeds 7

3-6

Building S-Functions Automatically

4 Double-click the block to open the S-Function Builder dialog box (see

“S-Function Builder Dialog Box” on page 3-10).

«) 5-Function Builder: untitled/S-Function Builder

rParameter

S-function name:

S-function parameter

Name Data type Value

rPortParameter

=18 Input Parts
G uw

=18 Output Ports
—@ 0

4@ Parameters

nitializetion | Date Praperties | Lisreries | Outputs | continuous Derivatives | Discrete Undte | Buid nfo
rDescription

The S-Function Builder block crestes a wrapper C-S-function with mutiple inaut ports, muliple output parts

anti variable nutmber of scalar, vector or matrix parameters. The inputs and output ports can propagate Simulink
boLit-in dlata types, complex, frame, 1-D and 2-D signals. You can use this block to enter your own code or import
legacy C code. This biock also supports discrete and continuous statss. The states must be of type resl. Optionally
the S-Function Builder block will generate a TLC file to be used with Real Time Workshap for code generation.

S-function setting

Mumber of discrete states:

Sample mode: Inherted ¥
Saple tirne value

Discrete states |C:

Cortinuous states 1C:

o
-
Murmber of continuous states: |n_
T

Cancel Help

5 Use the specification and code entry panes on the S-Function Builder
dialog box to enter information and custom source code required to tailor the
generated S-function to your application (see “S-Function Builder Dialog

Box” on page 3-10).

work on your system.

To configure the mex command, type mex -setup at the MATLAB command

line.

If you have not already done so, configure the MATLAB mex command to

3 Writing S-Functions in C

7 Click Build on the dialog box to start the build process.

Simulink builds a MEX file that implements the specified S-function and
saves the file in the current directory (see “How the S-Function Builder
Builds an S-Function” on page 3-8).

8 Save the model containing the S-Function Builder block.

Deploying the Generated S-Function

To use the generated S-function in another model, first check to ensure that the
directory containing the generated S-function is on the MATLAB path. Then
copy the S-Function Builder block from the model used to create the S-function
into the target model and set its parameters, if necessary, to the values
required by the target model.

How the S-Function Builder Builds an S-Function

The S-Function Builder builds an S-function as follows. First, it generates the
following source files in the current directory:

® sfun.c
where sfun is the name of the S-function that you specified in the S-function
name field of the S-Function Builder’s dialog box. This file contains the C
source code representation of the standard portions of the generated
S-function.

e sfun_wrapper.c
This file contains the custom code that you entered in the S-Function
Builder dialog box.

® sfun.tlc
This file permits Simulink to run the generated S-function in accelerated
mode and RTW to include this S-function in the code it generates.

After generating the S-function source code, the S-Function Builder uses the
MATLAB mex command to build the MEX file representation of the S-function
from the generated source code and any external custom source code and
libraries that you specified.

3-8

Building S-Functions Automatically

Setting the Include Path

The S-Function Builder searches for custom header files in the directories
specified by the MATLAB application data named
SfunctionBuilderIncludePath. This data is associated with the model in
which you create the S-Function Builder block. If your S-function uses custom
header files and the custom header files do not reside in the current directory
(i.e., the directory containing the generated S-function), you must update
SfunctionBuilderIncludePath to specify the locations of the directories
containing the header files. SfunctionBuilderIncludePath is a three-element
cell array that allows you to specify as many as three include directories. For
example, the following MATLAB commands set
SfunctionBuilderIncludePath to the paths of two include directories.

incPath = getappdata(0, 'SfunctionBuilderIncludePath');
incPath{1} = '/home/jones/include';

incPath{2} = getenv('PROJECT_ INCLUDE DIR')
setappdata(0, 'SfunctionBuilderIncludePath',incPath)

3-9

3 Writing S-Functions in C

S-Function Builder Dialog Box

The S-Function Builder dialog box enables you to specify the attributes of an
S-function to be built by an S-Function Builder block. To display the dialog box,
click twice on the block’s icon or select the block and then select Open Block

from the model editor’s Edit menu or the block’s context menu. The dialog box
appears.

). 5-Function Builder: untitled/S-Function Builder

S-function name; I‘

rS-function parametsr

Data type Value |

x|
Intialization | Data Properties | Libraries | outputs | Cortinuus Derivatives | Discrete Update | Buid infa

""'i'—' gﬂ“‘;ms Deseription

C
5 ot Pt The S-Function Buider block creates = wrapper C-S-function with mulliple input perts, mutiple output ports

Ten i watisbls ruker of scalar, vector or mstrix parsmsters. The inpUts snd eutpLt ports can prapagats Sinink

or . vi-in deta types, complex, frame, 1-D and 2-D signals, You oan use this biock to erter your own code or import

L Parametrs

legacy C cods. This block also supports discrete and continuous states. The states must be of type real. Optionally
the S-Function Builder block will generste a TLC file to be used with Real Time Workshop for code generation

rS-function setting

Mumber of discrete states,

Sample mode; Inheritec ot

Discrete states IC:

Sample i

Mumber of cortinuous states:

Cortinunus states IC:

—
P
P
P

Carcel Help

The dialog box contains controls that let you enter information needed for the
S-Function Builder block to build an S-function to your specifications. The

controls are grouped into panes. See the following sections for information on
the panes and the controls that they contain.

¢ “Parameters/S-Function Name Pane” on page 3-11
¢ “Port/Parameter Pane” on page 3-11

¢ “Initialization Pane” on page 3-12

3-10

S-Function Builder Dialog Box

¢ “Data Properties Pane” on page 3-14

¢ “Libraries Pane” on page 3-19

¢ “Outputs Pane” on page 3-20

¢ “Continuous Derivatives Pane” on page 3-24
¢ “Discrete Update Pane” on page 3-26

¢ “Build Info Pane” on page 3-27

Note The following sections use the term target S-function to refer to the
S-function specified by the S-Function Builder dialog box.

Parameters/S-Function Name Pane
This pane displays the target S-function’s name and parameters.

S-function name: ||

S-function parameter

Natne Data type Value

The pane contains the following controls.

S-function name
Specifies the name of the target S-function.

S-function parameters
This non-editable table displays the parameters of the target S-function.

Port/Parameter Pane

This pane displays the ports and parameters that the dialog box specifies for
the target S-function.

3-11

3 Writing S-Functions in C

3-12

rPortParameter
B G Input Ports
|__0 ul
=T Cutput Parts
—gyo

|—0 Parameters

The pane contains a tree control whose top nodes correspond to the target
S-function’s input ports, output ports, and parameters, respectively.
Expanding the Input Ports, Output Ports, or Parameter node displays the
input ports, output ports, or parameters, respectively, specified for the target
S-function. Selecting any of the port or parameter nodes selects the
corresponding entry on the corresponding port or parameter specification pane.

Initialization Pane

The Initialization pane allows you to specify basic features of the S-function,
such as the width of its input and output ports and its sample time.

Inttialization i Data Propertiesl Librariesl Outputsl Continuous Derivativesl Discrete Updatel Build Infol
rDescription

The S-Function Builder block crestes a wrapper C-S-function with multiple input ports, multiple output ports

and variable number of scalar, vectar or matrix parameters. The inputs and output ports can propagate Simulink
built-in data types, complex, frame, 1-D and 2-D signals. You can use this block to enter your own code or import
legacy C code. This block also supports discrete and continuous states. The states must be of type real. Cptionally
the S-Function Builder block will generate a TLC file to be used with Real Time Workshop for code generation.

r=-function setting

Mumber of dizcrete states: 0 Sample mode; | hhetited * I
Dizcrete states IC: e tirme value: !

Mumber of cortinuous states: |

11T

Continuous states IC:

The S-Function Builder uses the information that you enter on this pane to
generate the S-function’s md1InitializeSizes callback method. Simulink
invokes this method during the model initialization phase of the simulation to
obtain basic information about the S-function. (See “How Simulink Interacts

S-Function Builder Dialog Box

with C S-Functions” on page 3-39 for more information on the model
initialization phase.)

The Initialization pane contains the following fields.

Number of discrete states
Number of discrete states that the S-function has.

Discrete states IC

Initial conditions of the S-function’s discrete states. You can enter the values
as a comma-separated list or as a vector (e.g., [0 1 2]). The number of initial
conditions must equal the number of discrete states.

Number of continuous states
Number of continuous states that the S-function has.

Continuous states IC

Initial conditions of the S-function’s continuous states. You can enter the
values as a comma-separated list or as a vector (e.g., [0 1 2]). The number of
initial conditions must equal the number of continuous states.

Sample mode

Sample mode of the S-function. The sample mode determines the length of the
interval between the times when the S-function updates its output. You can
select one of the following options:

® Inherited

The S-function inherits its sample time from the block connected to its input
port.

® Continuous
The block updates its outputs at each simulation step.
® Discrete

The S-function updates its outputs at the rate specified in the Discrete
sample time value field of the S-Function Builder dialog box.

3-13

3 Writing S-Functions in C

3-14

Sample time value

Interval between updates of the S-function’s outputs. This field is enabled only
if you have selected Discrete as the S-function’s Sample time.

Data Properties Pane

The Data Properties pane allows you to add ports and parameters to your
S-function.

Initialization Data Properties | Librariesl Outputsl Cortinuaus Derivatives | Discrete Update | Build Info
rDescription

Use the Add and Delete buttons to addiremove ports and parameters to the S-function. Use the table below to
configure the data type, dimensions, complexity and frameness of each S-function port and to configure the data
type and complexity of each parameter.

rPort andd Parameter propertie:

Input ports. Sutput ports | Parameters | Data type aﬂributesl

Port narme | Dimensions Rows I Columns ! Cormplexity Frame
Y0 [1o B [t | [real -1 ot -

o e [

The column of buttons to the left of the panes allows you to add, delete, or
reorder ports or parameters, depending on the currently selected pane.

® To add add a port or parameter, click the Add button (the top button in the
column of buttons).

¢ To delete the currently selected port/parameter , click the Delete button
(located beneath the Add button).

® To move the currently selected port/parameter up one position in the

corresponding S-Function port/parameter list, click the Up button (beneath
the Delete button).

® To move the currently selected port/parameter down one position in the
corresponding S-function port/parameter list, click the Down button
(beneath the Up button).

S-Function Builder Dialog Box

This pane also contains tabbed panes that enable you to specify the attributes
of the ports and parameters that you create. See the following topics for more
information.

¢ “Input Ports Pane” on page 3-15

¢ “Output Ports Pane” on page 3-16

¢ “Parameters Pane” on page 3-17

¢ “Data Type Attributes Pane” on page 3-18

Input Ports Pane

The Input Ports pane allows you to inspect and modify the properties of the
S-function’s input ports.

rPort and Parameter properi

Si Quitput pons! Parametarsl Data type aﬂributesl

Port name l Dimensions Rows l Columns l Complexity Frame

o [- | [rea ot -

< |1+ Iili

The pane comprises an editable table that lists the properties of the input ports
in the order in which the ports appear on the S-function block. Each row of the
table corresponds to a port. Each entry in the row displays a property of the
port as follows.

Port name
Name of the port. Edit this field to change the port name.

Dimensions

Lists the number of dimensions of input signals accepted by the port. To
display a list of supported dimensions, click the adjacent button. To change the
port’s dimensionality, select a new value from the list. (Simulink signals can
have at most two dimensions).

Row
Specifies the size of the input signal’s first (or only) dimension.

3-15

3 Writing S-Functions in C

Column

Specifies the size of the input signal’s second dimension (only if the input port
accepts 2-D signals).

Complexity

Specifies whether the input port accepts real or complex-valued signals.

Frame

Specifies whether this port accepts frame-based signals generated by the
Communications Blockset. See the documentation for this blockset for more
information.

Output Ports Pane

The Output Ports pane allows you to inspect and modify the properties of the
S-function’s output ports.

rPort and Parameter propetti

Input ports l Parametersl Data type aﬂrlbutesl

Pott natne Dimensiohs Rows | Columns | Complexity Frame

0 |10 E

| real =) off 2

[l X[

The pane comprises an editable table that lists the properties of the output
ports in the order in which the ports appear on the S-function block. Each row
of the table corresponds to a port. Each entry in the row displays a property of
the port as follows.

Port name
Name of the port. Edit this field to change the port name.

Dimensions

Lists the number of dimensions of signals output by the port. To display a list
of supported dimensions, click the adjacent button. To change the port’s
dimensionality, select a new value from the list. (Simulink signals can have at
most two dimensions).

3-16

S-Function Builder Dialog Box

Row
Specifies the size of the output signal’s first (or only) dimension.

Column

Specifies the size of the output signal’s second dimension (only if the output
port accepts 2-D signals).

Complexity

Specifies whether the port outputs real or complex-valued signals.
Frame

Specifies whether this port accepts frame-based signals generated by the
Communications Blockset. See the documentation for this blockset for more
information.

Parameters Pane

The Parameters pane allows you to inspect and modify the properties of the
S-function’s parameters.

Input ports I Cutput ports SI Data type attributes |

Parameter name l Data type I Cormplexity

The pane comprises an editable table that lists the properties of the
S-function’s parameters . Each row of the table corresponds to a parameter.
The order in which the parameters appear corresponds to the order in which
the user must specify them. Each entry in the row displays a property of the
parmeter as follows.

Parameter name
Name of the parameter. Edit this field to change the name.

3-17

3 Writing S-Functions in C

Data type

Lists the data type of the parameter. Click the adjacent button to display a list
of supported data types. To change the parameter’s data type, select a new type
from the list.

Complexity

Specifies whether the parameter has real or complex values.

Data Type Attributes Pane

This pane allows you to specify the data type attributes of the target
S-function’s input and output ports.

rPort andd Parameter propertie:

Input portsl Cutput portsi Parameters Data type attributes |

=+ | Port Diata type ‘Woard length | Sighed | Fraction len... | Slope Bias
% | In 1: ud | double iz V3 ze-3 @

= out 1: 0 | double R i F 3 ze-3 @

5

The pane contains a table listing the data type attributes of each of the
S-functions ports. Only some of the fields in the table are editable. Non-editable
fields are grayed out. Each row corresponds to a port of the target S-function.
Each column specifies an attribute of the corresponding port.

Port
Name of the port. This field is not editable.

Data Type

Data type of the port. To display a list of specifiable data types, select the
adjacent pulldown list control. To change the data type, select a different data
type from the list.

The remaining fields on this pane are enabled only if the Data Type field
specifies a fixed-point data type. See the Simulink Fixed Point documentation
for more information.

3-18

S-Function Builder Dialog Box

Libraries Pane

The Libraries pane allows you to specify the location of external code files
referenced by custom code that you enter in other panes of the S-Function
Builder dialog box.

In'rha\izaﬁnn! Data Properties Liraties I Outputsl Continuous Derivatives | Discrete Update | Build Info

Eriter any liraryiobiect or source files used by the S-function. Then, specify any necessary include files
or enter the external function declarations. These functions can be called in the Outputs, Derivatives and
Update methocs.

rLibrary/ChiectiSource files (ohe per linel——— rihclude files ahd external function declarations
anludes:
#include <math.hs>

External function declarations:
/+ extern double funcidouble a); %/

4] |+

The Libraries pane includes the following fields.

Library/Object/Source files

External library, object code, and source files referenced by custom code that
you enter elsewhere on the S-Function Builder dialog box. List each file on a
separate line. If the file resides in the current directory, you need specify only
the file’s name. If the file resides in another directory, you must specify the full
path of the file.

You can also use this field to specify search paths for libraries, object files,
header files and source files. To do this, enter the tag LIB_PATH, INC_PATH, or
SRC_PATH, respectively, followed by a comma- or semicolon-separated list of
paths. You can make as many entries of this kind as you need but each must
reside on a separate line.

For example, consider an S-Function Builder project that resides at
d:\matlab6p5\work and needs to link against the following files:

® c:\customfolder\customfunctions.lib
® d:\matlab7\customobjs\userfunctions.obj
® d:\externalsource\freesource.c

The following entries enable the S-Function Builder to find these files:

3-19

3 Writing S-Functions in C

Customfunctions.lib

Userfunctions.obj

LIB_PATH c:\customfolder\customfunctions.lib
LIB_PATH $MATLABROOT\customobjs

Freesource.c

SRC_PATH d:\externalsource

As this example illustrates, you can use LIB_PATH to specify both object and
library file paths and the tag $MATLABROOT to indicate paths relative to the
MATLAB installation. You can also include multiple LIB_PATH entries on
separate lines. The paths are searched in the order specified.

You can also enter preprocessor (-D) directives in this field, e.g.,

-DDEBUG

Each directive must reside on a separate line.

Includes

Header files containing declarations of functions, variables, and macros
referenced by custom code that you enter elsewhere on the S-Function Builder
dialog box. Specify each file on a separate line as #include statements. Use
brackets to enclose the names of standard C header files (e.g., #include
<math.h>). Use quotation marks to enclose names of custom header files (e.g.,
#include "myutils.h"). If your S-function uses custom include files that do
not reside in the current directory, you must set the S-Function Builder’s
include path to the directories containing the include files (see “Setting the
Include Path” on page 3-9).

External function declarations

Declarations of external functions not declared in the header files listed in the
Includes field. Put each declaration on a separate line. The S-Function Builder
includes the specified declarations in the S-function source file that it
generates. This allows S-function code that computes the S-function’s states or
output to invoke the external functions.

Outputs Pane

Use the Outputs pane to enter code that computes the outputs of the
S-function at each simulation time step.

3-20

S-Function Builder Dialog Box

In'ma\izaﬁonl Data Propemesl Libraries Outputs | Continuous Derivatives | Discrete Update | Build Info

rCoce description
Eriter your C-code or call your algorithin. If available, discrete and cortinuous states should be referenced as,
=<D[0]..xD[n], *C[0].. xCn] respectively. Input ports, output ports and parameters should be referenced using the
=ymbols specified in the Data Properties. These references appear directly in the generated S-function

#% This sample sets the output ecqual to the input
FO[O] = a0[0O];

For complex signals use: v0[0].re = ul[0] .re:
§O[0] .dim = ud[0] .im;
F1I0] cre-=-ul[0] jre:
w1[0] .dim = ul[0] .dim:*/

~ Inputs are needed in the output function(direct feedthraugh)

The Outputs pane contains the following fields.

Code for the mdlOutputs function

Code that computes the output of the S-function at each simulation time step
(or sample time hit, in the case of a discrete S-function). When generating the
source code for the S-function, the S-Function Builder inserts the code in this

field in a wrapper function of the form

void sfun_Outputs_wrapper(const real T *u,
real T *y,

const real_T *xD, /* optional */
const real_T *xC, /* optional */

const real_T *paramO,

/* optional */

int_T p_widthO /* optional */
real_ T *parami /* optional */
int_t p_width1 /* optional */
int_T y_width, /* optional */
int_T u_width) /* optional */

/* Your code inserted here */

}

where sfun is the name of the S-function. The S-Function Builder inserts a call
to this wrapper function in the md10utputs callback method that it generates
for your S-function. Simulink invokes the md10utputs method at each
simulation time step (or sample time step in the case of a discrete S-function)
to compute the S-function’s output. The S-function’s md10utputs method in

3-21

3 Writing S-Functions in C

turn invokes the wrapper function containing your output code. Your output
code then actually computes and returns the S-function’s output.

The md10utputs method passes some or all of the following arguments to the
outputs wrapper function.

Argument Description

u Pointer to an array containing the inputs to the S-function.
The width of the array is the same as the input width you
specified on the Initialization pane. If you specified -1 as
the input width, the width of the array is specified by the
wrapper function’s u_width argument (see below).

y Pointer to an array containing the output of the
S-function.The width of the array is the same as the output
width you specified on the Initialization pane. If you
specified -1 as the output width, the width of the array is
specified by the wrapper function’s y_width argument (see
below). Use this array to pass the outputs that your code
computes back to Simulink.

xD Pointer to an array containing the discrete states of the
S-function. This argument appears only if you specified
discrete states on the Initialization pane. At the first
simulation time step, the discrete states have the initial
values that you specified on the Initialization pane. At
subsequent sample-time steps, the states are obtained from
the values that the S-function computes at the preceding
time step (see “Discrete Update Pane” on page 3-26 for
more information).

3-22

S-Function Builder Dialog Box

Argument Description

xC Pointer to an array containing the continuous states of the
S-function. This argument appears only if you specified
continuous states on the Initialization pane. At the first
simulation time step, the continuous states have the initial
values that you specified on the Initialization pane. At
subsequent time steps, the states are obtained by
numerically integrating the derivatives of the states at the
preceding time step (see “Continuous Derivatives Pane” on
page 3-24 for more information).

paramo, param0, parami, paramN are pointers to arrays containing
p_widtho, the S-function’s parameters, where N is the number of
parami, parameters specified on the Initialization pane. p_widtho,
p_width1,... p_width1, p_widthN are the widths of the parameter
paramN, arrays. If a parameter is a matrix, the width equals the
p_widthN product of the dimensions of the arrays. For example, the

width of a a 3-by-2 matrix parameter is 6. These arguments
appear only if you specify parameters on the Initialization
pane.

y_width Width of the array containing the S-function’s outputs.
This argument appears in the generated code only if you
specified -1 as the width of the S-function’s output. If the
output is a matrix, y_width is the product of the
dimensions of the matrix.

u_width Width of the array containing the S-function’s inputs. This
argument appears in the generated code only if you
specified -1 as the width of the S-function’s input. If the
input is a matrix, u_width is the product of the dimensions
of the matrix.

These arguments permit you to compute the output of the block as a function
of its inputs and, optionally, its states and parameters. The code that you enter
in this field can invoke external functions declared in the header files or
external declarations on the Libraries pane. This allows you to use existing
code to compute the outputs of the S-function.

3-23

3 Writing S-Functions in C

3-24

Inputs are needed in the output function

Selected if the current values of the S-function’s inputs are used to compute its
outputs. Simulink uses this information to detect algebraic loops created by
directly or indirectly connecting the S-function’s output to its input.

Continuvous Derivatives Pane

If the S-function has continuous states, use the Continuous Derivatives pane
to enter code required to compute the state derivatives.

ntialization | Dsta Properties | Lisraries | cutputs Continuous Derivatives | piscrete Undste | Buid info |
rCode description

Thiz section iz optionsl ahd use to calculate the derivatives. |is caled only if the S-function has one or more continuous
states. The states and derivatives of the S-function are of type double and must be referenced ss =C[0], xC[1], stc and
and ox[1] etc respectively. Input ports, output ports and parameters should be referenced using the symbols specified

Data Properties. These references appear directly in the genersted S-function

'lfﬁ‘

* Code exsmple

= dx[0] = xC[0];
=

Enter code to compute the derivatives of the S-function’s continuous states in
the Code for the mdlDerivatives function field on this pane. When
generating code, the S-Function Builder takes the code in this pane and inserts
it in a wrapper function of the form

void sfun_Derivatives_wrapper(const real T *u,
const real T *y,
real T *dx,
real T *xC,
const real T *paramO, /* optional */
int_T p_widthO, /* optional */
real_ T *paraml,/* optional */
int_T p_width1, /* optional */
int_T y_width, /* optional */
int_T u_width) /* optional */

/* Your code inserted here. */

S-Function Builder Dialog Box

}

where sfun is the name of the S-function. The S-Function Builder inserts a call
to this wrapper function in the md1Derivatives callback method that it
generates for the S-function. Simulink calls the md1Derivatives method at the
end of each time step to obtain the derivatives of the S-function’s continuous
states (see “How Simulink Interacts with C S-Functions” on page 3-39). The
Simulink solver numerically integrates the derivatives to determine the
continuous states at the next time step. At the next time step, Simulink passes
the updated states back to the S-function’s md10utputs method (see “Outputs
Pane” on page 3-20).

The generated S-function’s md1Derivatives callback method passes the
following arguments to the derivatives wrapper function:

°u

ey

® dx

® xC

® paramO, p_widthO, parami, p_widthi, ... paramN, p_widthN
® y width

® x-width

The dx argument is a pointer to an array whose width is the same as the
number of continuous derivatives specified on the Initialization pane. Your
code should use this array to return the values of the derivatives that it
computes. See “mdlOutputs” on page 3-32 for the meanings and usage of the
other arguments. The arguments allow your code to compute derivatives as a
function of the S-function’s inputs, outputs, and, optionally, parameters. Your
code can invoke external functions declared on the Libraries pane.

3-25

3 Writing S-Functions in C

Discrete Update Pane

If the S-function has discrete states, use the Discrete Update pane to enter
code that computes at the current time step the values of the discrete states at
the next time step.

Intialization | Data Properties | Libraries | Outputs | Contiruous Derivatives Discrete Update | Buid Infa |
ricode description

This section is optional and use to update the dizcrete states. ft is called only if the 3-function has one or more

discrete states. The states of the S-function ars of type doubls and must be referenced as xD[0], <D[1], stc. respective
Input ports, output ports snd parameters should be referenced using the sytrbols specified inthe Data Properties. Thes
references appear directly in the generated S-function.

lfﬁ
* Code exsmple
* xD[O] = a0[0];

&

Enter code to compute the values of the S-function’s discrete states in the Code
for the mdlUpdate function field on this pane. When generating code, the
S-Function Builder takes the code in this pane and inserts it in a wrapper
function of the form

void sfun_Update_wrapper(const real T *u,
const real T *y,
real_T *xD,
const real_T *paramO, /* optional */
int_T p_widthO, /* optional */
real_T *parami,/* optional */
int_T p_width1, /* optional */
int_T y_width, /* optional */
int_T u_width) /* optional */

/* Your code inserted here. */

}

where sfun is the name of the S-function. The S-Function Builder inserts a call
to this wrapper function in the md1Update callback method that it generates for
the S-function. Simulink calls the md1Update method at the end of each time

3-26

S-Function Builder Dialog Box

step to obtain the values of the S-function’s discrete states at the next time step
(see “How Simulink Interacts with C S-Functions” on page 3-39). At the next
time step, Simulink passes the updated states back to the S-function’s
md1Outputs method (see “Outputs Pane” on page 3-20).

The generated S-function’s md1lUpdates callback method passes the following
arguments to the updates wrapper function:

°y

ey

® xD

® param0O, p_widthO, parami, p_width1, ... paramN, p_widthN

® y width

® x-width

See “mdlOutputs” on page 3-32 for the meanings and usage of these
arguments. Your code should use the xD (discrete states) variable to return the
values of the derivatives that it computes. The arguments allow your code to
compute the discrete states as functions of the S-function’s inputs, outputs,

and, optionally, parameters. Your code can invoke external functions declared
on the Libraries pane.

Build Info Pane
Use the Build Info pane to specify options for building the S-function MEX file.

In'rtializatinnl Data Prnper‘tiesl L\brariasl Outputsl Continuous Darivaﬁvesl Discrete Update Build Info I
rCotmpilation diagnostic:

Click the desired options helow or click BuildiSave...

rBuild option:

[Show compile steps ¥ Generate wrapper TLC Additional methods

[~ Crestea debuggahble MEX-file I~ Save code anly

3-27

3 Writing S-Functions in C

This pane contains the following fields.

Show compile steps
Log each build step in the Compilation diagnostics field.

Create a debuggable MEX-file
Include debug information in the generated MEX-file.

Generate wrapper TLC

Generate a TLC file. You do not need to generate a TLC file if you do not expect
the S-function ever to run in accelerated mode or be used in a model from which
RTW generates code.

Save code only
Do not build a MEX file from the generated source code.

3-28

Example of a Basic C MEX S-Function

Example of a Basic C MEX S-Function

This section presents an example of a C MEX S-function that you can use as a
model for creating simple C S-functions. The example is the timestwo
S-function example that comes with Simulink (see
matlabroot/simulink/src/timestwo.c). This S-function outputs twice its
input.

The following model uses the timestwo S-function to double the amplitude of a
sine wave and plot it in a scope.

ﬁu P timeshuo —b-:l
Sine Wrave S-Function Scope

The block dialog for the S-function specifies timestwo as the S-function name;
the parameters field is empty.

The timestwo S-function contains the S-function callback methods shown in

this figure.
Start of simulation
| mdlInitializeSizes |
Initialization v
‘ mdlInitializeSampleTimes ‘
—P‘ md1lOutputs ‘
Simulation
loop
‘ mdlTerminate ‘

3-29

3 Writing S-Functions in C

The contents of timestwo.c are shown below.

#define S_FUNCTION_NAME timestwo
#define S_FUNCTION_LEVEL 2

#include simstruc.h

static void mdlInitializeSizes(SimStruct *S)
{
ssSetNumSFcnParams (S, 0);
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */

}

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S,1)) return;
ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);

ssSetNumSampleTimes (S, 1);

/* Take care when specifying exception free code - see sfuntmpl.doc */
ssSetOptions(S, SS_OPTION_EXCEPTION_FREE_CODE);
}

static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime(S, 0, INHERITED_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);
}

static void mdlOutputs(SimStruct *S, int_T tid)

{
int_T i;
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
real T *y ssGetOutputPortRealSignal(S,0);
int_T width = ssGetOutputPortWidth(S,0);

for (i1=0; i<width; i++) {
*y++ = 2.0 *(*uPtrs[i]);
}
}

static void mdlTerminate(SimStruct *S){}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include simulink.c /* MEX-file interface mechanism */

#else

#include cg_sfun.h /* Code generation registration function */
#endif

3-30

Example of a Basic C MEX S-Function

This example has three parts:

¢ Defines and includes
¢ Callback implementations

¢ Simulink (or Real-Time Workshop) interface

The following sections explain each of these parts.

Defines and Includes
The example starts with the following defines.

#define S_FUNCTION_NAME timestwo
#define S_FUNCTION_LEVEL 2

The first specifies the name of the S-function (timestwo). The second specifies
that the S-function is in the level 2 format (for more information about level 1
and level 2 S-functions, see “Converting Level 1 C MEX S-Functions to Level
2” on page 3-48).

After defining these two items, the example includes simstruc.h, which is a
header file that gives access to the SimStruct data structure and the MATLAB
Application Program Interface (API) functions.

#define S_FUNCTION_NAME timestwo
#define S_FUNCTION_ LEVEL 2
#include "simstruc.h"

The simstruc.h file defines a a data structure, called the SimStruct, that
Simulink uses to maintain information about the S-function. The simstruc.h
file also defines macros that enable your MEX-file to set values in and get
values (such as the input and output signal to the block) from the SimStruct
(see Chapter 9, “SimStruct Functions”).

Callback Implementations

The next part of the timestwo S-function contains implementations of callback
methods required by Simulink.

3-31

3 Writing S-Functions in C

mdlinitializeSizes

Simulink calls mdlInitializeSizes to inquire about the number of input and
output ports, sizes of the ports, and any other objects (such as the number of
states) needed by the S-function.

The timestwo implementation of md1InitializeSizes specifies the following
size information:

® Zero parameters

This means that the S-function parameters field of the S-functions’s dialog
box must be empty. If it contains any parameters, Simulink reports a
parameter mismatch.

¢ One input port and one output port
The widths of the input and output ports are dynamically sized. This tells
Simulink to multiply each element of the input signal to the S-function by 2
and to place the result in the output signal. Note that the default handling
for dynamically sized S-functions for this case (one input and one output) is
that the input and output widths are equal.

¢ One sample time

The timestwo example specifies the actual value of the sample time in the
mdlInitializeSampleTimes routine.

¢ The code is exception free.

Specifying exception-free code speeds up execution of your S-function. You
must take care when specifying this option. In general, if your S-function
isn’t interacting with MATLAB, it is safe to specify this option. For more
details, see “How Simulink Interacts with C S-Functions” on page 3-39.

mdlInitializeSampleTimes

Simulink calls md1InitializeSampleTimes to set the sample times of the
S-function. A timestwo block executes whenever the driving block executes.
Therefore, it has a single inherited sample time, SAMPLE_TIME_INHERITED.

mdIOutputs

Simulink calls md10utputs at each time step to calculate a block’s outputs. The
timestwo implementation of md10utputs takes the input, multiplies it by 2,
and writes the answer to the output.

3-32

Example of a Basic C MEX S-Function

The timestwo mdlOutputs method uses a SimStruct macro,

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

to access the input signal. The macro returns a vector of pointers, which you
must access using

*uPtrs[i]
For more details, see “Data View” on page 3-43.

The timestwo md1Outputs method uses the macro

real T *y = ssGetOutputPortRealSignal(S,0);

to access the output signal. This macro returns a pointer to an array containing
the block’s outputs.

The S-function uses

int_T width = ssGetOutputPortWidth(S,0);

to get the width of the signal passing through the block. Finally, the S-function
loops over the inputs to compute the outputs.

mdITerminate

Perform tasks at the end of the simulation. This is a mandatory S-function
routine. However, the timestwo S-function doesn’t need to perform any
termination actions, so this routine is empty.

Simulink/Real-Time Workshop Interface

At the end of the S-function, specify code that attaches this example to either
Simulink or the Real-Time Workshop.

#ifdef MATLAB_MEX_ FILE
#include "simulink.c"
#else

#include "cg_sfun.h"
#endif

3-33

3 Writing S-Functions in C

Building the Timestwo Example
To incorporate this S-function into Simulink, enter

mex timestwo.c

at the command line. The mex command compiles and links the timestwo. c file
to create a dynamically loadable executable for Simulink to use.

The resulting executable is referred to as a MEX S-function, where MEX
stands for “MATLAB EXecutable.” The MEX-file extension varies from
platform to platform. For example, in Microsoft Windows, the MEX-file
extension is .d11.

3-34

Templates for C S-Functions

Templates for C S-Functions

Simulink provides skeleton implementations of C MEX S-functions, called
templates, intended to serve as starting points for creating your own
S-functions. The templates contain skeleton implementations of callback
methods with comments that explain their use. The template file,

sfuntmpl basic.c, which can be found in the directory simulink/src below
the MATLAB root directory, contains commonly used S-function routines. A
template containing all available routines (as well as more comments) can be
found in sfuntmpl doc.c in the same directory.

Note We recommend that you use the C MEX-file template when developing
MEX S-functions.

S-Function Source File Requirements

This section describes requirements that every S-function source file must
meet to compile correctly. The S-function templates meet these requirements.

Statements Required at the Top of S-Functions

For S-functions to operate properly, each source module of your S-function that
accesses the SimStruct must contain the following sequence of defines and
include

#define S_FUNCTION_NAME your_sfunction_name_here
#define S_FUNCTION_LEVEL 2
#include "simstruc.h"

where your_sfunction_name_here is the name of your S-function (i.e., what
you enter in the Simulink S-Function block dialog). These statements give you
access to the SimStruct data structure that contains pointers to the data used
by the simulation. The included code also defines the macros used to store and
retrieve data in the SimStruct, described in detail in “Converting Level 1 C
MEX S-Functions to Level 2” on page 3-48. In addition, the code specifies that
you are using the level 2 format of S-functions.

3-35

3 Writing S-Functions in C

Note All S-functions from Simulink 1.3 through 2.1 are considered to be level
1 S-functions. They are compatible with Simulink 3.0, but we recommend that
you write new S-functions in the level 2 format.

The following headers are included by
matlabroot/simulink/include/simstruc.h when compiling as a MEX-file.

Table 3-1: Header Files Included by simstruc.h When Compiling as a MEX-File

Header File Description

matlabroot/extern/include/tmwtypes.h General data types, e.g.,

real T
matlabroot/extern/include/mex.h MATLAB MEX-file API
routines
matlabroot/extern/include/matrix.h MATLAB MEX-file API
routines

When compiling your S-function for use with the Real-Time Workshop,
simstruc.h includes the following.

Table 3-2: Header Files Included by simstruc.h When Used
by the Real-Time Workshop

Header File Description

matlabroot/extern/include/tmwtypes.h General types, e.g., real T

matlabroot/rtw/c/libsrc/rt_matrx.h Macros for MATLAB API
routines

Statements Required at the Bottom of S-Functions

Include this trailer code at the end of your C MEX S-function main module
only.

#ifdef MATLAB_MEX FILE /* Is this being compiled as MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */

3-36

Templates for C S-Functions

#else
#include "cg_sfun.h" /* Code generation registration func */
#endif

These statements select the appropriate code for your particular application:

® simulink.c is included if the file is being compiled into a MEX-file.

® cg_sfun.his included if the file is being used in conjunction with the
Real-Time Workshop to produce a stand-alone or real-time executable.

Note This trailer code must not be in the body of any S-function routine.

The SimStruct

The file matlabroot/simulink/include/simstruc.h is a C language header
file that defines the Simulink data structure and the SimStruct access macros.
It encapsulates all the data relating to the model or S-function, including block
parameters and outputs.

There is one SimStruct data structure allocated for the Simulink model. Each
S-function in the model has its own SimStruct associated with it. The
organization of these SimStructs is much like a directory tree. The SimStruct
associated with the model is the root SimStruct. The SimStructs associated
with the S-functions are the child SimStructs.

Note By convention, port indices begin at 0 and finish at the total number of
ports minus 1.

Simulink provides a set of macros that S-functions can use to access the fields

of the SimStruct. See Chapter 9, “SimStruct Functions,” for more information.

3-37

3 Writing S-Functions in C

3-38

Compiling C S-Functions

S-functions can be compiled in one of three modes identified by the presence of
one of the following defines:

® MATLAB_MEX_ FILE — Indicates that the S-function is being built as a
MEX-file for use with Simulink.

® RT — Indicates that the S-function is being built with the Real-Time

Workshop generated code for a real-time application using a fixed-step
solver.

® NRT — Indicates that the S-function is being built with the Real-Time
Workshop generated code for a non-real-time application using a
variable-step solver.

How Simulink Interacts with C S-Functions

How Simulink Interacts with C S-Functions

It is helpful in writing C MEX-file S-functions to understand how Simulink
interacts with S-functions. This section examines the interaction from two
perspectives: a process perspective, i.e., at which points in a simulation
Simulink invokes the S-function, and a data perspective, i.e., how Simulink
and the S-function exchange information during a simulation.

Process View

The following figures show the order in which Simulink invokes an S-function’s
callback methods. Solid rectangles indicate callbacks that always occur during
model initialization and/or at every time step. Dotted rectangles indicate
callbacks that may occur during initialization and/or at some or all time steps
during the simulation loop. See the documentation for each callback method in
Chapter 8, “S-Function Callback Methods” to determine the exact
circumstances under which Simulink invokes the callback.

3-39

3 Writing S-Functions in C

3-40

M odelhim lization

S ulnk Engne

mdIStart optionally calls
mdlCheckParameters

followed by
mdIProcessParameters

Sets output of
Constant blocks

To simulation loop

How Simulink Interacts with C S-Functions

S ubkton Loop

hitalize M odel

S ulink Engne

' mdlCheckParameters:

Called when parameters

change.

P mdlProcessParameters :4”/ chunge
fg).. >: mdlGetTimeOfNextVarHit !
) I R
ol . o \ Called if sample time of
B y.. mdllnitalizeConditions | this S-function varies
G
-
: > [|
! mdiUpinic
T htegmton Called if this S-function
------ R . has continuous states
P ' mdlDerivatives' :
' mdlOutputs l
A 11 :
o I |
) mdlDerivatives! :
g
: zZ hg detecton o .
£ Siorciosshg deleethn, Colled if this S-function
.......... p 1
mdlOutputs ' . defects zero crossings
' mdlZeroCrossings |
> o
End Sim ulation

Called when parameters

3-41

3 Writing S-Functions in C

Calling Structure for the Real Time Workshop

When generating code, the Real-Time Workshop does not go through the entire
calling sequence outlined above. After initializing the model as outlined in the
preceding section, Simulink calls md1RTW, an S-function routine unique to the
Real-Time Workshop, md1Terminate, and exits.

For more information about the Real-Time Workshop and how it interacts with
S-functions, see the Real-Time Workshop documentation and the Target
Language Compiler Reference Guide documentation.

Alternate Calling Structure for External Mode

When you are running Simulink in external mode, the calling sequence for
S-function routines changes. This picture shows the correct sequence for
external mode.

Model Initialization

A
‘ mdlCheckParameters ‘

v

‘ mdlProcessParameters ‘

v

‘ md1RTW ‘ Called only if no run-time parameters

External mode
parameter change loop

y
| mdlTerminate |

Simulink calls md1RTW once when it enters external mode and again each time
a parameter changes or when you select Update Diagram under your model’s
Edit menu.

Note Running Simulink in external mode requires the Real-Time Workshop.
For more information about external mode, see the Real-Time Workshop
documentation.

3-42

How Simulink Interacts with C S-Functions

Data View

S-function blocks have input and output signals, parameters, and internal
states, plus other general work areas. In general, block inputs and outputs are
written to, and read from, a block I/O vector. Inputs can also come from

¢ External inputs via the root inport blocks

® Ground if the input signal is unconnected or grounded

Block outputs can also go to the external outputs via the root outport blocks. In
addition to input and output signals, S-functions can have

* Continuous states

¢ Discrete states

® Other working areas such as real, integer or pointer work vectors

You can parameterize S-function blocks by passing parameters to them using
the S-function block dialog box.

The following figure shows the general mapping between these various types
of data.

External | PN gxiierntal
fmputs | |Block VO[1 oot
inport L : : outport
blocks) Lo : ! blocks)
R 3
--------- Bk [y
s T - Work
: A 4 A Vectors,
; DWork,
: RWork,
----- States Parameters| | 1work,
PWork,

3-43

3 Writing S-Functions in C

An S-function’s md1InitializeSizes routine sets the sizes of the various
signals and vectors. S-function methods called during the simulation loop can
determine the sizes and values of the signals.

An S-function method can access input signals in two ways:

® Via pointers

¢ Using contiguous inputs

Accessing Signals Using Pointers
During the simulation loop, accessing the input signals is performed using

InputRealPtrsType uPtrs =
ssGetInputPortRealSignalPtrs(S,portIndex)

This is an array of pointers, where portIndex starts at 0. There is one for each
input port. To access an element of this signal you must use

*uPtrs[element]

as described by this figure.

Input 1 —# S-Function
Input 2 —» Block

To access Input 1:
InputRealPtrsType uPtrs0 = ssGetInputPortRealSignalPtrs(S,0)

uPtrso — B > |
[>
To access Input 2:
InputRealPtrsType uPtrsi = ssGetInputPortRealSignalPtrs(S,1)
uPtrsit —{ |
i » |
[»
Block I/0
Vector

3-44

How Simulink Interacts with C S-Functions

Note that input array pointers can point at noncontiguous places in memory.
You can retrieve the output signal by using this code.

real T *y = ssGetOutputPortSignal(S,outputPortIndex);

Accessing Contiguous Input Signals

An S-function’s md1InitializeSizes method can specify that the elements of
its input signals must occupy contiguous areas of memory, using
ssSetInputPortRequiredContiguous. If the inputs are contiguous, other
methods can use ssGetInputPortSignal to access the inputs.

Accessing Input Signals of Individual Ports

This section describes how to access all input signals of a particular port and
write them to the output port. The preceding figure shows that the input array
of pointers can point to noncontiguous entries in the block I/O vector. The
output signals of a particular port form a contiguous vector. Therefore, the
correct way to access input elements and write them to the output elements
(assuming the input and output ports have equal widths) is to use this code.

int_T element;

int_T portWidth = ssGetInputPortWidth(S,inputPortIndex);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,inputPortIndex);
real_T *y = ssGetOutputPortSignal(S,outputPortIdx);

for (element=0; element<portWidth; element++) {
y[element] = *uPtrs[element];

}

A common mistake is to try to access the input signals via pointer arithmetic.
For example, if you were to place

real T *u = *uPtrs; /* Incorrect */

just below the initialization of uPtrs and replace the inner part of the above
loop with

*y++ = *u++; /* Incorrect */

the code compiles, but the MEX-file might crash Simulink. This is because it is
possible to access invalid memory (which depends on how you build your
model). When accessing the input signals incorrectly, a crash occurs when the
signals entering your S-function block are not contiguous. Noncontiguous
signal data occurs when signals pass through virtual connection blocks such as
the Mux or Selector blocks.

3-45

3 Writing S-Functions in C

To verify that you are correctly accessing wide input signals, pass a replicated
signal to each input port of your S-function. You do this by creating a Mux block
with the number of input ports equal to the width of the desired signal entering
your S-function. Then the driving source should be connected to each input port
as shown in this figure.

_>

Source signal P Mux [P S-function

3-46

Writing Callback Methods

Writing Callback Methods

Writing an S-function basically involves creating implementations of the
callback functions that Simulink invokes during a simulation. For guidelines
on implementing a particular callback, see the documentation for the callback
in Chapter 8, “S-Function Callback Methods.” For information on using
callbacks to implement specific block features, such as parameters or sample
times, see Chapter 7, “Implementing Block Features.”

3-47

3 Writing S-Functions in C

3-48

Converting Level 1 C MEX S-Functions to Level 2

Level 2 S-functions were introduced with Simulink 2.2. Level 1 S-functions
refer to S-functions that were written to work with Simulink 2.1 and previous
releases. Level 1 S-functions are compatible with Simulink 2.2 and subsequent
releases; you can use them in new models without making any code changes.
However, to take advantage of new features in S-functions, level 1 S-functions
must be updated to level 2 S-functions. Here are some guidelines:

e Start by looking at simulink/src/sfunctmpl_doc.c. This template
S-function file concisely summarizes level 2 S-functions.

¢ At the top of your S-function file, add this define:
#idefine S_FUNCTION_LEVEL 2

¢ Update the contents of md1InitializeSizes. In particular, add the following
error handling for the number of S-function parameters:
ssSetNumSFcnParams (S, NPARAMS); /*Number of expected parameters*/

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
/* Return if number of expected != number of actual parameters */
return;

}

Set up the inputs using:
if (!ssSetNumInputPorts(S, 1)) return; /*Number of input ports */
ssSetInputPortWidth(S, 0, width); /* Width of input
port one (index 0)*/
ssSetInputPortDirectFeedThrough(S, 0, 1); /* Direct feedthrough
or port one */
ssSetInputPortRequiredContiguous(S, 0);
Set up the outputs using:
if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, width); /* Width of output port
one (index 0) */

¢ If your S-function has a nonempty mdlInitializeConditions, update it to
the following form:

#define MDL_INITIALIZE_CONDITIONS

static void mdlInitializeConditions(SimStruct *S)
{

}

Otherwise, delete the function.

= Access the continuous states using ssGetContStates. The ssGetX macro
has been removed.

= Access the discrete states using ssGetRealDiscStates(S). The ssGetX
macro has been removed.

Converting level 1 C MEX S-Functions to level 2

= For mixed continuous and discrete state S-functions, the state vector no
longer consists of the continuous states followed by the discrete states. The
states are saved in separate vectors and hence might not be contiguous in
memory.

¢ The md10utputs prototype has changed from
static void mdlOutputs(real_T *y, const real T *x,
const real_T *u, SimStruct *S, int_T tid)
to
static void mdlOutputs(SimStruct *S, int_T tid)

Since y, x, and u are not explicitly passed in to level-2 S-functions, you must
use

= ssGetInputPortSignal to access inputs
= ssGetOutputPortSignal to access the outputs
= ssGetContStates or ssGetRealDiscStates to access the states
¢ The mdlUpdate function prototype has changed from
void mdlUpdate(real T *x, real T *u, Simstruct *S, int T tid)

to
void mdlUpdate(SimStruct *S, int T tid)

¢ If your S-function has a nonempty md1lUpdate, update it to this form:
#define MDL_UPDATE
static void mdlUpdate(SimStruct *S, int_T tid)
{
}

Otherwise, delete the function.
¢ If your S-function has a nonempty md1Derivatives, update it to this form:

#define MDL_DERIVATIVES
static void mdlDerivatives(SimStruct *S, int T tid)

{
}

Otherwise, delete the function.

® Replace all obsolete SimStruct macros. See “Obsolete Macros” on page 3-50
for a complete list of obsolete macros.

3-49

3 Writing S-Functions in C

3-50

¢ When converting level 1 S-functions to level 2 S-functions, you should build
your S-functions with full (i.e., highest) warning levels. For example, if you
have gcc on a UNIX system, use these options with the mex utility.

mex CC=gcc CFLAGS=-Wall sfcn.c

If your system has Lint, use this code.

lint -DMATLAB_MEX_FILE -I<matlabroot>/simulink/include
-Imatlabroot/extern/include sfcn.c

On a PC, to use the highest warning levels, you must create a project file
inside the integrated development environment (IDE) for the compiler you
are using. Within the project file, define MATLAB_MEX_ FILE and add

matlabroot/simulink/include
matlabroot/extern/include

to the path (be sure to build with alignment set to 8).

Obsolete Macros

The following macros are obsolete. Each obsolete macro should be replaced
with the specified macro.

Obsolete Macro Replace With

ssGetU(S), ssGetUPtrs(S) ssGetInputPortSignalPtrs(S,port)

ssGetY(S) ssGetOutputPortRealSignal(S,port)

ssGetX(S) ssGetContStates(S), ssGetRealDiscStates(S)

ssGetStatus(S) Normally not used, but ssGetErrorStatus(S) is
available.

ssSetStatus(S,msg) ssSetErrorStatus(S,msg)

ssGetSizes(S) Specific call for the wanted item (i.e.,

ssGetNumContStates(S))
ssGetMinStepSize(S) No longer supported.

ssGetPresentTimeEvent (S, sti) ssGetTaskTime (S,sti)

Converting level 1 C MEX S-Functions to level 2

Obsolete Macro

Replace With

ssGetSampleTimeEvent (S,sti)
ssSetSampleTimeEvent (S, t)
ssGetOffsetTimeEvent (S,sti)
ssSetOffsetTimeEvent (S,sti,t)
ssIsSampleHitEvent (S,sti,tid)
ssGetNumInputArgs(S)
ssSetNumInputArgs (S, numInputArgs)
ssGetNumArgs(S)

ssGetArg(S,argNum)

ssGetNumInputs

ssSetNumInputs

ssGetNumOutputs

ssSetNumOutputs

ssGetSampleTime(S,sti)
ssSetSampleTime(S,sti,t)
ssGetOffsetTime(S,sti)
ssSetOffsetTime(S,sti,t)
ssIsSampleHit (S,sti,tid)
ssGetNumSFcnParams(S)
ssSetNumSFcnParams (S, numInputArgs)
ssGetSFcnParamsCount (S)
ssGetSFcnParam(S,argNum)

ssGetNumInputPorts(S) and
ssGetInputPortWidth(S,port)

ssSetNumInputPorts(S,nInputPorts) and
ssSetInputPortWidth(S,port,val)

ssGetNumOutputPorts(S) and
ssGetOutputPortWidth (S, port)

ssSetNumOutputPorts(S,nOutputPorts) and
ssSetOutputPortWidth(S,port,val)

3-51

3 Writing S-Functions in C

3-52

Creating C++ S-Functions

The procedure for creating C++ S-functions is nearly the same as that for creating C S-functions (see
Chapter 3, “Writing S-Functions in C”). The following sections explain the differences.

Source File Format (p. 4-2) Explains the differences between the source file structure
of a C++ S-function and a C S-function.

Making C++ Objects Persistent (p. 4-6) How to create C++ objects that persist across invocations
of the S-function.

Building C++ S-Functions (p. 4-7) How to build a C++ S-function.

4 Creating C++ S-Functions

4-2

Source File Format

The format of the C++ source for an S-function is nearly identical to that of the
source for an S-function written in C. The main difference is that you must tell
the C++ compiler to use C calling conventions when compiling the callback
methods. This is necessary because the Simulink simulation engine assumes
that callback methods obey C calling conventions.

To tell the compiler to use C calling conventions when compiling the callback
methods, wrap the C++ source for the S-function callback methods in an
extern "C" statement. The C++ version of the sfun_counter S-function
example (matlabroot/simulink/src/sfun_counter_cpp.cpp) illustrates
usage of the extern "C" directive to ensure that the compiler generates
Simulink-compatible callback methods:

/* File : sfun_counter_cpp.cpp

* Abstract:

*

* Example of an C++ S-function which stores an C++ object in
* the pointers vector PWork.

*

* Copyright 1990-2000 The MathWorks, Inc.

*

*

/
#include "iostream.h"

class counter {
double x;

public:
counter() {

X = 0.0;

}

double output(void) {
X =X+ 1.0;
return Xx;

b

#ifdef __cplusplus
extern "C" { // use the C fcn-call standard for all functions
#endif // defined within this scope

#define S_FUNCTION_LEVEL 2
#define S_FUNCTION_NAME sfun_counter_cpp

/*
* Need to include simstruc.h for the definition of the SimStruct and
* its associated macro definitions.

Source File Format

*/
#include "simstruc.h"

/* Function: mdlInitializeSizes ==== =======================

* Abstract:
* The sizes information is used by Simulink to determine the S-function
* block's characteristics (number of inputs, outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S)
{

/* See sfuntmpl_doc.c for more details on the macros below */

ssSetNumSFcnParams (S, 1); /* Number of expected parameters */

if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
/* Return if number of expected != number of actual parameters */
return;

}

ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 0);

if (!ssSetNumInputPorts(S, 0)) return;

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes (S, 1);

ssSetNumRWork (S, 0);

ssSetNumIWork(S, 0);

ssSetNumPWork (S, 1); // reserve element in the pointers vector
ssSetNumModes (S, 0); // to store a C++ object
ssSetNumNonsampledZCs (S, 0);

ssSetOptions(S, 0);

/* Function: mdlInitializeSampleTimes ====
* Abstract:

* This function is used to specify the sample time(s) for your
* S-function. You must register the same number of sample times as
* specified in ssSetNumSampleTimes.
*/
static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime (S, 0, mxGetScalar(ssGetSFcnParam(S, 0)));
ssSetOffsetTime (S, 0, 0.0);

4-3

4 Creating C++ S-Functions

}

#define MDL_START /* Change to #undef to remove function */
#if defined(MDL_START)
/* Function: mdlStart ========

* Abstract:
* This function is called once at start of model execution. If you
* have states that should be initialized once, this is the place
* to do it.
*/
static void mdlStart(SimStruct *S)
{

ssGetPWork(S)[0] = (void *) new counter; // store new C++ object in the
} /| pointers vector
#endif /* MDL_START */

/* Function: mdlOutputs ======== ==

* Abstract:
* In this function, you compute the outputs of your S-function
* block. Generally outputs are placed in the output vector, ssGetY(S).
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
counter *c = (counter *) ssGetPWork(S)[0]; // retrieve C++ object from
real_T *y = ssGetOutputPortRealSignal(S,0); // the pointers vector and use
y[0] = c->output(); // member functions of the
} /] object
/* Function: mdlTerminate ====== ==
* Abstract:
* In this function, you should perform any actions that are necessary
* at the termination of a simulation. For example, if memory was
* allocated in mdlStart, this is the place to free it.
*/
static void mdlTerminate(SimStruct *S)
{
counter *c = (counter *) ssGetPWork(S)[O]; // retrieve and destroy C++
delete c; // object in the termination
} // function
/*============================== ====%
* See sfuntmpl_doc.c for the optional S-function methods *
A ———————=—==—=—=====-============== ====*/

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

4-4

Source File Format

#ifdef _ cplusplus
} // end of extern "C" scope
#endif

4-5

4 Creating C++ S-Functions

Making C++ Objects Persistent

Your C++ callback methods might need to create persistent C++ objects, that

is, objects that continue to exist after the method exits. For example, a callback
method might need to access an object created during a previous invocation. Or
one callback method might need to access an object created by another callback
method. To create persistent C++ objects in your S-function:

1 Create a pointer work vector to hold pointers to the persistent object
between method invocations:

static void mdlInitializeSizes(SimStruct *S)
{

ssSetNumPWork(S, 1); // reserve element in the pointers vector
/] to store a C++ object

}

2 Store a pointer to each object that you want to be persistent in the pointer
work vector:

static void mdlStart(SimStruct *S)
{

ssGetPWork(S)[0] = (void *) new counter; // store new C++ object in the
} /| pointers vector

3 Retrieve the pointer in any subsequent method invocation to access the

object:

static void mdlOutputs(SimStruct *S, int_T tid)

{
counter *c = (counter *) ssGetPWork(S)[O]; // retrieve C++ object from
real_ T *y = ssGetOutputPortRealSignal(S,0); // the pointers vector and use
y[0] = c->output(); // member functions of the

} /] object

4 Destroy the objects when the simulation terminates:

static void mdlTerminate(SimStruct *S)

{
counter *c = (counter *) ssGetPWork(S)[O]; // retrieve and destroy C++
delete c; // object in the termination
} // function

4-6

Building C++ S-Functions

Building C++ S-Functions

Use the MATLAB mex command to build C++ S-functions exactly the way you
use it to build C S-functions. For example, to build the C++ version of the
sfun_counter example, enter

mex sfun_counter_cpp.cpp

at the MATLAB command line.

Note The extension of the source file for a C++ S-function must be .cpp to
ensure that the compiler treats the file’s contents as C++ code.

4-7

4 Creating C++ S-Functions

4-8

Creating Ada S-Functions

The following sections explain how to use the Ada programming language to create S-functions.

Introduction (p. 5-2) Overview of creating Ada S-functions.

Ada S-Function Source File Format Source code structure of an Ada S-function.

(p. 5-3)

Writing Callback Methods in Ada How to use Ada to implement S-function callback
(p. 5-6) methods.

Building an Ada S-Function (p. 5-9) Compiling and linking an Ada S-function.
Example of an Ada S-Function (p. 5-10) An Ada version of the timestwo S-function example.

5 Creating Ada S-Functions

5-2

Introduction

Simulink allows you to use the Ada programming language to create
S-functions. As with S-functions coded in other programming languages,
Simulink interacts with an Ada S-function by invoking callback methods that
the S-function implements. Each method performs a predefined task, such as
computing block outputs, required to simulate the block whose functionality
the S-function defines. Creating an Ada S-function thus entails writing Ada
implementations of the callback methods required to simulate the S-function
and then compiling and linking the callbacks into a library that Simulink can
load and invoke during simulation. The following sections explain how to
perform these tasks.

Ada S-Function Source File Format

Ada S-Function Source File Format

To create an Ada S-function, you must create an Ada package that implements
the callback methods required to simulate the S-function. The S-function
package comprises a specification and a body.

Ada S-Function Specification

The specification specifies the methods that the Ada S-function uses and
implements. The specification must specify that the Ada S-function uses the
Simulink package, which defines data types and functions that the S-function
can use to access the internal data structure (SimStruct) that Simulink uses to
store information about the S-function (see Chapter 9, “SimStruct Functions”).
The specification and body of the Simulink package reside in the
matlabroot/simulink/ada/interface/ directory.

The specification should also specify each callback method that the S-function
implements as an Ada procedure exported to C. The following is an example of
an Ada S-function specification that meets these requirements.

- The Simulink API for Ada S-Function
with Simulink; use Simulink;

package Times_Two 1is

-- The S_FUNCTION_NAME has to be defined as a constant
-- string.

S_FUNCTION_NAME : constant String := "times_two";

-- Every S-Function is required to have the

-- "mdlInitializeSizes" method.

-- This method needs to be exported as shown below, with the
-- exported name being "mdlInitializeSizes".

procedure mdlInitializeSizes(S : in SimStruct);

pragma Export(C, mdlInitializeSizes, "mdlInitializeSizes");

procedure mdlOutputs(S : in SimStruct; TID : in Integer);
pragma Export(C, mdlOutputs, "mdlOutputs");

end Times_Two;

5-3

5 Creating Ada S-Functions

5-4

Ada S-Function Body

The Ada S-Function body provides the implementations of the S-function
callback methods, as illustrated in the following example.

with Simulink; use Simulink;
with Ada.Exceptions; use Ada.Exceptions;

package body Times_Two is

-- Function: mdlInitializeSizes ---------------------o oo

-- Abstract:
-- Setup the input and output port attributes for this
-- S-Function.

procedure mdlInitializeSizes(S : in SimStruct) is

begin
-- Set the input port attributes

ssSetNumInputPorts(S, 1);
ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);
ssSetInputPortDataType (S, 0, SS_DOUBLE) ;
ssSetInputPortDirectFeedThrough(S, 0, TRUE);
ssSetInputPortOverWritable (S, 0, FALSE);
ssSetInputPortOptimizationLevel(S, 0, 3);

-- Set the output port attributes

ssSetNumOutputPorts(S, 1);
ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);
ssSetOutputPortDataType(S, 0, SS_DOUBLE) ;

ssSetOutputPortOptimizationLevel(S, 0, 3);

-- Set the block sample time.

ssSetSampleTime (S, INHERITED_SAMPLE_TIME);
exception
when E : others =>
if ssGetErrorStatus(S) = "" then
ssSetErrorStatus (S,

"Exception occured in mdlInitializeSizes. " &
"Name: " & Exception_Name(E) & ", " &
"Message: " & Exception_Message(E) &
"and " & "Information: " &

Exception_Information(E));
end if;
end mdlInitializeSizes;

-- Function: mdlOutputs -----------mmmm i

-- Abstract:

Ada S-Function Source File Format

-- Compute the S-Function's output,

-- given

its input: y =2 * u

procedure mdlOutputs(S : in SimStruct; TID : in Integer) is

uWidth : Integer := ssGetInputPortWidth(S,0);
u : array(0 .. uWidth-1) of Real_T;
for U'Address use ssGetInputPortSignalAddress(S,0);

yWwidth : Integer := ssGetOutputPortWidth(S,0);
Y : array(0 .. yWidth-1) of Real_T;
for Y'Address use ssGetOutputPortSignalAddress(S,0);

begin
if uWidth = 1 then
for Idx in 0 .. yWidth-1 loop
Y(Idx) := 2.0 * U(0);
end loop;
else
for Idx in O .. yWidth-1 loop
Y(Idx) := 2.0 * U(Idx);
end loop;
end if;
exception
when E : others =>
if ssGetErrorStatus(S) = "" then
ssSetErrorStatus(S,
"Exception occured in mdlOutputs. " &
"Name: " & Exception_Name(E) & ", " &
"Message: " & Exception_Message(E) & " and " &
"Information: " & Exception_Information(E));
end if;

end mdlOutputs;

end Times_Two;

5-5

5 Creating Ada S-Functions

Writing Callback Methods in Ada

Simulink interacts with an Ada S-function by invoking callback methods that
the S-function implements. This section specifies the callback methods that an
Ada S-function can implement and provides guidelines for implementing them.

Callbacks Invoked by Simulink

The following diagram shows the callback methods that Simulink invokes
when interacting with an Ada S-function during a simulation and the order in
which Simulink invokes them.

: 9.4(13 S—functiunsI | Flow Chart

mdlIntializeSizes
)
mdl SetWorkWidths
3 H
mdlStart 5"_": Optional: Weke thisexplicit call to process
; 4 : "_iniﬁal pararmeter valies.
gmdlItlltlahiECondltlons; i mdlProcessParameters |
{constant) mdlOutputs Execute blocks with constant (rnagenta) sarple times
4" Called only when parareters are changed during
Cmdlp T v | simulation. ¥ou must explicifly call this routine in
u L roces: ArAMEIELS | = mdStartto process your initial parameter values.
i EE” ‘mdlInitializeConditions | < 1f your S-function resides in an exabled subsyster
g g:8% 1 configured to reset states, then this function is
E g 5 £ fmajor) md Outputs called here when the subsyster has just engbled.
g 538 3 Sl e s
& é’ gvg mdl Update (ffinalme sbp /o i Terminate
= ; :
= oid % - l_ .
E g EDE 4 eiwatlves Integration (minor time step)
el = 2
g§igt Integration stages. Only
27
S A

........ has contirmous states

|: (rminar) mdl Cutputs] performed if your S-function

mdlDerivatives

Writing Callback Methods in Ada

Note When interacting with Ada S-functions, Simulink invokes only a subset
of the callback methods that it invokes for C S-functions. The “Languages
Supported” section of the reference page for each callback method specifies
whether Simulink invokes that callback when interacting with an Ada
S-function.

Implementing Callbacks

Simulink defines in a general way the task of each callback. The S-function is
free to perform the task according to the functionality it implements. For
example, Simulink specifies that the S-function’s md10utputs method must
compute that block’s outputs at the current simulation time. It does not specify
what those outputs must be. This callback-based API allows you to create
S-functions, and hence custom blocks, that meet your requirements.

Chapter 8, “S-Function Callback Methods,” explains the purpose of each

callback and provides guidelines for implementing them. Chapter 3, “Writing
S-Functions in C,” provides information on using these callbacks to implement
specific S-function features, such as the ability to handle multiple signal data

types.

Omitting Optional Callback Methods

The method md1lInitializeSizes is the only callback that an Ada S-function
must implement. The source for your Ada S-function needs to include
implementations only for callbacks that it must handle. If the source for your
S-function does not include an implementation for a particular callback, the
mex tool that builds the S-function (see “Building an Ada S-Function” on
page 5-9) provides a stub implementation.

SimStruct Functions

Simulink provides a set of functions that enable an Ada S-function to access the
internal data structure (SimStruct) that Simulink maintains for the
S-function. These functions consist of Ada wrappers around the SimStruct
macros used to access the SimStruct from a C S-function (see Chapter 9,
“SimStruct Functions”). Simulink provides Ada wrappers for a substantial

5-7

5 Creating Ada S-Functions

subset of the SimStruct macros. The “Languages Supported” section of the
reference page for a macro specifies whether it has an Ada wrapper.

5-8

Building an Ada S-Function

Building an Ada S-Function

To use your Ada S-function with Simulink, you must build a MATLAB
executable (MEX) file from the Ada source code for the S-function. Use the
MATLAB mex command to perform this step.

The mex syntax for building an Ada S-function MEX file is
mex [-v] [-g] -ada SFCN.ads

where SFCN. ads is the name of the S-function’s package specification.

For example, to build the timestwo S-function example that comes with
Simulink, enter the command

mex -ada timestwo.ads

Ada Compiler Requirements

To build a MEX file from Ada source code, using the mex tool, you must have
previously installed a copy of version 3.12 (or higher) of the GNAT Ada95
compiler on your system. You can obtain the latest Solaris, Windows, and
GNU-Linux versions of the compiler at the GNAT ftp site
(ftp://cs.nyu.edu/pub/gnat). Make sure that the compiler executable is in
MATLAB’s command path so that the mex tool can find it.

The GNAT Ada95 compiler package used to include gnatdll.exe, a tool for
building DLLs on Windows. This tool, which is required to build Ada MEX files
on Windows, now comes as part of a separate gnatwin package containing
Windows-specific files. If you want to build Ada S-functions on a Windows
system, you must download and install the gnatwin package as well as the
GNAT Ada95 compiler.

5 Creating Ada S-Functions

5-10

Example of an Ada S-Function

This section presents an example of a basic Ada S-function that you can use as
a model when creating your own Ada S-functions. The example is the timestwo
S-function example that comes with Simulink (see
matlabroot/simulink/ada/examples/timestwo.ads and
matlabroot/simulink/ada/examples/timestwo.adb). This S-function outputs
twice its input.

The following model uses the timestwo S-function to double the amplitude of a
sine wave and plot it in a scope.

ﬁu P timeshuo —b-:l
Sine Wrave S-Function Scope

The block dialog for the S-function specifies timestwo as the S-function name;
the parameters field is empty.

The timestwo S-function contains the S-function callback methods shown in

Start of simulation

this figure.

Initialization

Simulation

loop

mdlInitializeSizes |

v

‘ mdlInitializeSampleTimes ‘

_,‘

md1Outputs ‘

v
End of simulation

Example of an Ada S-Function

The source code for the timestwo S-function comprises two parts:

¢ Package specification
¢ Package body

The following sections explain each of these parts.

Timestwo Package Specification

The timestwo package specification, timestwo.ads, contains the following
code.

-- The Simulink API for Ada S-Function
with Simulink; use Simulink;
package Times_Two 1is

-- The S_FUNCTION_NAME has to be defined as a constant string. Note that
-- the name of the S-Function (ada_times_two) is different from the name
-- of this package (times_two). We do this so that it is easy to identify
-- this example S-Function in the MATLAB workspace. Normally you would use
-- the same name for S_FUNCTION_NAME and the package.

S_FUNCTION_NAME : constant String := "ada_times_two";

-- Every S-Function is required to have the "mdlInitializeSizes" method.
-- This method needs to be exported as shown below, with the exported name
-- being "mdlInitializeSizes".

procedure mdlInitializeSizes(S : in SimStruct);
pragma Export(C, mdlInitializeSizes, "mdlInitializeSizes");

procedure mdlOutputs(S : in SimStruct; TID : in Integer);
pragma Export(C, mdlOutputs, "mdlOutputs");

end Times_Two;

The package specification begins by specifying that the S-function uses the
Simulink package.

with Simulink; use Simulink;

The Simulink package defines Ada procedures for accessing the internal data
structure (SimStruct) that Simulink maintains for each S-function (see
Chapter 9, “SimStruct Functions”).

5-11

5 Creating Ada S-Functions

Next the specification specifies the name of the S-function.

S FUNCTION_NAME : constant String := "ada_times_two";

The name ada_times_two serves to distinguish the MEX-file generated from
Ada source from those generated from the timestwo source coded in other
languages.

Finally the specification specifies the callback methods implemented by the
timestwo S-function.

procedure mdlInitializeSizes(S : in SimStruct);
pragma Export(C, mdlInitializeSizes, "mdlInitializeSizes");

procedure mdlOutputs(S : in SimStruct; TID : in Integer);
pragma Export(C, mdlOutputs, "mdlOutputs");

The specification specifies that the Ada compiler should compile each method
as a C-callable function. This is because the Simulink engine assumes that
callback methods are C functions.

Note When building an Ada S-function, MATLAB’s mex tool uses the package
specification to determine the callbacks that the S-function does not
implement. It then generates stubs for the nonimplemented methods.

Timestwo Package Body

The timestwo package body, timestwo.adb, contains

with Simulink; use Simulink;
with Ada.Exceptions; use Ada.Exceptions;

package body Times_Two is
- Function: mdlInitializeSizesS -------------mm oo
- Abstract:
Setup the input and output port attrubouts for this S-Function.

procedure mdlInitializeSizes(S : in SimStruct) 1is

begin
- Set the input port attributes

ssSetNumInputPorts(S, 1);

5-12

Example of an Ada S-Function

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);
ssSetInputPortDataType (S, 0, SS_DOUBLE);
ssSetInputPortDirectFeedThrough(S, 0, TRUE);
ssSetInputPortOverWritable(S, 0, FALSE);
ssSetInputPortOptimizationLevel(S, 0, 3);

-- Set the output port attributes

ssSetNumOutputPorts(S, 1);
ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);
ssSetOutputPortDataType (S, 0, SS_DOUBLE);

ssSetOutputPortOptimizationLevel(S, 0, 3);

-- Set the block sample time.
ssSetSampleTime (S, INHERITED_SAMPLE_TIME);

exception
when E : others =>
if ssGetErrorStatus(S) = "" then
ssSetErrorStatus(S,
"Exception occured in mdlInitializeSizes. " &
"Name: " & Exception_Name(E) & ", " &
"Message: " & Exception_Message(E) & " and " &
"Information: " & Exception_Information(E));
end if;
end mdlInitializeSizes;

-- Function: mdlOutputs -------------------o e
-- Abstract:
-- Compute the S-Function's output, given its input: y =2 * u

procedure mdlOutputs(S : in SimStruct; TID : in Integer) is

uWidth : Integer := ssGetInputPortWidth(S,0);
U : array(0 .. uWidth-1) of Real_T;
for U'Address use ssGetInputPortSignalAddress(S,0);

yWidth : Integer := ssGetOutputPortWidth(S,0);
Y : array(0 .. yWidth-1) of Real_T;
for Y'Address use ssGetOutputPortSignalAddress(S,0);

begin
if uWidth = 1 then
for Idx in O .. yWidth-1 loop
Y(Idx) := 2.0 * U(0);
end loop;
else
for Idx in 0 .. yWidth-1 loop
Y(Idx) := 2.0 * U(Idx);
end loop;
end if;

5-13

5 Creating Ada S-Functions

5-14

exception
when E : others =>
if ssGetErrorStatus(S) = "" then
ssSetErrorStatus(S,
"Exception occured in mdlOutputs. " &
"Name: " & Exception_Name(E) & ", " &
"Message: " & Exception_Message(E) & " and " &
"Information: " & Exception_Information(E));
end if;
end mdlOutputs;

end Times_Two;

The package body contains implementations of the callback methods needed to
implement the timestwo example.

mdlinitializeSizes

Simulink calls mdlInitializeSizes to inquire about the number of input and
output ports, the sizes of the ports, and any other objects (such as the number
of states) needed by the S-function.

The timestwo implementation of md1InitializeSizes uses SimStruct
functions defined in the Simulink package to specify the following size
information:

¢ One input port and one output port

The widths of the input and output port are dynamically sized. This tells
Simulink to multiply each element of the input signal to the S-function by 2
and to place the result in the output signal. Note that the default handling
for dynamically sized S-functions for this case (one input and one output) is
that the input and output widths are equal.

¢ One sample time

Finally the method provides an exception handler to handle any errors that
occur in invoking the SimStruct functions.

md|Outputs

Simulink calls md10utputs at each time step to calculate a block’s outputs. The
timestwo implementation of md10utputs takes the input, multiplies it by 2,
and writes the answer to the output.

Example of an Ada S-Function

The timestwo implementation of the md10utputs method uses the SimStruct
functions ssGetInputPortWidth and ssGetInputPortSignalAddress to access
the input signal.

uwidth : Integer := ssGetInputPortWidth(S,0);
U : array(0 .. uWidth-1) of Real T;
for U'Address use ssGetInputPortSignalAddress(S,0);

Similarly, the md10utputs method uses the functions ssGetOutputPortWidth
and ssGetOutputPortSignalAddress to access the output signal.

yWidth : Integer := ssGetOutputPortWidth(S,0);
Y : array(0 .. ywidth-1) of Real_T;
for Y'Address use ssGetOutputPortSignalAddress(S,0);

Finally the method loops over the inputs to compute the outputs.

Building the Timestwo Example
To build this S-function into Simulink, enter

mex -ada timestwo.abs

at the command line.

5-15

5 Creating Ada S-Functions

5-16

Creating Fortran
S-Functions

The following sections explain how to use the Fortran programming language to create S-functions.

Introduction (p. 6-2) Overview of approaches to writing Fortran S-functions.

Creating Level 1 Fortran S-Functions Describes a purely Fortran approach to creating an
(p. 6-3) S-function.

Creating Level 2 Fortran S-Functions Describes a hybrid C/Fortran approach to writing an
(p. 6-7) S-function that enables creation of more capable blocks.

Porting Legacy Code (p. 6-14) How to wrap an S-function around existing Fortran code.

6 Creating Fortran S-Functions

Introduction

There are two main strategies to executing Fortran code from Simulink. One is
from a level 1 Fortran-MEX (F-MEX) S-function, the other is from a level 2
gateway S-function written in C. Each has its advantages and both can be
incorporated into code generated by the Real-Time Workshop.

Level 1 Versus Level 2 S-Functions

The original S-function interface was called the Level 1 API. As the capabilities
of Simulink grew, the S-function API was rearchitected into the more
extensible Level 2 API. This allows S-functions to have all the capabilities of a
full Simulink model (except automatic algebraic loop identification and
solving) and to grow as Simulink grows.

Creating level 1 Fortran S-Functions

Creating Level 1 Fortran S-Functions

The Fortran MEX Template File

A template file for Fortran MEX S-functions is located at
matlabroot/simulink/src/sfuntmpl _fortran.for. The template file
compiles as is and copies the input to the output.

To use the template to create a new Fortran S-function:

1 Create a copy under another filename.

2 Edit the copy to perform the operations you need.

3 Compile the edited file into a MEX file, using the mex command.

4 Include the MEX file in your model, using the S-Function block.

Example
The example file, matlabroot/simulink/src/sfun_timestwo_for.for,
implements an S-function that multiplies its input by 2.
File: SFUN_TIMESTWO_FOR.F
Abstract:
A sample Level 1 FORTRAN representation of a
timestwo S-function.
The basic mex command for this example is:

>> mex sfun_timestwo_for.for simulink.for

Copyright 1990-2000 The MathWorks, Inc.

Function: SIZES

Abstract:
Set the size vector.

SIZES returns a vector which determines model
characteristics. This vector contains the
sizes of the state vector and other

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C parameters. More precisely,

6-3

6 Creating Fortran S-Functions

6-4

sNeNeoNeNeoNeNeNe NNl

[N el

o

[sNeNeNeNeNeNeNel

o

SIZE(1) number of continuous states

SIZE(2) number of discrete states

SIZE(3) number of outputs

SIZE(4) number of inputs

SIZE(5) number of discontinuous roots in
the system

SIZE(6) set to 1 if the system has direct

feedthrough of its inputs,
otherwise 0

SUBROUTINE SIZES(SIZE)
. Array arguments ..
INTEGER*4 SIZE(*)
. Parameters ..
INTEGER*4
PARAMETER

NSIZES
(NSIZES=6)

SIZE(1)
SIZE(2)
SIZE(3)
SIZE(4) =
)
)

SIZE(5
SIZE(6

1}
A 0O =2 200

RETURN
END

Function: OUTPUT

Abstract:
Perform output calculations for continuous
signals.

.. Parameters ..

SUBROUTINE OUTPUT(T, X, U, Y)
REAL*8 T

REAL*8 X(*), U(*), Y(*)

Y(1) = U(1) * 2.0

RETURN
END

Stubs for unused functions.

Creating level 1 Fortran S-Functions

SUBROUTINE
REAL*8

C --- Nothing to
RETURN
END

SUBROUTINE
REAL*8

C --- Nothing to
RETURN
END

SUBROUTINE
REAL*8

C --- Nothing to
RETURN
END

SUBROUTINE
REAL*8

C --- Nothing to
RETURN
END

SUBROUTINE
REAL*8

C --- Nothing to
RETURN
END

SUBROUTINE
REAL*8

C --- Nothing to
RETURN
END

A Level 1 S-function's input/output is limited to using the REAL*8 data type,
(DOUBLE PRECISION), which is equivalent to a double in C. Of course, the

INITCOND(X0)
X0(*)
do.

DERIVS(T, X, U, DX)
T, X(*), U(*), DX(*)
do.

DSTATES(T, X, U, XNEW)
T, X(*), U(*), XNEW(*)
do.

DOUTPUT(T, X, U, Y)
Ty X(*), U(*), Y(¥)
do.

TSAMPL(T, X, U, TS, OFFSET)
T,TS,0FFSET,X(*),U(*)
do.

SINGUL(T, X, U, SING)
T, X(*), U(*), SING(*)
do.

internal calculations can use whatever data types you need.

To see how this S-function works, enter

sfcndemo_timestwo_for

at the MATLAB prompt and run the model.

6-5

6 Creating Fortran S-Functions

6-6

Inline Code Generation Example

Real-Time Workshop users can use a sample block target file for
sfun_timestwo_for.mex to generate code for sfcndemo _timestwo_for. If you
want to learn how to inline your own Fortran MEX file, see the example at
matlabroot/toolbox/simulink/blocks/tlc_c/sfun_timestwo_for.tlc and
read the Target Language Compiler Reference Guide documentation.

Creating level 2 Fortran S-Functions

Creating Level 2 Fortran S-Functions

To use the features of a level 2 S-function with Fortran code, you must write a
skeleton S-function in C that has code for interfacing to Simulink and also calls
your Fortran code.

Using the C-MEX S-function as a gateway is quite simple if you are writing the
Fortran code from scratch. If instead your Fortran code already exists as a
stand-alone simulation, there is some work to be done to identify parts of the
code that need to be registered with Simulink, such as identifying continuous
states if you are using variable-step solvers or getting rid of static variables if
you want to have multiple copies of the S-function in a Simulink model (see
“Porting Legacy Code” on page 6-14).

Template File

The file matlabroot/simulink/src/sfungate.c is a C-MEX template file for
calling into a Fortran subroutine. It works with a simple Fortran subroutine if
you modify the Fortran subroutine name in the code.

C/Fortran Interfacing Tips
The following are some tips for creating the C-to-Fortran gateway S-function.

Mex Environment

Remember that mex -setup needs to find both the C and the Fortran compilers.
If you install or change compilers, you must run mex -setup.

Test the installation and setup using sample MEX files from MATLAB's C and
Fortran MEX examples in matlabroot/extern/examples/mex, as well as
Simulink's examples, which are located in matlabroot/simulink/src.

Compiler Compatibility

Your C and Fortran compilers need to use the same object format. If you use
the compilers explicitly supported by the mex command this is not a problem.
When you use the C gateway to Fortran, it is possible to use Fortran compilers
not supported by the mex command, but only if the object file format is

compatible with the C compiler format. Common object formats include ELF
and COFF.

6-7

6 Creating Fortran S-Functions

6-8

The compiler must also be configurable so that the caller cleans up the stack
instead of the callee. Compaq Visual Fortran (formerly known as Digital
Fortran) is one compiler whose default stack cleanup is the callee.

Symbol Decorations

Symbol decorations can cause run-time errors. For example, g77 decorates
subroutine names with a trailing underscore when in its default configuration.
You can either recognize this and adjust the C function prototype or alter the
Fortran compiler's name decoration policy via command-line switches, if the
compiler supports this. See the Fortran compiler manual about altering symbol
decoration policies.

If all else fails, use utilities such as od (octal dump) to display the symbol
names. For example, the command

od -s 2 <file>
lists strings and symbols in binary (.obj) files.

These binary utilities can be obtained for Windows as well. MKS is one
company that has commercial versions of powerful UNIX utilities, although
most can also be obtained free on the Web. hexdump is another common
program for viewing binary files. As an example, here is the output of

od -s 2 sfun_atmos_for.o

on Linux.

0000115 E~

0000136 E~

0000271 E™”

0000467 'E"@

0000530 'E”

0000575 E” E 5@
0001267 CffvC- :C
0001323 :|.-:87#8 Kwé
0001353 ?7333@

0001364 333

0001414 01.01

0001425 GCC: (GNU) egcs-2.91.66 19990314/Linux
0001522 .symtab
0001532 .strtab
0001542 .shstrtab
0001554 .text

0001562 .rel.text
0001574 .data

0001602 .bss

Creating level 2 Fortran S-Functions

0001607 .note

0001615 .comment
0003071 sfun_atmos_for.for
0003101 gcc2_compiled.
0003120 rearth.0
0003131 gmr.1

0003137 htab.2
0003146 ttab.3
0003155 ptab.4
0003164 gtab.5
0003173 atmos_
0003207 exp

0003213 pow_d

Note that Atmos has been changed to atmos_, which the C program must call to
be successful.

With Compagq Visual Fortran, the symbol is suppressed, so that Atmos becomes
ATMOS (no underscore).

Fortran Math Library

Fortran math library symbols might not match C math library symbols. For
example, A*B in Fortran calls library function pow_dd, which is not in the C
math library. In these cases, you must tell mex to link in the Fortran math
library. For gcc environments, these routines are usually found in
/usr/local/lib/libf2c.a, /usr/lib/libf2c.a, or equivalent.

The mex command becomes

mex -L/usr/local/lib -1f2c cmex_c_file fortran_object_file

Note On UNIX, the -1f2c option follows the conventional UNIX library
linking syntax, where '-1' is the library option itself and 'f2c¢' is the unique
part of the library file's name, 1ibf2c.a. Be sure to use the -L option for the
library search path, because -I is only followed while searching for include
files.

The f2c package can be obtained for Windows and UNIX environments from
the Internet. The file 1ibf2c.a is usually part of g77 distributions, or else the
file is not needed as the symbols match. In obscure cases, it must be installed
separately, but even this is not difficult once the need for it is identified.

6-9

6 Creating Fortran S-Functions

6-10

On Windows, using Microsoft Visual C/C++ and Compaq Visual Fortran 6.0
(formerly known as Digital Fortran), this example can be compiled using the
following mex commands (each command is on one line).

mex -v COMPFLAGS# $COMPFLAGS /iface:cref -c sfun_atmos_sub.for

-f ..\..\bin\win32\mexopts\df6é0opts.bat

mex -v LINKFLAGS# $LINKFLAGS dfor.lib dfconsol.lib dfport.lib
/LIBPATH:$DF_ROOT\DF98\LIB sfun_atmos.c sfun_atmos_sub.obj

See matlabroot/simulink/src/sfuntmpl fortran.txt and
matlabroot/simulink/src/sfun_atmos.c for the latest information on
compiling Fortran for C on Windows.

CFortran

Or you can try using CFortran to create an interface. CFortran is a tool for
automated interface generation between C and Fortran modules, in either
direction. Search the Web for cfortran or visit

http://www-zeus.desy.de/~burow/cfortran/

for downloading.

Obtaining a Fortran Compiler

On Windows, using Visual C/C++ with Fortran is best done with Compaq
Visual Fortran, Absoft, Lahey, or other third-party compilers. See Compaq
(www. compag.com) and Absoft (www.absoft.com) for Windows, Linux, and Sun
compilers and see Lahey (www. 1lahey . com) for more choices in Windows Fortran
compilers.

For Sun (Solaris) and other commercial UNIX platforms, you can purchase the
computer vendor's Fortran compiler, a third-party Fortran such as Absoft, or
even use the Gnu Fortran port for that platform (if available).

Aslong as the compiler can output the same object (. 0) format as the platform's
C compiler, the Fortran compiler will work with the gateway C-MEX
S-function technique.

Gnu Fortran (g77) can be obtained free for several platforms from many
download sites, including tap://www.redhat.com in the download area. A
useful keyword on search engines is g77.

Creating level 2 Fortran S-Functions

Constructing the Gateway

The mdlInitializeSizes() and mdlInitializeSampleTimes () methods are
coded in C. It is unlikely that you will need to call Fortran routines from these
S-function methods. In the simplest case, the Fortran is called only from
md1lOutputs().

Simple Case

The Fortran code must at least be callable in one-step-at-a-time fashion. If the
code doesn’t have any states, it can be called from md10utputs() and no
mdlDerivatives() or mdlUpdate () method is required.

Code with States

Ifthe code has states, you must decide whether the Fortran code can support a
variable-step solver or not. For fixed-step solver only support, the C gateway
consists of a call to the Fortran code from md1Update (), and outputs are cached
in an S-function DWork vector so that subsequent calls by Simulink into
md1Outputs () will work properly and the Fortran code won't be called until the
next invocation of mdlUpdate (). In this case, the states in the code can be
stored however you like, typically in the work vector or as discrete states in
Simulink.

If instead the code needs to have continuous time states with support for
variable-step solvers, the states must be registered and stored with Simulink
as doubles. You do thisinmdlInitializeSizes() (registering states), then the
states are retrieved and sent to the Fortran code whenever you need to execute
it. In addition, the main body of code has to be separable into a call form that
can be used by md1Derivatives() to get derivatives for the state integration
and also by the md10utputs() and mdlUpdate () methods as appropriate.

Setup Code

If there is a lengthy setup calculation, it is best to make this part of the code
separable from the one-step-at-a-time code and call it from md1Start (). This
can either be a separate SUBROUTINE called from md1Start() that
communicates with the rest of the code through COMMON blocks or argument
I/O, or it can be part of the same piece of Fortran code that is isolated by an
IF-THEN-ELSE construct. This construct can be triggered by one of the input
arguments that tells the code if it is to perform either the setup calculations or
the one-step calculations.

6-11

6 Creating Fortran S-Functions

6-12

SUBROUTINE Versus PROGRAM

To be able to call Fortran from Simulink directly without having to launch
processes, etc., you must convert a Fortran PROGRAM into a SUBROUTINE. This
consists of three steps. The first is trivial; the second and third can take a bit
of examination.

1 Change the line PROGRAM to SUBROUTINE subName.
Now you can call it from C using C function syntax.

2 Identify variables that need to be inputs and outputs and put them in the
SUBROUTINE argument list or in a COMMON block.

It is customary to strip out all hard-coded cases and output dumps. In the
Simulink environment, you want to convert inputs and outputs into block

I/O.

3 If you are converting a stand-alone simulation to work inside Simulink,
identify the main loop of time integration and remove the loop and, if you
want Simulink to integrate continuous states, remove any time integration
code. Leave time integrations in the code if you intend to make a discrete
time (sampled) S-function.

Arguments to a SUBROUTINE

Most Fortran compilers generate SUBROUTINE code that passes arguments by
reference. This means that the C code calling the Fortran code must use only
pointers in the argument list.

PROGRAM ...

becomes

SUBROUTINE somename(U, X, Y)

A SUBROUTINE never has a return value. You manage I/O by using some of the
arguments for input, the rest for output.

Arguments to a FUNCTION

A FUNCTION has a scalar return value passed by value, so a calling C program
should expect this. The argument list is passed by reference (i.e., pointers) as
in the SUBROUTINE.

Creating level 2 Fortran S-Functions

If the result of a calculation is an array, then you should use a subroutine, as a
FUNCTION cannot return an array.

Interfacing to COMMON Blocks

While there are several ways for Fortran COMMON blocks to be visible to C code,
it is often recommended to use an input/output argument list to a SUBROUTINE
or FUNCTION. If the Fortran code has already been written and uses COMMON
blocks, it is a simple matter to write a small SUBROUTINE that has an
input/output argument list and copies data into and out of the COMMON block.

The procedure for copying in and out of the COMMON block begins with a write of
the inputs to the COMMON block before calling the existing SUBROUTINE. The
SUBROUTINE is called, then the output values are read out of the COMMON block
and copied into the output variables just before returning.

Example C-MEX S-Function Calling Fortran Code

The subroutine Atmos is in file sfun_atmos_sub.for. The gateway C-MEX
S-function is sfun_atmos.c, which is built on UNIX using the command

mex -L/usr/local/lib -1f2c sfun_atmos.c sfun_atmos_sub.o

On Windows, the command is
>> mex -v COMPFLAGS# $COMPFLAGS /iface:cref -c sfun_atmos_sub.for
-f ..\..\bin\win32\mexopts\df60opts.bat
>> mex -v LINKFLAGS# $LINKFLAGS dfor.lib dfconsol.lib dfport.lib
/LIBPATH:$DF_ROOT\DF98\LIB sfun_atmos.c sfun_atmos_sub.obj

On some UNIX systems where the C and Fortran compilers were installed
separately (or aren't aware of each other), you might need to reference the
library 1ibf2c.a. To do this, use the -1f2c flag.

UNIX only: if the 1ibf2c.a library isn't on the library path, you need to add the
path to the mex process explicitly with the -L command. For example:

mex -L/usr/local/lib/ -1f2c sfun_atmos.c sfun_atmos_sub.o

This sample is prebuilt and is on the MATLAB search path already, so you can
see it working by opening the sample model sfcndemo_atmos.mdl. Enter

sfcndemo_atmos

at the command prompt, or to get all the S-function demos for Simulink, type
sfcndemos at the MATLAB prompt.

6-13

6 Creating Fortran S-Functions

6-14

Porting Legacy Code

Find the States

If a variable-step solver is being used, it is critical that all continuous states are
identified in the code and put into Simulink's state vector for integration
instead of being integrated by the Fortran code. Likewise, all derivative
calculations must be made available separately to be called from the
mdlDerivatives () method in the S-function. Without these steps, any Fortran
code with continuous states will not be compatible with variable-step solvers if
the S-function is registered as a continuous block with continuous states.

Telltale signs of implicit advancement are incremented variables such as M=M+1
or X=X+0.05. If the code has many of these constructs and you determine that
it is impractical to recode the source so as not to “ratchet forward,” you might
need to try another approach using fixed-step solvers.

If it is impractical to find all the implicit states and to separate out the
derivative calculations for Simulink, another approach can be used, but you are
limited to using fixed-step solvers. The technique here is to call the Fortran
code from the mdlUpdate () method so the Fortran code is only executed once
per Simulink major integration step. Any block outputs must be cached in a
work vector so that md10utputs() can be called as often as needed and output
the values from the work vector instead of calling the Fortran routine again
(causing it to inadvertently advance time). See
matlabroot/simulink/src/sfuntmpl_gate fortran.c for an example that
uses DWork vectors.

Sample Times

If the code has an implicit step size in its algorithm, coefficients, etc., ensure
that you register the proper discrete sample time in the
mdlInitializeSampleTimes() S-function method and only change the block's
output values from the md1lUpdate () method.

Multiple Instances

If you plan to have multiple copies of this S-function used in one Simulink
model, you need to allocate storage for each copy of the S-function in the model.
The recommended approach is to use DWork vectors. See
matlabroot/simulink/include/simstruc.h and

Porting legacy Code

matlabroot/simulink/src/sfuntmpl_doc.c for details on allocating
data-typed work vectors.

Use Flints If Needed

Use flints (floating-point ints) to keep track of time. Flints (for IEEE-754
floating-point numerics) have the useful property of not accumulating roundoff
error when adding and subtracting flints. Using flint variables in DOUBLE
PRECISION storage (with integer values) avoids roundoff error accumulation
that would accumulate when floating-point numbers are added together
thousands of times.

DOUBLE PRECISION F

F=F+1.0
TIME = 0.003 * F

This technique avoids a common pitfall in simulations.

Considerations for Real Time

Since very few Fortran applications are used in a real-time environment, it is
common to come across simulation code that is incompatible with a real-time
environment. Common failures include unbounded (or large) iterations and
sporadic but time-intensive side calculations. You must deal with these directly
if you expect to run in real time.

Conversely, it is still perfectly good practice to have iterative or sporadic
calculations if the generated code is not being used for a real-time application.

6-15

6 Creating Fortran S-Functions

6-16

Implementing Block
Features

The following sections explain how to use S-function callback methods to implement various block
features.

Dialog Parameters (p. 7-2) How to process parameters passed via the S-function
block’s dialog box.

Run-Time Parameters (p. 7-6) How to create and use run-time parameters.

Creating Input and Output Ports How to create input and output ports on a block.

(p. 7-10)

Custom Data Types (p. 7-16) How to create custom data types for the values of a
block’s signals and parameters.

Sample Times (p. 7-17) How to specify the rate or rates at which your block
operates.

Work Vectors (p. 7-30) How to create and use work vectors.

Function-Call Subsystems (p. 7-35) How to create a function-call subsystem.

Handling Errors (p. 7-37) How to handle errors in an S-function.

S-Function Examples (p. 7-40) Examples of S-functions.

7 Implementing Block Features

7-2

Dialog Parameters

A user can pass parameters to an S-function at the start of and, optionally,
during the simulation, using the S-Function parameters field of the block’s
dialog box. Such parameters are called dialog box parameters to distinguish
them from run-time parameters created by the S-function to facilitate code
generation (see “Run-Time Parameters” on page 7-6). Simulink stores the
values of the dialog box parameters in the S-function’s SimStruct structure.
Simulink provides callback methods and SimStruct macros that allow the
S-function to access and check the parameters and use them in the
computation of the block’s output.

If you want your S-function to be able to use dialog parameters, you must
perform the following steps when you create the S-function:

1 Determine the order in which the parameters are to be specified in the
block’s dialog box.

2 InthemdlInitializeSizes function, use the ssSetNumSFcnParams macro to
tell Simulink how many parameters the S-function accepts. Specify S as the
first argument and the number of parameters you are defining interactively
as the second argument. If your S-function implements the
md1lCheckParameters method, the mdlInitializeSizes routine should call
md1lCheckParameters to check the validity of the initial values of the
parameters.

3 Access these input arguments in the S-function using the ssGetSFcnParam
macro.

Specify S as the first argument and the relative position of the parameter in
the list entered on the dialog box (0 is the first position) as the second

argument. The ssGetSFcnParam macro returns a pointer to the mxArray
containing the parameter. You can use ssGetDTypeIdFromMxArray to get the
data type of the parameter.

When running a simulation, the user must specify the parameters in the
S-Function parameters field of the block’s dialog box in the same order that
you defined them in step 1.

Dialog Parameters

Note You cannot use the Model Explorer, the S-Function block dialog box, or
a mask to tune the parameters of a source S-function, i.e., an S-function that
has outputs but no inputs, while a simulation is running. See “Changing
Source Block Parameters” for more information.

The user can enter any valid MATLAB expression as the value of a parameter,
including literal values, names of workspace variables, function invocations, or
arithmetic expressions. Simulink evaluates the expression and passes its value
to the S-function.

For example, the following code is part of a device driver S-function. Four input
parameters are used: BASE_ADDRESS_ PRM, GAIN_RANGE_PRM, PROG_GAIN PRM,
and NUM_OF CHANNELS PRM. The code uses #define statements to associate
particular input arguments with the parameter names.

/* Input Parameters */

#define BASE_ADDRESS PRM(S) ssGetSFcnParam(S, 0)
#define GAIN_RANGE_PRM(S) ssGetSFcnParam(S, 1)
#define PROG_GAIN_PRM(S) ssGetSFcnParam(S, 2)
#define NUM_OF CHANNELS PRM(S) ssGetSFcnParam(S, 3)

When running the simulation, a user enters four variable names or values in
the S-Function parameters field of the block’s dialog box. The first
corresponds to the first expected parameter, BASE_ADDRESS PRM(S). The
second corresponds to the next expected parameter, and so on.

The mdlInitializeSizes function contains this statement.

ssSetNumSFcnParams (S, 4);

Tunable Parameters

Dialog parameters can be either tunable or nontunable. A tunable parameter
is a parameter that a user can change while the simulation is running. Use the
macro ssSetSFcnParamTunable in mdlInitializeSizes to specify the
tunability of each dialog parameter used by the macro.

7 Implementing Block Features

7-4

Note Dialog parameters are tunable by default. Nevertheless, it is good
programming practice to set the tunability of every parameter, even those that
are tunable. If the user enables the simulation diagnostic S-function
upgrade needed, Simulink issues the diagnostic whenever it encounters an
S-function that fails to specify the tunability of all its parameters.

The md1CheckParameters method enables you to validate changes to tunable
parameters during a simulation run. Simulink invokes the
md1lCheckParameters method whenever a user changes the values of
parameters during the simulation loop. This method should check the
S-function’s dialog parameters to ensure that the changes are valid.

Note The S-function’s mdlInitializeSizes routine should also invoke the
md1lCheckParameters method to ensure that the initial values of the
parameters are valid.

The optional md1ProcessParameters callback method allows an S-function to
process changes to tunable parameters. Simulink invokes this method only if
valid parameter changes have occurred in the previous time step. A typical use
of this method is to perform computations that depend only on the values of
parameters and hence need to be computed only when parameter values
change. The method can cache the results of the parameter computations in
work vectors or, preferably, as run-time parameters (see “Run-Time
Parameters” on page 7-6).

Tuning Parameters in External Mode

When a user tunes parameters during simulation, Simulink invokes the
S-function’s md1CheckParameters method to validate the changes and then the
S-functions’ md1ProcessParameters method to give the S-function a chance to
process the parameters in some way. Simulink also invokes these methods
when running in external mode, but it passes the unprocessed changes on to
the S-function target. Thus, if it is essential that your S-function process
parameter changes, you need to create a Target Language Compiler (TLC) file
that inlines the S-function, including its parameter processing code, during the

Dialog Parameters

code generation process. For information on inlining S-functions, see the
Target Language Compiler Reference Guide.

7-5

7 Implementing Block Features

7-6

Run-Time Parameters

Simulink allows an S-function to create internal representations of external
dialog parameters called run-time parameters. Every run-time parameter
corresponds to one or more dialog parameters and can have the same value and
data type as its corresponding external parameters or a different value or data
type. If a run-time parameter differs in value or data type from its external
counterpart, the dialog parameter is said to have been transformed to create
the run-time parameter. The value of a run-time parameter that corresponds
to multiple dialog parameters is typically a function of the values of the dialog
parameters. Simulink allocates and frees storage for run-time parameters and
provides functions for updating and accessing them, thus eliminating the need
for S-functions to perform these tasks.

Run-time parameters facilitate the following kinds of S-function operations:

¢ Computed parameters

Often the output of a block is a function of the values of several dialog
parameters. For example, suppose a block has two parameters, the volume
and density of some object, and the output of the block is a function of the
input signal and the weight of the object. In this case, the weight can be
viewed as a third internal parameter computed from the two external
parameters, volume and density. An S-function can create a run-time
parameter corresponding to the computed weight, thereby eliminating the
need to provide special case handling for weight in the output computation.

¢ Data type conversions

Often a block needs to change the data type of a dialog parameter to facilitate
internal processing. For example, suppose that the output of the block is a
function of the input and a parameter and the input and parameter are of
different data types. In this case, the S-function can create a run-time
parameter that has the same value as the dialog parameter but has the data
type of the input signal, and use the run-time parameter in the computation
of the output.

¢ Code generation

During code generation, Real-Time Workshop writes all run-time
parameters automatically to the model . rtw file, eliminating the need for the
S-function to perform this task via an md1RTW method.

Run-Time Parameters

Creating Run-Time Parameters

An S-function can create run-time parameters all at once or one by one.

Creating Run-Time Parameters All at Once

Use the SimStruct function ssRegAllTunableParamsAsRunTimeParams in
md1SetWorkWidths to create run-time parameters corresponding to all tunable
parameters. This function requires that you pass it an array of names, one for
each run-time parameter. Real-Time Workshop uses this name as the name of
the parameter during code generation.

Note The first four characters of the names of a block’s run-time parameters
must be unique. If they are not, Simulink signals an error. For example,
trying to register a parameter named param2 triggers an error if a parameter
named parami already exists. This restriction allows Real-time Workshop to
generate variable names that are unique within a pre-specified number of
characters.

This approach to creating run-time parameters assumes that there is a
one-to-one correspondence between an S-function’s run-time parameters and
its tunable dialog parameters. This might not be the case. For example, an
S-function might want to use a computed parameter whose value is a function
of several dialog parameters. In such cases, the S-function might need to create
the run-time parameters individually.

Creating Run-Time Parameters Individually

To create run-time parameters individually, the S-function’s
md1SetWorkWidths method should

1 Specify the number of run-time parameters it intends to use, using
ssSetNumRunTimeParams.

2 Use ssRegDlgParamAsRunTimeParam to register a run-time parameter that
corresponds to a single, untransformed dialog parameter or
ssSetRunTimeParamInfo to set the attributes of a run-time parameter that
corresponds to more than one dialog parameter or a transformed dialog
parameter.

7-7

7 Implementing Block Features

Updating Run-Time Parameters

Whenever a user changes the values of an S-function’s dialog parameters
during a simulation run, Simulink invokes the S-function’s
md1lCheckParameters method to validate the changes. If the changes are valid,
Simulink invokes the S-function’s md1ProcessParameters method at the
beginning of the next time step. This method should update the S-function’s
run-time parameters to reflect the changes in the dialog parameters.

Updating All Parameters at Once

If there is a one-to-one correspondence between the S-function’s tunable dialog
parameters and the run-time parameters, the S-function can use the
SimStruct function ssUpdateAllTunableParamsAsRunTimeParams to
accomplish this task. This function updates each run-time parameter to have
the same value as the corresponding dialog parameter.

Updating Parameters Individually

If there is not a one-to-one correspondence between the S-function’s dialog and
run-time parameters or the run-time parameters are transformed versions of
the dialog parameters, the md1ProcessParameters method must update each
parameter individually.

If a run-time parameter and its corresponding dialog parameter differ only in
value, the method can use ssUpdateRunTimeParamData to update the run-time
parameter. This function updates the data field in the parameter’s attributes
record, ssParamRec, with a new value. Ifthe run-time parameter and the dialog
parameter differ only in value and data type, the method can use
ssUpdateDlgParamAsRunTimeParam to update the run-time parameter.
Otherwise, the md1ProcessParameters method must update the parameter’s
attributes record itself. To update the attributes record, the method should

1 Get a pointer to the parameter’s attributes record, using
ssGetRunTimeParamInfo.

2 Update the attributes record to reflect the changes in the corresponding
dialog parameters.

3 Register the changes, using ssUpdateRunTimeParamInfo.

Run-Time Parameters

Tuning Runtime Parameters

Tuning a dialog parameter tunes the corresponding runtime parameter during
simulation and in code generated from the model only if the dialog parameter
meets the following conditions:

¢ The S-function marks the dialog parameter tunable, using
ssSetParameterTunable.

¢ The dialog parameter is a MATLAB array of values of the standard data
types supported by Simulink.

¢ The S-function has one or more input ports.

Note that you cannot tune a runtime parameter whose value is a cell array or
structure.

7-9

7 Implementing Block Features

7-10

Creating Input and Output Ports

Simulink allows S-functions to create and use any number of block I/O ports.
This section shows how to create and initialize I/O ports and how to change the
characteristics of an S-function block’s ports, such as dimensionality and data
type, based on its connections to other blocks.

Creating Input Ports

To create and configure input ports, the md1InitializeSizes method should
first specify the number of input ports that the S-function has, using
ssSetNumInputPorts. Then, for each input port, the method should specify

¢ The dimensions of the input port (see “Initializing Input Port Dimensions”
on page 7-11)
If you want your S-function to inherit its dimensionality from the port to
which it is connected, you should specify that the port is dynamically sized
in mdlInitializeSizes (see “Sizing an Input Port Dynamically” on
page 7-11).

¢ Whether the input port allows scalar expansion of inputs (see “Scalar
Expansion of Inputs” on page 7-13)

¢ Whether the input port has direct feedthrough, using
ssSetInputPortDirectFeedThrough

A port has direct feedthrough if the input is used in either the md10utputs or
md1GetTimeOfNextVarHit functions. The direct feedthrough flag for each
input port can be set to either 1=yes or 0=no. It should be set to 1 if the input,
u, is used in the md10Outputs or md1GetTimeOfNextVarHit routine. Setting
the direct feedthrough flag to 0 tells Simulink that u is not used in either of
these S-function routines. Violating this leads to unpredictable results.

The data type of the input port, if not the default double

Use ssSetInputPortDataType to set the input port’s data type. If you want
the data type of the port to depend on the data type of the port to which it is
connected, specify the data type as DYNAMICALLY_TYPED. In this case, you
must provide implementations of the md1SetInputPortDataType and
md1lSetDefaultPortDataTypes methods to enable the data type to be set
correctly during signal propagation.

Creating Input and Output Porfs

¢ The numeric type of the input port, if the port accepts complex-valued signals

Use ssSetInputComplexSignal to set the input port’s numeric type. If you
want the numeric type of the port to depend on the numeric type of the port
to which it is connected, specify the data type as inherited. In this case, you
must provide implementations of the md1SetInputPortComplexSignal and
md1SetDefaultPortComplexSignal methods to enable the numeric type to
be set correctly during signal propagation.

Note The mdlInitializeSizes method must specify the number of ports
before setting any properties. If it attempts to set a property of a port that
doesn't exist, it is accessing invalid memory and Simulink crashes.

Initializing Input Port Dimensions
The following options exist for setting the input port dimensions:

e If the input signal is one-dimensional and the input port width is w, use
ssSetInputPortVectorDimension(S, inputPortIdx, w)

¢ If the input signal is a matrix of dimension m-by-n, use
ssSetInputPortMatrixDimensions (S, inputPortIdx, m, n)

® Otherwise use
ssSetInputPortDimensionInfo(S, inputPortlIdx, dimsInfo)

You can use this function to fully or partially initialize the port dimensions
(see next section).

Sizing an Input Port Dynamically

If your S-function does not require that an input signal have a specific
dimensionality, you might want to set the dimensionality of the input port to
match the dimensionality of the signal connected to the port. To dimension an
input port dynamically, your S-function should

® Specify some or all of the dimensions of the input port as dynamically sized
in mdlInitializeSizes.

If the input port can accept a signal of any dimensionality, use

7-11

7 Implementing Block Features

ssSetInputPortDimensionInfo(S, inputPortIdx, DYNAMIC_DIMENSION)
to set the dimensionality of the input port.

If the input port can accept only vector (1-D) signals but the signals can be of
any size, use

ssSetInputPortWidth (S, inputPortIdx, DYNAMICALLY_SIZED)
to specify the dimensionality of the input port.

If the input port can accept only matrix signals but can accept any row or
column size, use

ssSetInputPortMatrixDimensions (S, inputPortIdx, m, n)
where m and/or n are DYNAMICALLY SIZED.

¢ Provide an md1SetInputPortDimensionInfo method that sets the
dimensions of the input port to the size of the signal connected to it.
Simulink invokes this method during signal propagation when it has
determined the dimensionality of the signal connected to the input port.

® Provide an md1SetDefaultPortDimensionInfo method that sets the
dimensions of the block’s ports to a default value.
Simulink invokes this method during signal propagation when it cannot
determine the dimensionality of the signal connected to some or all of the
block’s input ports. This can happen, for example, if an input port is
unconnected. If the S-function does not provide this method, Simulink sets
the dimension of the block’s ports to 1-D scalar.

Creating Output Ports

To create and configure output ports, the md1InitializeSizes method should
first specify the number of input ports that the S-function has, using
ssSetNumOutputPorts. Then, for each output port, the method should specify

¢ Dimensions of the output port

Simulink provides the following macros for setting the port’s dimensions.

= gsSetOutputPortDimensionInfo
= gsSetOutputPortMatrixDimensions
= gsSetOutputPortVectorDimensions

7-12

Creating Input and Output Porfs

= ssSetOutputWidth

If you want the port’s dimensions to depend on block connectivity, set the
dimensions to DYNAMICALLY_SIZED. The S-function must then provide
md1SetOutputPortDimensionInfo and ssSetDefaultPortDimensionInfo
methods to ensure that output port dimensions are set to the correct values
in code generation.

¢ Data type of the output port
Use ssSetOutputPortDataType to set the output port’s data type. If you want
the data type of the port to depend on block connectivity, specify the data

type as DYNAMICALLY_ TYPED. In this case, you must provide implementations
of the md1SetOutputPortDataType and md1SetDefaultPortDataTypes

methods to enable the data type to be set correctly during signal propagation.

¢ The numeric type of the input port, if the port outputs complex-valued
signals

Use ssSetOutputComplexSignal to set the output port’s numeric type. If you
want the numeric type of the port to depend on the numeric type of the port
to which it is connected, specify the data type as inherited. In this case, you
must provide implementations of the md1SetOutputPortComplexSignal and
md1lSetDefaultPortComplexSignal methods to enable the numeric type to
be set correctly during signal propagation.

Scalar Expansion of Inputs

Scalar expansion of inputs refers conceptually to the process of expanding
scalar input signals to have the same dimensions as the ports to which they are
connected. This is done by setting each element of the expanded signal to the
value of the scalar input. An S-function’s md1InitializeSizes method can
enable scalar expansion of inputs for its input ports by setting the
SS_OPTION_ALLOW_INPUT SCALAR_EXPANSION option, using ssSetOptions.

The best way to understand the scalar expansion rules is to consider a Sum
block with two input ports, where the first input signal is scalar, the second
input signal is a 1-D vector with w > 1 elements, and the output signal is a 1-D
vector with w elements. In this case, the scalar input is expanded to a 1-D vector
with w elements in the output method, and each element of the expanded signal
is set to the value of the scalar input.

Outputs
<snip>

7-13

7 Implementing Block Features

7-14

utinc = (uilwidth > 1);

u2inc = (u2width > 1);
for (i=0;i<w;it++) {
y[i] = *ul + *u2;

ul += ulinc;
u2 += u2inc;

}

If the block has more than two inputs, each input signal must be scalar, or the
wide signals must have the same number of elements. In addition, if the wide
inputs are driven by 1-D and 2-D vectors, the output is a 2-D vector signal, and
the scalar inputs are expanded to a 2-D vector signal.

The way scalar expansion actually works depends on whether the S-function
manages the dimensions of its input and output ports using
md1SetInputPortWidth and md1SetOutputPortWidth or
md1SetInputPortDimensionInfo, md1SetOutputPortDimensionInfo, and
mdlSetDefaultPortDimensionInfo.

If the S-function does not specify/control the dimensions of its input and output
ports using the preceding methods, Simulink uses a default method to set the
input and output ports.

In the mdlInitializeSizes method, the S-function can enable scalar
expansion for its input ports by setting the
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION option, using ssSetOptions. The
Simulink default method uses the preceding option to allow or disallow scalar
expansion for a block’s input ports. If the preceding option is not set by an
S-function, Simulink assumes that all ports (input and output ports) must have
the same dimensions, and it sets all port dimensions to the same dimensions
specified by one of the driving blocks.

If the S-function specifies/controls the dimensions of its input and output ports,
Simulink ignores the SCALAR_EXPANSION option.

See matlabroot/simulink/src/sfun_multiport.c for an example.

Creating Input and Output Porfs

Masked Multiport S-Functions

If you are developing masked multiport S-function blocks whose number of
ports varies based on some parameter, and if you want to place them in a
Simulink library, you must specify that the mask modifies the appearance of
the block. To do this, execute the command

set_param('block', 'MaskSelfModifiable','on')
at the MATLAB prompt before saving the library. Failure to specify that the
mask modifies the appearance of the block means that an instance of the block

in a model reverts to the number of ports in the library whenever you load the
model or update the library link.

7-15

7 Implementing Block Features

Custom Data Types

An S-function can accept and output user-defined as well as built-in Simulink
data types. To use a user-defined data type, the S-function’s
mdlInitializeSizes routine must

1 Register the data type, using ssRegisterDataType.

2 Specify the amount of memory in bytes required to store an instance of the
data type, using ssSetDataTypeSize.

3 Specify the value that represents zero for the data type, using
ssSetDataTypeZero.

7-16

Sample Times

Sample Times

This section explains how to specify the sample-time behavior of your function,
e.g., whether it inherits its rates from the blocks that drive it or defines its own
rates and, if it defines its own rates, what the rates are.

An S-function block can specify its rates (i.e., sample times) as

¢ Block-based sample times
¢ Port-based sample times

¢ Hybrid block-based and port-based sample times

With block-based sample times, the S-function specifies a set of operating rates
for the block as a whole during the initialization phase of the simulation.With
port-based sample times, the S-function specifies a sample time for each input
and output port individually during initialization. During the execution phase,
with block-based sample times, the S-function processes all inputs and outputs
each time a sample hit occurs for the block. By contrast, with port-based
sample times, the block processes a particular port only when a sample hit
occurs for that port.

For example, consider two sample rates, 0.5 and 0.25 seconds, respectively:

¢ In the block-based method, selecting 0.5 and 0.25 would direct the block to
execute inputs and outputs at 0.25 second increments.

¢ In the port-based method, you could set the input port to 0.5 and the output
port to 0.25, and the block would process inputs at 2Hz and outputs at 4Hz.

You should use port-based sample times if your application requires unequal
sample rates for input and output execution or if you don’t want the overhead
associated with running input and output ports at the highest sample rate of
your block.

In some applications, an S-Function block might need to operate internally at
one or more sample rates while inputting or outputting signals at other rates.
The hybrid block- and port-based method of specifying sample rates allows you
to create such blocks.

In typical applications, you specify only one block-based sample time.
Advanced S-functions might require the specification of port-based or multiple
block sample times.

7-17

7 Implementing Block Features

Block-Based Sample Times

The next two sections discuss how to specify block-based sample times. You
must specify information in

® mdlInitializeSizes
®* mdlInitializeSampleTimes

A third section presents a simple example that shows how to specify sample
times in mdlInitializeSampleTimes.

Specifying the Number of Sample Times in mdlInitializeSizes. To configure your
S-function block for block-based sample times, use

ssSetNumSampleTimes (S,numSampleTimes);

where numSampleTimes > 0. This tells Simulink that your S-function has
block-based sample times. Simulink calls md1InitializeSampleTimes, which
in turn sets the sample times.

Setting Sample Times and Specifying Function Calls in
mdlInitializeSampleTimes

mdlInitializeSampleTimes is used to specify two pieces of execution
information:

¢ Sample and offset times — In md1lInitializeSizes, specify the number of
sample times you’d like your S-function to have by using the
ssSetNumSampleTimes macro. In mdlInitializeSampleTimes, you must
specify the sampling period and offset for each sample time.

Sample times can be a function of the input/output port widths. In
mdlInitializeSampleTimes, you can specify that sample times are a
function of ssGetInputPortWidth and ssGetOutputPortWidth.

¢ Function calls — In ssSetCallSystemOutput, specify the output elements
that are performing function calls. See
matlabroot/simulink/src/sfun_fcncall.c for an example.

You specify the sample times as pairs [sample time, offset time], using
these macros

ssSetSampleTime (S, sampleTimePairIndex, sample_time)
ssSetOffsetTime (S, offsetTimePairIndex, offset_time)

Sample Times

where sampleTimePairIndex starts at 0.

The valid sample time pairs are (uppercase values are macros defined in
simstruc.h).

[CONTINUOUS_SAMPLE_TIME, 0.0]
[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]
[discrete_sample period, offset]
[VARIABLE_SAMPLE_TIME , 0.0]

Alternatively, you can specify that the sample time is inherited from the
driving block, in which case the S-function can have only one sample time pair,

[INHERITED_SAMPLE_TIME, 0.0 1

or

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

Note If your S-function inherits its sample time, you should specify whether
it is safe to use the S-function in a submodel, i.e., a model referenced by
another model. See “Specifying Model Reference Sample Time Inheritance” on
page 7-27 for more information.

The following guidelines might help in specifying sample times:
¢ A continuous function that changes during minor integration steps should
register the [CONTINUOUS SAMPLE_TIME, 0.0] sample time.

¢ A continuous function that does not change during minor integration steps
should register the
[CONTINUOUS_SAMPLE_TIME, FIXED IN_MINOR_STEP_OFFSET] sample time.

¢ A discrete function that changes at a specified rate should register the
discrete sample time pair

[discrete sample period, offset]

where
discrete_sample_period > 0.0

and

0.0 <= offset < discrete_sample_period

7-19

7 Implementing Block Features

7-20

¢ A discrete function that changes at a variable rate should register the
variable-step discrete [VARIABLE SAMPLE_TIME, 0.0] sample time. The
md1GetTimeOfNextVarHit function is called to get the time of the next
sample hit for the variable-step discrete task. The VARIABLE_SAMPLE_TIME
can be used with variable-step solvers only.

If your function has no intrinsic sample time, you must indicate that it is
inherited according to the following guidelines:

¢ A function that changes as its input changes, even during minor integration
steps, should register the [INHERITED SAMPLE_TIME, 0.0] sample time.

¢ A function that changes as its input changes, but doesn't change during
minor integration steps (that is, is held during minor steps), should register
the [INHERITED SAMPLE_TIME, FIXED IN_MINOR STEP OFFSET] sample
time.

To check for a sample hit during execution (in md10utputs or mdlUpdate), use
the ssIsSampleHit or ssIsContinuousTask macro. For example, if your first
sample time is continuous, then you used the following code fragment to check
for a sample hit. Note that you get incorrect results if you use

ssIsSampleHit (S,0,tid).

if (ssIsContinuousTask(S,tid)) {
}

If, for example, you wanted to determine whether the third (discrete) task has
a hit, you would use the following code fragment:

if (ssIsSampleHit(S,2,tid) {
}

Example: mdlInitializeSampleTimes

This example specifies that there are two discrete sample times with periods of
0.01 and 0.5 seconds.

static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime (S,
ssSetOffsetTime (S,
ssSetSampleTime(S, 1, O.
ssSetOffsetTime(S, 1, 0.0);
} /* End of mdlInitializeSampleTimes. */

)

0.01
y 0.0);
0.5)

- O O

Sample Times

Specifying Port-Based Sample Times

If you want your S-function to use port-based sample times, you must specify
the number of sample times as port-based in the S-function’s
mdlInitializeSizes method:

ssSetNumSampleTimes (S, PORT_BASED_SAMPLE_TIMES)

You must also specify the sample time of each input and output port in the
S-function’s md1InitializeSizes method, using the following macros

ssSetInputPortSampleTime (S, idx, period)
ssSetInputPortOffsetTime (S, idx, offset)
ssSetOutputPortSampleTime (S, idx, period)
ssSetOutputPortOffsetTime (S, idx, offset)

Note mdlInitializeSizes should not contain any ssSetSampleTime or
ssSetOffsetTime calls when you use port-based sample times.

For any given port, you can specify

® A specific sample time and period
For example, the following code sets the sample time of the S-function’s first
input port to every 0.1 s starting with the simulation start time.

ssSetInputPortSampleTime(S, 0, 0.1);
ssSetInputPortOffsetTime(S, 0, 0);

¢ Inherited sample time, i.e., the port inherits its sample time from the port to
which it is connected (see “Specifying Inherited Sample Time for a Port” on
page 7-22)

¢ Constant sample time, i.e., the port’s input or output never changes (see
“Specifying Constant Sample Time for a Port” on page 7-22)

Note To be usable in a triggered subsystem, all of your S-function’s ports
must have either inherited or constant sample time (see “Configuring
Port-Based Sample Times for Use in Triggered Subsystems” on page 7-23).

7-21

7 Implementing Block Features

7-22

Specifying Inherited Sample Time for a Port

To specify that a port’s sample time is inherited, the md1InitializeSizes
method should set its period to -1 and its offset to 0. For example, the following
code specifies inherited sample time for the S-function’s first input port:

ssSetInputPortSampleTime(S, 0, -1);
ssSetInputPortOffsetTime(S, 0, 0);

When you specify port-based sample times, Simulink calls
md1lSetInputPortSampleTime and md1SetOutputPortSampleTime to determine
the rates of inherited signals.

Once all rates have been determined, Simulink calls
mdlInitializeSampleTimes. Even though there is no need to initialize
port-based sample times at this point, Simulink invokes this method to give
your S-function an opportunity to configure function-call connections. Your
S-function must thus provide an implementation for this method regardless of
whether it uses port-based sample times or function-call connections. Although
you can provide an empty implementation, you might want to use it to check
the appropriateness of the sample times that the block inherited during sample
time propagation.

Note If you specify that your S-function’s ports inherit their sample time,
you should also specify whether it is safe to use the S-function in a submodel,
i.e., a model referenced by another model. See “Specifying Model Reference
Sample Time Inheritance” on page 7-27 for more information.

Specifying Constant Sample Time for a Port

If your S-function uses port-based sample times, it can specify that any of its
ports has a constant sample time. This means that the signal entering or
leaving the port never changes from its initial value at the start of the
simulation.

Before specifying constant sample time for an output port whose output
depends on the S-function’s parameters, the S-function should use
ssGetInlineParameters to check whether the user has specified the Inline
parameters option on the Optimization pane of the Configuration
parameters dialog box. If the user has not checked this option, it is possible for

Sample Times

the user to change the values the S-function’s parameters and hence its outputs
during the simulation. In this case, the S-function should not specify a constant
sample time for any ports whose outputs depend on the S-function’s
parameters.

To specify constant sample time for a port, the S-function must perform the
following tasks

¢ Tell Simulink that it supports constant port sample times in its
mdlInitializeSizes method:

ssSetOptions(S, SS_OPTION_ALLOW_CONSTANT_PORT_SAMPLE_TIME) ;

Note By setting this option, your S-function is in effect telling Simulink that
all of its ports support a constant sample time including ports that inherit
their sample times from other blocks. If any of the S-function’s inherited
sample time ports cannot have a constant sample time, your S-function’s
md1lSetInputPortSampleTime and md1SetOutputPortSampleTime methods
must eheck whether that port has inherited a constant sample time. If the
port has inherited a constant sample time, your S-function should throw an
error.

¢ Set the port’s period to inf and its offset to 0, e.g.,

ssSetInputPortSampleTime(S, 0, mxGetInf());
ssSetInputPortOffsetTime(S, 0, 0);

® Check in md10utputs whether the method’s tid argument equals
CONSTANT_TID and if so, set the value of the port’s output if it is an output
port.

See sfun_port_constant.c, the source file for the sfcndemo_port_constant
demo, for an example of how to create ports with a constant sample time.

Configuring Port-Based Sample Times for Use in Triggered Subsystems

To be usable in a triggered subsystem, your port-based sample time S-function
must perform the following tasks.

® Tell Simulink in its md1InitializeSizes method that it can runin a
triggered subsystem:

7-23

7 Implementing Block Features

7-24

ssSetOptions(S,
SS_OPTION_ALLOW_PORT_BASED SAMPLE_TIME_ IN_TRIGSS);

¢ Set all of its ports to have either inherited or constant sample time in its
mdlInitializeSizes method.

Handle inheritance of a triggered sample time in
md1SetInputPortSampleTime and md1SetOutputPortSampleTime methods
as follows.

If the S-function resides in a triggered subsystem, Simulink invokes either
md1lSetInputPortSampleTime or md1SetOutputPortSampleTime during
sample time propagation. Whichever method is called must set the sample
time and offset of the port for which it is called to INHERITED SAMPLE_TIME
(-1),eg.,
ssSetInputPortSampleTime (S, 0, INHERITED_SAMPLE_TIME) ;
ssSetInputPortOffsetTime(S, 0, INHERITED_SAMPLE_TIME);

Setting a port’s sample time and offset both to INHERITED SAMPLE_TIME
indicates that the sample time of the port is triggered, i.e., it produces an
output or accepts an input only when the subsystem in which it resides is
triggered. The method must also set the sample times and offsets of all of the
S-function’s other input and output ports to have either triggered or constant
sample time, whichever is appropriate.

There is no way for an S-function residing in a triggered subsystem to predict
whether Simulink will call md1SetInputPortSampleTime or
md1SetOutputPortSampleTime to set its port sample times. For this reason,
both methods must be able to set the sample times correctly.

¢ In md1lUpdate and md10utputs, use
ssGetPortBasedSampleTimeBlockIsTriggered to check whether the
S-function resides in a triggered subsystem and if so, use appropriate
algorithms for computing its states and outputs.

See sfun_port_triggered.c, the source file for the sfcndemo_port_triggered
demo, for an example of how to create ports with a constant sample time.

Hybrid Block-Based and Port-Based Sample Times

The hybrid method of assigning sample times combines the block-based and
port-based methods. You first specify, in md1InitializeSizes, the total
number of rates at which your block operates, including both internal and

Sample Times

input and output rates, using ssSetNumSampleTimes. You then set the
SS_OPTION_PORT SAMPLE_TIMES ASSIGNED, using ssSetOptions, to tell the
simulation engine that you are going to use the port-based method to specify
the rates of the input and output ports individually. Next, as in the block-based
method, you specify the periods and offsets of all of the block’s rates, both
internal and external, using

ssSetSampleTime
ssSetOffsetTime

Finally, as in the port-based method, you specify the rates for each port, using

ssSetInputPortSampleTime(S, idx, period)
ssSetInputPortOffsetTime(S, idx, offset)
ssSetOutputPortSampleTime (S, idx, period)
ssSetOutputPortOffsetTime (S, idx, offset)

Note that each of the assigned port rates must be the same as one of the
previously declared block rates.

Multirate S-Function Blocks

In a multirate S-Function block, you can encapsulate the code that defines each
behavior in the md10utputs and mdlUpdate functions with a statement that
determines whether a sample hit has occurred. The ssIsSampleHit macro
determines whether the current time is a sample hit for a specified sample
time. The macro has this syntax:

ssIsSampleHit (S, st_index, tid)
where Sis the SimStruct, st_index identifies a specific sample time index, and

tid is the task ID (tid is an argument to the md10utputs and mdlUpdate
functions).

For example, these statements specify three sample times: one for continuous
behavior and two for discrete behavior.

ssSetSampleTime (S, O, CONTINUOUS SAMPLE_TIME) ;
ssSetSampleTime(S, 1, 0.75);
ssSetSampleTime(S, 2, 1.0);

In the md1lUpdate function, the following statement encapsulates the code that
defines the behavior for the sample time of 0.75 second.

7-25

7 Implementing Block Features

7-26

if (ssIsSampleHit(S, 1, tid)) {
}

The second argument, 1, corresponds to the second sample time, 0.75 second.

Example of Defining a Sample Time for a Continuous Block
This example defines a sample time for a block that is continuous.

/* Initialize the sample time and offset. */
static void mdlInitializeSampleTimes(SimStruct *S)

{
ssSetSampleTime(S, 0, CONTINUOUS SAMPLE TIME);

ssSetOffsetTime(S, 0, 0.0);
}

You must add this statement to the md1InitializeSizes function.

ssSetNumSampleTimes (S, 1);

Example of Defining a Sample Time for a Hybrid Block

This example defines sample times for a hybrid S-Function block.

/* Initialize the sample time and offset. */
static void mdlInitializeSampleTimes (SimStruct *S)
{
/* Continuous state sample time and offset. */
ssSetSampleTime (S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime (S, 0, 0.0);

/* Discrete state sample time and offset. */
ssSetSampleTime(S, 1, 0.1);
ssSetOffsetTime(S, 1, 0.025);

}

In the second sample time, the offset causes Simulink to call the mdlUpdate
function at these times: 0.025 second, 0.125 second, 0.225 second, and so on, in
increments of 0.1 second.

The following statement, which indicates how many sample times are defined,
also appears in the mdlInitializeSizes function.

ssSetNumSampleTimes(S, 2);

Sample Times

Synchronizing Multirate S-Function Blocks

If tasks running at different rates need to share data, you must ensure that
data generated by one task is valid when accessed by another task running at
a different rate. You can use the ssIsSpecialSampleHit macro in the
mdlUpdate or md1Outputs routine of a multirate S-function to ensure that the
shared data is valid. This macro returns true if a sample hit has occurred at
one rate and a sample hit has also occurred at another rate in the same time
step. It thus permits a higher rate task to provide data needed by a slower rate
task at a rate the slower task can accommodate.

Suppose, for example, that your model has an input port operating at one rate,
0, and an output port operating at a slower rate, 1. Further, suppose that you
want the output port to output the value currently on the input. The following
example illustrates usage of this macro.

if (ssISampleHit(S, 0, tid) {

if (ssIsSpecialSampleHit(S, 0, 1, tid) {
/* Transfer input to output memory. */

}
}

if (ssIsSampleHit(S, 1, tid) {
/* Emit output. */

}

In this example, the first block runs when a sample hit occurs at the input rate.
If the hit also occurs at the output rate, the block transfers the input to the
output memory. The second block runs when a sample hit occurs at the output
rate. It transfers the output in its memory area to the block’s output.

Note that higher-rate tasks always run before slower-rate tasks. Thus, the
input task in the preceding example always runs before the output task,
ensuring that valid data is always present at the output port.

Specifying Model Reference Sample Time
Inheritance

If your S-function inherits its sample times from the blocks that drive it, it
should specify whether it is safe to use the S-function in a submodel. It is safe

7-27

7 Implementing Block Features

7-28

only if the S-function’s output does not depend on the inherited sample time. If
the S-function’s output does not depend on its inherited sample time, use the
ssSetModelReferenceSampleTimeInheritanceRule macro to set the
S-function’s sample time inheritance rule to
USE_DEFAULT_FOR_DISCRETE_INHERITANCE. Otherwise, set the rule to
DISALLOW SAMPLE_TIME_ INHERITANCE. Specifying the inheritance rule allows
Simulink to disallow sample-time inheritance for submodels that include
S-functions whose outputs depend on their inherited sample time and thereby
avoid inadvertent simulation errors.

Note If your S-function does not set this flag, Simulink assumes that it does
not preclude a submodel containing it from inheriting a sample time.
However, Simulink optionally warns the user that the submodel contains
S-functions that do not specify a sample-time inheritance rule (see “Model
Referencing Options” in the online Simulink help).

If you are uncertain whether an existing S-function’s output depends on its
inherited sample time, check whether it invokes any of the following C macros:
® ssGetSampleTime

® ssGetInputPortSampleTime

® ssGetOutputPortSampleTime

® ssGetInputPortOffsetTime

® ssGetOutputPortOffsetTime

® ssGetSampleTimePtr

® ssGetInputPortSampleTimeIndex

® ssGetOutputPortSampleTimeIndex

® ssGetSampleTimeTaskID

® ssGetSampleTimeTaskIDPtr

or TLC functions:

® | ibBlockSampleTime
® CompiledModel.SampleTime
® |LibBlockInputSignalSampleTime

Sample Times

® | ibBlockInputSignalOffsetTime
® | ibBlockOutputSignalSampleTime
® | ibBlockOutputSignalOffsetTime

If the S-function does not invoke any of these macros or functions, its output
does not depend on its inherited sample time and hence it is safe to use in
submodels that inherit their sample time.

Sample-Time Inheritance Rule Example
As an example of an S-function that precludes a submodel from inheriting its
sample time, consider an S-function that has the following md10utputs method:

static void mdlOutputs(SimStruct *S, int_T tid) {
const real_T *u = (const real_T%*)
ssGetInputPortSignal(S,0);
real T *y = ssGetOutputPortSignal(S,0);
y[0] = ssGetSampleTime(S,tid) * u[O0];
}
This output of this S-function is its inherited sample time, hence its output
depends on its inherited sample time, and hence it is unsafe to use in a
submodel. For this reason, this S-function should specify its model reference
inheritence rule as follows:

ssSetModelReferenceSampleTimeInheritanceRule
(S, DISALLOW_SAMPLE_TIME_INHERITANCE) ;

7-29

7 Implementing Block Features

Work Vectors

7-30

If your S-function needs persistent memory storage, use S-function work
vectors instead of static or global variables. If you use static or global variables,
they are used by multiple instances of your S-function. This occurs when you
have multiple S-Function blocks in a Simulink model and the same S-function
C MEX-file has been specified. The ability to keep track of multiple instances
of an S-function is called reentrancy.

You can create an S-function that is reentrant by using work vectors. These are
persistent storage locations that Simulink manages for an S-function. Integer,
floating-point (real), pointer, and general data types are supported. The
number of elements in each vector can be specified dynamically as a function
of the number of inputs to the S-function.

Work vectors have several advantages:

¢ Instance-specific storage for block variables
¢ Integer, real, pointer, and general data types

¢ Elimination of static and global variables and the associated multiple
instance problems

For example, suppose you'd like to track the previous value of each input signal
element entering input port 1 of your S-function. Either the discrete-state
vector or the real-work vector could be used for this, depending upon whether
the previous value is considered a discrete state (that is, compare the unit delay
and the memory block). If you do not want the previous value to be logged when
states are saved, use the real-work vector, rwork. To do this, in
mdlInitializeSizes specify the length of this vector by using ssSetNumRWork.
Then in either md1Start or mdlInitializeConditions, initialize the rwork
vector ssGetRWork. In md10utputs, you can retrieve the previous inputs by
using ssGetRWork. In md1Update, update the previous value of the rwork vector
by using ssGetInputPortRealSignalPtrs.

Work Vectors

Use the macros in this table to specify the length of the work vectors for each
instance of your S-function in md1InitializeSizes.

Table 7-1: Macros Used in Specifying Vector Widths

Macro Description
ssSetNumContStates Width of the continuous-state vector
ssSetNumDiscStates Width of the discrete-state vector
ssSetNumDWork Width of the data type work vector
ssSetNumRWork Width of the real-work vector
ssSetNumIWork Width of the integer-work vector
ssSetNumPWork Width of the pointer-work vector
ssSetNumModes Width of the mode-work vector
ssSetNumNonsampledZCs Width of the nonsampled zero-crossing
vector

Specify vector widths in mdlInitializeSizes. There are three choices:

¢ (O (the default). This indicates that the vector is not used by your S-function.

® A positive nonzero integer. This is the width of the vector that is available
for use by md1Start, mdlInitializeConditions, and S-function routines
called in the simulation loop.

® The DYNAMICALLY_SIZED define. The default behavior for dynamically sized
vectors is to set them to the overall block width. Simulink does this after
propagating line widths and sample times. The block width is the width of
the signal passing through your block. In general this is equal to the output
port width.

If the default behavior of dynamically sized vectors does not meet your needs,
use md1SetWorkWidths and the macros listed in Table 7-1, Macros Used in
Specifying Vector Widths, to set the sizes of the work vectors explicitly.
md1SetWorkWidths also allows you to set your work vector lengths as functions
of the block sample time and/or port widths.

7-31

7 Implementing Block Features

7-32

The continuous states are used when you have a state that needs to be
integrated by one of the Simulink solvers. When you specify continuous states,
you must return the states’ derivatives in md1Derivatives. The discrete state
vector is used to maintain state information that changes at fixed intervals.
Typically the discrete state vector is updated in place in md1Update.

The integer, real, and pointer work vectors are storage locations that are not
logged by Simulink during simulations. They maintain persistent data
between calls to your S-function.

Work Vectors and Zero Crossings

The mode-work vector and the nonsampled zero-crossing vector are typically
used with zero crossings. Elements of the mode vector are integer values. You
specify the number of mode-vector elements in mdlInitializeSizes, using
ssSetNumModes (S, num). You can then access the mode vector using
ssGetModeVector. The mode vector is used to determine how the md10utputs
routine should operate when the solvers are homing in on zero crossings. The
zero crossings or state events (i.e., discontinuities in the first derivatives) of
some signal, usually a function of an input to your S-function, are tracked by
the solver by looking at the nonsampled zero crossings. To register nonsampled
zero crossings, set the number of nonsampled zero crossings in
mdlInitializeSizes, using ssSetNumNonsampledZCs (S, num). Then define
the md1ZeroCrossings routine to return the nonsampled zero crossings. See
matlabroot/simulink/src/sfun_zc.c for an example.

Example Involving a Pointer Work Vector
This example opens a file and stores the FILE pointer in the pointer-work
vector.

The following statement, included in the md1InitializeSizes function,
indicates that the pointer-work vector is to contain one element.

ssSetNumPWork (S, 1) /* pointer-work vector */
The following code uses the pointer-work vector to store a FILE pointer,
returned from the standard I/O function fopen.

#define MDL_START /* Change to #undef to remove function. */
#if defined(MDL_START)
static void mdlStart(real T *x0, SimStruct *S)

Work Vectors

FILE *fPtr;
void **PWork = ssGetPWork(S);
fPtr = fopen("file.data", "r");
PWork[0] = fPtr;

}

#endif /* MDL_START */

This code retrieves the FILE pointer from the pointer-work vector and passes it
to fclose to close the file.

static void mdlTerminate(SimStruct *S)
{
if (ssGetPWork(S) != NULL) {
FILE *fPtr;
fPtr = (FILE *) ssGetPWorkValue(S,0);
if (fPtr != NULL) {
fclose(fPtr);

}
ssSetPWorkValue(S,0,NULL);

Note If you are using md1SetWorkWidths, any work vectors you use in your
S-function should be set to DYNAMICALLY_SIZEDin mdlInitializeSizes, even
if the exact value is known before md1InitializeSizes is called. The size to
be used by the S-function should be specified in md1SetWorkWidths.

The synopsis is

#define MDL_SET_WORK_WIDTHS /* Change to #undef to remove function. */
#if defined (MDL_SET_WORK_WIDTHS) && defined (MATLAB_MEX_FILE)

static void mdlSetWorkWidths(SimStruct *S)

{

}
#endif /* MDL_SET_WORK_WIDTHS */

For an example, see matlabroot/simulink/src/sfun_dynsize.c.

7-33

7 Implementing Block Features

7-34

Memory Allocation

When you are creating an S-function, the available work vectors might not
provide enough capability. In this case, you need to allocate memory for each
instance of your S-function. The standard MATLAB API memory allocation
routines mxCalloc and mxFree should not be used with C MEX S-functions,
because these routines are designed to be used with MEX-files that are called
from MATLAB and not Simulink. The correct approach for allocating memory
is to use the stdlib.h library routines calloc and free. In md1Start, allocate
and initialize the memory and place the pointer to it either in pointer-work
vector elements

ssGetPWork(S)[i] = ptr;
or attach it as user data.

ssSetUserData(S,ptr);

In md1lTerminate, free the allocated memory.

Function-Call Subsystems

Function-Call Subsystems

You can create a triggered subsystem whose execution is determined by logic
internal to an S-function instead of by the value of a signal. A subsystem so
configured is called a function-call subsystem. To implement a function-call
subsystem:

¢ In the Trigger block, select function-call as the Trigger type parameter.

® In the S-function, use the ssEnableSystemWithTid and
ssDisableSystemWithTid to enable or disable the triggered subsystem and
the ssCallSystemWithTid macro to call the triggered subsystem.

¢ In the model, connect the S-Function block output directly to the trigger port.

Note Function-call connections can only be performed on the first output
port.

Function-call subsystems are not executed directly by Simulink; rather, the

S-function determines when to execute the subsystem. When the subsystem
completes execution, control returns to the S-function. This figure illustrates
the interaction between a function-call subsystem and an S-function.

void mdlOutputs(SimStruct *S, int_T tid) T T T v
{ 1

if (!ssCallSystemWithTid(S,outputElement,tid)) {~ =~~~
return; /* error or output is unconnected */

}

<next statement> -¢------------ - Function-call
} 1 |

In this figure, ssCallSystemWithTid executes the function-call subsystem that
is connected to the first output port element. ssCallSystemWithTid returns 0
if an error occurs while executing the function-call subsystem or if the output
is unconnected. After the function-call subsystem executes, control is returned
to your S-function.

Function-call subsystems can only be connected to S-functions that have been
properly configured to accept them.

7-35

7 Implementing Block Features

To configure an S-function to call a function-call subsystem:

¢ Specify the elements that are to execute the function-call system in
mdlInitializeSampleTimes. For example:

ssSetCallSystemOutput(S,0); /* call on 1st element x/
ssSetCallSystemOutput(S,2); /* call on 3rd element x/

® SpeifyinmdlInitializeSampleTimes whether you want the S-function to be
able to enable or disable the function-call subsystem. For example:

ssSetExplicitFCSSCtrl(SimStruct *S, TRUE);

¢ Execute the subsystem in the appropriate md10utputs or mdlUpdate
S-function routine. For example:

static void mdlOutputs(...)
{
if (((int)*uPtrs[0]) % 2 == 1) {
if (!ssCallSystemWithTid(S,0,tid)) {
/* Error occurred, which will be reported by Simulink */
return;
}
} else {
if (!ssCallSystemWithTid(S,2,tid)) {
/* Error occurred, which will be reported by Simulink */
return;
}
}

}

See simulink/src/sfun_fcncall.c for an example.

Function-call subsystems are a powerful modeling construct. You can configure
Stateflow® blocks to execute function-call subsystems, thereby extending the
capabilities of the blocks. For more information on their use in Stateflow, see
the Stateflow documentation.

7-36

Handling Errors

Handling Errors

When working with S-functions, it is important to handle unexpected events
such as invalid parameter values correctly.

If your S-function has parameters whose contents you need to validate, use the
following technique to report errors encountered.

ssSetErrorStatus(S, "error encountered due to ...");
return;

Note that the second argument to ssSetErrorStatus must be persistent
memory. It cannot be a local variable in your procedure. For example, the
following causes unpredictable errors.

mdlOutputs()

{
char msg[256]; /* ILLEGAL: should be "static char msg[256];" */
sprintf(msg, "Error due to %s", string);
ssSetErrorStatus(S,msg);
return;

}

Because ssSetErrorStatus does not generate exceptions, using it to report
errors in your S-function is preferable to using mexErrMsgTxt. The
mexErrMsgTxt function uses exception handling to terminate S-function
execution and return control to Simulink. To support exception handling in
S-functions, Simulink must set up exception handlers prior to each S-function
invocation. This introduces overhead into simulation.

Exception Free Code

You can avoid this overhead by ensuring that your S-function contains entirely
exception free code. Exception free code refers to code that never long-jumps.
Your S-function is not exception free if it contains any routine that, when
called, has the potential of long-jumping. For example, mexErrMsgTxt throws
an exception (i.e., long-jumps) when called, thus ending execution of your
S-function. Using mxCalloc can cause unpredictable results in the event of a
memory allocation error, because mxCalloc long-jumps. If memory allocation is
needed, use the stdlib.h calloc routine directly and perform your own error
handling.

7-37

7 Implementing Block Features

7-38

If you do not call mexErrMsgTxt or other API routines that cause exceptions, use
the SS_OPTION_EXCEPTION_ FREE_CODE S-function option. You do this by issuing
the following command in the md1InitializeSizes function.

ssSetOptions(S, SS_OPTION EXCEPTION FREE_CODE);

Setting this option increases the performance of your S-function by allowing
Simulink to bypass the exception-handling setup that is usually performed
prior to each S-function invocation. You must take extreme care to verify that
your code is exception free when using SS_OPTION_EXCEPTION_FREE_CODE. If
your S-function generates an exception when this option is set, unpredictable
results occur.

All mex* routines have the potential of long-jumping. Several mx* routines also
have the potential of long-jumping. To avoid any difficulties, use only the API
routines that retrieve a pointer or determine the size of parameters. For
example, the following never throw an exception: mxGetPr, mxGetData,
mxGetNumberOfDimensions, mxGetM, mxGetN, and mxGetNumberOfElements.

Code in run-time routines can also throw exceptions. Run-time routines refer
to certain S-function routines that Simulink calls during the simulation loop

(see “How Simulink Interacts with C S-Functions” on page 3-39). The run-time
routines include

® md1lGetTimeOfNextVarHit
® mdlOutputs

* mdlUpdate

® mdlDerivatives

If all run-time routines within your S-function are exception free, you can use
this option:

ssSetOptions (S, SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE) ;

The other routines in your S-function do not have to be exception free.

Handling Errors

ssSetErrorStatus Termination Criteria

When you call ssSetErrorStatus and return from your S-function, Simulink
stops the simulation and posts the error. To determine how the simulation
shuts down, refer to the flow chart figure on “How Simulink Interacts with C
S-Functions” on page 3-39. If ssSetErrorStatus is called prior to md1Start, no
other S-function routine is called. If ssSetErrorStatus is called in md1Start or
later, md1Terminate is called.

Checking Array Bounds

If your S-function causes otherwise inexplicable errors, the reason might be
that the S-function is writing beyond its assigned areas in memory. You can
verify this possibility by enabling the Simulink array bounds checking feature.
This feature detects any attempt by an S-Function block to write beyond the
areas assigned to it for the following types of block data:

® Work vectors (R, I, P, D, and mode)

e States (continuous and discrete)

¢ Outputs

To enable array bounds checking, select warning or error from the Array
bounds exceeded options list on the Diagnostics pane of the Configuration

Parameters dialog box or enter the following command at the MATLAB
command line.

set_param(modelName, 'ArrayBoundsChecking', 'none' | 'warning' |
‘error')

7-39

7 Implementing Block Features

7-40

S-Function Examples

Most S-Function blocks require the handling of states, continuous or discrete.
The following sections discuss common types of systems that you can model in

Simulink with S-functions:
¢ Continuous state

® Discrete state

¢ Hybrid

® Variable step sample time
® Zero crossings

¢ Time-varying continuous transfer function

All examples are based on the C MEX-file S-function template

sfuntmpl basic.c and on sfuntmpl _doc.c, which contains a discussion of the
S-function template.

Example of a Continuous State S-Function

The matlabroot/simulink/src/csfunc.c example shows how to model a
continuous system with states in a C MEX S-function. In continuous state
integration, there is a set of states that the Simulink solvers integrate using
the following equations.

u XC y
(it > Gams) [(oupud)
y = f()(ta xca u) (Output)
X, = fy(t,x,, u) (derivative)

S-functions that contain continuous states implement a state-space equation.
The output portion is placed in md10utputs and the derivative portion in
md1lDerivatives. To visualize how the integration works, refer to the flowchart
in “How Simulink Interacts with C S-Functions” on page 3-39. The output
equation above corresponds to the md10utputs in the major time step. Next, the

S-Function Examples

example enters the integration section of the flowchart. Here Simulink
performs a number of minor time steps during which it calls md10utputs and
md1lDerivatives. Each of these pairs of calls is referred to as an integration
stage. The integration returns with the continuous states updated and the
simulation time moved forward. Time is moved forward as far as possible,
providing that error tolerances in the state are met. The maximum time step
is subject to constraints of discrete events such as the actual simulation stop
time and the user-imposed limit.

Note that csfunc.c specifies that the input port has direct feedthrough. This
is because matrix D is initialized to a nonzero matrix. If D is set equal to a zero
matrix in the state-space representation, the input signal isn’t used in
md1lOutputs. In this case, the direct feedthrough can be set to 0, which indicates
that csfunc.c does not require the input signal when executing md10utputs.

7-41

7 Implementing Block Features

matlabroot/simulink/src/csfunc.c

7-42

/* File : csfunc.c

* Abstract:

*

* Example C-file S-function for defining a continuous system.
*

* x' = AXx + Bu

* y = Cx + Du

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c.
*

* Copyright 1990-2000 The MathWorks, Inc.

*

/

#define S_FUNCTION_NAME csfunc
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

static real_T A[2][2]={ { -0.09, -0.01 } ,
{1t , 0 }
}s
static real T B[2][2]={ { 1 , -7 Y
{ o , -2 }
}s
static real T C[2][2]={ { O , 2 Yo
{ 1) -5 }
}s
static real_T D[2][2]={ { -3 , 0 }
{1t ,0 }
}s
/*====================*
* §-function methods *
====================/
/* Function: mdlInitializeSizes ==
* Abstract:
* The sizes information is used by Simulink to determine the S-function
* block's characteristics (number of inputs, outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S)
{

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */

}

S-Function Examples

ssSetNumContStates(S, 2);
ssSetNumDiscStates (S, 0);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 2);
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 2);

ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, 0);
ssSetNumIWork(S, 0);
ssSetNumPWork(S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs(S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */

ssSetOptions (S, SS_OPTION_EXCEPTION_FREE_CODE) ;

/* Function: mdlInitializeSampleTimes ======================

* Abstract:
* Specifiy that we have a continuous sample time.
*/

static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime (S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime (S, 0, 0.0);

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions =======================

* Abstract:
* Initialize both continuous states to zero.
*/

static void mdlInitializeConditions(SimStruct *S)
{

real_T *x0 = ssGetContStates(S);

int_ T 1p;

for (1p=0;1p<2;1lp++) {
*x0++=0.0;
}

7-43

7 Implementing Block Features

/* Function: mdlOutputs ======== ==

* Abstract:

* y = Cx + Du

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{
real T *y = ssGetOutputPortRealSignal(S,0);
real T *X = ssGetContStates(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
UNUSED_ARG(tid); /* not used in single tasking mode */
/* y=Cx+Du */

y[0]=C[0][0]*x[0]+C[O][1]*x[1]+D[0][0]*U(0)+D[O][1]*U(1);
y[11=C[1][0]*x[0]+C[1][11*x[1]+D[1]1[0]*U(0)+D[1]T[1]1*U(1);

#define MDL_DERIVATIVES
/* Function: mdlDerivatives ====

* Abstract:
* xdot = AXx + Bu
*/
static void mdlDerivatives(SimStruct *S)
{
real T *dx = ssGetdX(S);
real T *X = ssGetContStates(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
/* xdot=Ax+Bu */
dx[0]=A[0][0]*x[O0]+A[O][1]*x[1]+B[0][0]*U(0)+B[O][1]*U(1);
dAx[11=A[1][O]*x[O]+A[1][1]*x[1]+B[1][0]*U(0)+B[1]1[1]1*U(1);
}
/* Function: mdlTerminate ====== ==
* Abstract:
* No termination needed, but we are required to have this routine.
*/
static void mdlTerminate(SimStruct *S)
{
UNUSED_ARG(S); /* unused input argument */
}
#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */
#else
#include "cg_sfun.h" /* Code generation registration function */
#endif

7-44

S-Function Examples

Example of a Discrete State S-Function

The matlabroot/simulink/src/dsfunc.c example shows how to model a
discrete system in a C MEX S-function. Discrete systems can be modeled by the
following set of equations.

u > X4 > Yy
(Trput) (sates) Output)

xg,1 = f,(t.xgu) (Update)

dsfunc.c implements a discrete state-space equation. The output portion is
placed in md10utputs and the update portion in md1lUpdate. To visualize how
the simulation works, refer to the flowchart in “How Simulink Interacts with
C S-Functions” on page 3-39. The output equation above corresponds to the
md1lOutputs in the major time step. The preceding update equation corresponds
to the md1lUpdate in the major time step. If your model does not contain
continuous elements, the integration phase is skipped and time is moved
forward to the next discrete sample hit.

7-45

7 Implementing Block Features

matlabroot/simulink/src/dsfunc.c

/* File : dsfunc.c

* Abstract:

*

* Example C-file S-function for defining a discrete system.
*

* x(n+1) = Ax(n) + Bu(n)

* y(n) = Cx(n) + Du(n)

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c.
*

* Copyright 1990-2000 The MathWorks, Inc.

*

/

#define S_FUNCTION NAME dsfunc
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"
#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

static real_T A[2][2]={ { -1.3839, -0.5097 } ,

{ 1 , 0 }
}s
static real_T B[2][2]={ { -2.5559, O } o,
{ O , 4.2382 }
}s
static real T C[2][2]={ { O , 2.0761 } ,
{ O , 7.7891 }
}s
static real T D[2][2]={ { -0.8141, -2.9334 } ,
{ 1.2426, O }
}s
/*====================*

/* Function: mdlInitializeSizes ==

* Abstract:
* The sizes information is used by Simulink to determine the S-function
* block's characteristics (number of inputs, outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S)
{

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */

7-46

S-Function Examples

}

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 2);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 2);
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortwWidth(S, 0, 2);

ssSetNumSampleTimes (S, 1);
ssSetNumRWork (S, 0);
ssSetNumIWork(S, 0);
ssSetNumPWork(S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */
ssSetOptions (S, SS_OPTION_EXCEPTION_FREE_CODE);

/* Function: mdlInitializeSampleTimes B e e e S

* Abstract:
* Specifiy that we inherit our sample time from the driving block.
*/
static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime(S, 0, 1.0);
ssSetOffsetTime (S, 0, 0.0);

#define MDL_INITIALIZE_CONDITIONS
/* Function: mdlInitializeConditions ==
* Abstract:
* Initialize both discrete states to one.
*/
static void mdlInitializeConditions(SimStruct *S)
{
real_T *x0 = ssGetRealDiscStates(S);
int_ T 1p;

for (1p=0;1p<2;lp++) {
*X0++=1.0;

}

7-47

7 Implementing Block Features

/* Function: mdlOutputs ======== ==

* Abstract:
* y = Cx + Du
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
real T *y = ssGetOutputPortRealSignal(S,0);
real T *X = ssGetRealDiscStates(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
UNUSED_ARG(tid); /* not used in single tasking mode */
/* y=Cx+Du */
y[0]=C[0][0]*X[0]+C[O]1[1]*x[1]+D[0][0]*U(0)+D[O][11*U(1);
y[11=C[1][01*X[01+C[11[1]*x[1]+D[1][0]*U(0)+D[1][11*U(1);
}

#define MDL_UPDATE
/* Function: mdlUpdate =========

* Abstract:
* xdot = Ax + Bu
*/
static void mdlUpdate(SimStruct *S, int_T tid)
{
real T tempX[2] = {0.0, 0.0};
real T *X = ssGetRealDiscStates(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
UNUSED_ARG(tid); /* not used in single tasking mode */
/* xdot=Ax+Bu */
tempX[0]=A[O][0]*Xx[O]+A[O][1]1*x[1]+B[0][0]*U(0)+B[O][1]1*U(1);
tempX[11=A[1][0]*X[O]+A[1][11*x[1]+B[1][0]*U(0)+B[1]1[1]1*U(1);
x[0]=tempX[O0];
x[1]=tempX[1];
}

/* Function: mdlTerminate ====== ==
* Abstract:
* No termination needed, but we are required to have this routine.
*/
static void mdlTerminate(SimStruct *S)
{
UNUSED_ARG(S); /* unused input argument */
}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

7-48

S-Function Examples

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

Example of a Hybrid System S-Function

The S-function matlabroot/simulink/src/mixedm.c is an example of a hybrid
(a combination of continuous and discrete states) system. mixedm.c combines
elements of csfunc.c and dsfunc.c. If you have a hybrid system, place your
continuous equations in md1lDerivatives and your discrete equations in
mdlUpdate. In addition, you need to check for sample hits to determine at what
point your S-function is being called.

In Simulink block diagram form, the S-function mixedm.c looks like

O—[F—[}—C

In Out

Integrator Unit Delay

which implements a continuous integrator followed by a discrete unit delay.

Because there are no tasks to complete at termination, md1Terminate is an
empty function. md1Derivatives calculates the derivatives of the continuous
states of the state vector, x, and md1lUpdate contains the equations used to
update the discrete state vector, x.

7-49

7 Implementing Block Features

7-50

matlabroot/simulink/src/mixedm.c

/* File : mixedm.c
Abstract:

*
*
* An example S-function illustrating multiple sample times by implementing
* integrator -> ZOH(Ts=1second) -> UnitDelay(Ts=1second)

* with an initial condition of 1.

* (e.g. an integrator followed by unit delay operation).

*

*

*

*

*

For more details about S-functions, see simulink/src/sfuntmpl_doc.c

Copyright 1990-2000 The MathWorks, Inc.
/

#define S_FUNCTION_NAME mixedm
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

/* Function: mdlInitializeSizes

* Abstract:
* The sizes information is used by Simulink to determine the S-function
* block's characteristics (number of inputs, outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S)
{

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates (S, 1);
ssSetNumDiscStates (S, 1);
ssSetNumRWork (S, 1); /* for zoh output feeding the delay operator */

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 1);
ssSetInputPortDirectFeedThrough(S, 0, 1);
ssSetInputPortSampleTime (S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetInputPortOffsetTime(S, 0, 0.0);

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 1);
ssSetOutputPortSampleTime(S, 0, 1.0);
ssSetOutputPortOffsetTime(S, 0, 0.0);

S-Function Examples

ssSetNumSampleTimes (S, 2);

/* Take care when specifying exception free code - see sfuntmpl_doc.c. */

ssSetOptions (S, (SS_OPTION_EXCEPTION_FREE_CODE |
SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED));

} /* end mdlInitializeSizes */

/* Function: mdlInitializeSampleTimes m——

* Abstract:
* Two tasks: One continuous, one with discrete sample time of 1.0.
*/

static void mdlInitializeSampleTimes(SimStruct *S)

{

ssSetSampleTime (S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime (S, 0, 0.0);

ssSetSampleTime(S, 1, 1.0);
ssSetOffsetTime (S, 1, 0.0);

} /* end mdlInitializeSampleTimes */

#define MDL_INITIALIZE_CONDITIONS
/* Function: mdlInitializeConditions ==
* Abstract:
* Initialize both continuous states to one.
*/
static void mdlInitializeConditions(SimStruct *S)
{
real_T *xCO = ssGetContStates(S);
real_T *xDO = ssGetRealDiscStates(S);

XCO[0]
XDO[0] =

1.0
1.0;

} /* end mdlInitializeConditions */

/* Function: mdlOutputs ==

* Abstract:
* y = xD, and update the zoh internal output.
*/

static void mdlOutputs(SimStruct *S, int_T tid)

{

/* update the internal "zoh" output */
if (ssIsContinuousTask(S, tid)) {
if (ssIsSpecialSampleHit(S, 1, 0, tid)) {
real_T *zoh = ssGetRWork(S);

7-51

7 Implementing Block Features

real_T *xC = ssGetContStates(S);
*zoh = *xC;

}

}

[* y=xD */

if (ssIsSampleHit(S, 1, tid)) {
real T *y = ssGetOutputPortRealSignal(S,0);
real_T *xD = ssGetRealDiscStates(S);
y[0]=xD[0];

}

} /* end mdlOutputs */

#define MDL_UPDATE

/* Function: mdlUpdate =========
* Abstract:
* xD = xC
*/
static void mdlUpdate(SimStruct *S, int_T tid)
{
UNUSED_ARG(tid); /* not used in single tasking mode */

/* xD=xC */

if (ssIsSampleHit(S, 1, tid)) {
real_T *xD = ssGetRealDiscStates(S);
real_T *zoh = ssGetRWork(S);
xD[0]=*zoh;

}

} /* end mdlUpdate */

#define MDL_DERIVATIVES

/* Function: mdlDerivatives ====

* Abstract:
* xdot = U
*/
static void mdlDerivatives(SimStruct *S)
{
real T *dx = ssGetdX(S);

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* xdot=U */
dx[0]=U(0);

} /* end mdlDerivatives */

7-52

S-Function Examples

/* Function: mdlTerminate —========—==============
* Abstract:

* No termination needed, but we are required to have this routine.

*/

static void mdlTerminate (SimStruct *S)

UNUSED_ARG(S); /* unused input argument */

}

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

Example of a Variable-Step S-Function

The example S-function vsfunc.c uses a variable-step sample time. Variable
step-size functions require a call to md1GetTimeOfNextVarHit, which is an
S-function routine that calculates the time of the next sample hit. S-functions
that use the variable-step sample time can only be used with variable-step
solvers. vsfunc is a discrete S-function that delays its first input by an
amount of time determined by the second input.

The output of vsfunc is simply the input u delayed by a variable amount of
time. md10utputs sets the output y equal to state x. md1lUpdate sets the state
vector x equal to u, the input vector. This example calls
md1GetTimeOfNextVarHit, an S-function routine that calculates and sets the
time of the next hit, that is, the time when vsfunc is next called. In
md1GetTimeOfNextVarHit, the macro ssGetU is used to get a pointer to the
input u. Then this call is made.

ssSetTNext (S, ssGetT(S) (*u[1]));

The macro ssGetT gets the simulation time t. The second input to the block,
(*u[1]), is added to t, and the macro ssSetTNext sets the time of the next
hit equal to t+(*u[1]), delaying the output by the amount of time set in

(*ul1D.

7-53

7 Implementing Block Features

matlabroot/simulink/src/vsfunc.c

/* File : vsfunc.c

* Abstract:

*

* Example C-file S-function for defining a continuous system.

*

* Variable step S-function example.

* This example S-function illustrates how to create a variable step

* block in Simulink. This block implements a variable step delay

* in which the first input is delayed by an amount of time determined
* by the second input:

*

* dt = u(2)

: y(t+dt) = u(t)

*

* For more details about S-functions, see simulink/src/sfuntmpl_doc.c.
*

* Copyright 1990-2000 The MathWorks, Inc.

*

/

#define S_FUNCTION_NAME vsfunc
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#define U(element) (*uPtrs[element]) /* Pointer to Input Port0 */

/* Function: mdlInitializeSizes ==

* Abstract:
* The sizes information is used by Simulink to determine the S-function
* block's characteristics (number of inputs, outputs, states, etc.).
*/
static void mdlInitializeSizes(SimStruct *S)
{

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
return; /* Parameter mismatch will be reported by Simulink */

}

ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 1);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 2);
ssSetInputPortDirectFeedThrough(S, 0, 1);

if (!ssSetNumOutputPorts(S, 1)) return;
ssSetOutputPortWidth(S, 0, 1);

ssSetNumSampleTimes (S, 1);

7-54

S-Function Examples

ssSetNumRWork (S, 0);
ssSetNumIWork(S, 0);
ssSetNumPWork(S, 0);
ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);

if (ssGetSimMode(S) == SS_SIMMODE_RTWGEN && !ssIsVariableStepSolver(S)) {
ssSetErrorStatus (S, "S-function vsfunc.c cannot be used with RTW "
"and Fixed-Step Solvers because it contains variable"
" sample time");

}

/* Take care when specifying exception free code - see sfuntmpl_doc.c */
ssSetOptions (S, SS_OPTION_EXCEPTION_FREE_CODE);

/* Function: mdlInitializeSampleTimes —=———===——==—-=—=—=——-=-=—=—=——-===—=—=-====—========
* Abstract:
* Variable-Step S-function
*/
static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime (S, 0, VARIABLE_SAMPLE_TIME);
ssSetOffsetTime (S, 0, 0.0);

#define MDL_INITIALIZE_CONDITIONS

/* Function: mdlInitializeConditions —=————==—=——=-==—=——-=—=—=—=—=-====—=-====—============
* Abstract:
* Initialize discrete state to zero.
*/

static void mdlInitializeConditions(SimStruct *S)

{
real_T *x0 = ssGetRealDiscStates(S);

x0[0] = 0.0;

#define MDL_GET_TIME_OF_NEXT_VAR_HIT
static void mdlGetTimeOfNextVarHit (SimStruct *S)

{
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);

/* Make sure input will increase time */

if (U(1) <= 0.0) {
/* If not, abort simulation */
ssSetErrorStatus (S, "Variable step control input must be "

7-55

7 Implementing Block Features

7-56

"greater than zero");
return;

}
ssSetTNext (S, ssGetT(S)+U(1));

/* Function: mdlOutputs ======== ==

* Abstract:
* y:X
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
real_T *y = ssGetOutputPortRealSignal(S,0);
real_T *x = ssGetRealDiscStates(S);
/* Return the current state as the output */
y[0] = x[0];
}

#define MDL_UPDATE
/* Function: mdlUpdate ========= ==
* Abstract:

* This function is called once for every major integration time step.
* Discrete states are typically updated here, but this function is useful
* for performing any tasks that should only take place once per integration
* step.
*/
static void mdlUpdate(SimStruct *S, int_T tid)
{
real T *X = ssGetRealDiscStates(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
x[0]=U(0);
}

/* Function: mdlTerminate ======

* Abstract:
* No termination needed, but we are required to have this routine.
*/

static void mdlTerminate(SimStruct *S)

{

}

S-Function Examples

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

Example of a Zero Crossing S-Function

The example S-function sfun_zc_sat demonstrates how to implement a
Saturation block. This S-function is designed to work with either fixed- or

variable-step solvers. When this S-function inherits a continuous sample time
and a variable-step solver is being used, a zero-crossings algorithm is used to

locate the exact points at which the saturation occurs.

matlabroot/simulink/src/sfun_zc_sat.c

File 1 sfun_zc_sat.c
Abstract:

~
*

Example of an S-function which has nonsampled zero crossings to
implement a saturation function. This S-function is designed to be
used with a variable or fixed step solver.

A saturation is described by three equations

1) y = UpperLimit
(2) y =u
(3) y = LowerLimit

and a set of inequalities that specify which equation to use

if UpperLimit < u then use (1)
if LowerLimit <= u <= UpperLimit then use (2)
if u < LowerLimit then use (3)

A key fact is that the valid equation 1, 2, or 3, can change at
any instant. Nonsampled zero crossing support helps the variable step

to another.

Copyright 1990-2000 The MathWorks, Inc.

T T RN R I N I TR N

#define S_FUNCTION_NAME sfun_zc_sat
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

solvers locate the exact instants when behavior switches from one equation

7-57

7 Implementing Block Features

7-58

| ¥========================%
* General Defines/macros *
———————====—=—====—========% /

/* index to Upper Limit */
#define I_PAR_UPPER_LIMIT 0O

/* index to Lower Limit */
#define I_PAR_LOWER_LIMIT 1

/* total number of block parameters */

#define N_PAR 2

/*

* Make access to mxArray pointers for parameters more readable.
*/

#define P_PAR_UPPER LIMIT
#define P_PAR_LOWER LIMIT

(ssGetSFcnParam(S,I_PAR_UPPER_LIMIT))
(ssGetSFcnParam(S,I_PAR_LOWER_LIMIT))

#define MDL_CHECK_PARAMETERS
#if defined(MDL_CHECK_PARAMETERS) && defined (MATLAB_MEX_FILE)

/* Function: mdlCheckParameters === ==
* Abstract:
* Check that parameter choices are allowable.
*/
static void mdlCheckParameters(SimStruct *S)
{
int T i;
int T numUpperLimit;
int_T numLowerLimit;
const char *msg = NULL;
/*
* check parameter basics
*/

for (1 =0; i < N_PAR; i++) {
if (mxIsEmpty(ssGetSFcnParam(S,1))
mxIsSparse (ssGetSFcnParam(S,1i))
mxIsComplex(ssGetSFcnParam(S,i))
ImxIsNumeric(ssGetSFcnParam(S,i))
msg = "Parameters must be real vecto
goto EXIT_POINT;

}

/*
* Check sizes of parameters.
*/

numUpperLimit =

numLowerLimit =

mxGetNumberOfElements(P_PAR_UPPER_LIMIT);
mxGetNumberOfElements(P_PAR_LOWER_LIMIT);

S-Function Examples

if ((numUpperLimit != 1) &&
(numLowerLimit != 1) &&
(numUpperLimit != numLowerLimit)) {
msg = "Number of input and output values must be equal.";
goto EXIT_POINT;
}
/*
* Error exit point
*/
EXIT_POINT:

if (msg != NULL) {
ssSetErrorStatus(S, msg);
}

}
#endif /* MDL_CHECK_PARAMETERS */

/* Function: mdlInitializeSizes ==== =======================

* Abstract:
* Initialize the sizes array.
*/
static void mdlInitializeSizes(SimStruct *S)
{
int_T numUpperLimit, numLowerLimit, maxNumLimit;
/*
* Set and Check parameter count
*/

ssSetNumSFcnParams (S, N_PAR);

#if defined (MATLAB_MEX_FILE)
if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {
mdlCheckParameters(S);

if (ssGetErrorStatus(S) != NULL) {
return;

}
} else {

return; /* Parameter mismatch will be reported by Simulink */
}

#endif

/*
* Get parameter size info.
*/

numUpperLimit = mxGetNumberOfElements(P_PAR_UPPER_LIMIT);
numLowerLimit = mxGetNumberOfElements(P_PAR_LOWER_LIMIT);

if (numUpperLimit > numLowerLimit) {

maxNumLimit = numUpperLimit;
} else {

7-59

7 Implementing Block Features

7-60

maxNumLimit = numLowerLimit;

}

/*

* states

*/

ssSetNumContStates (S, 0);
ssSetNumDiscStates (S, 0);

/*

* outputs

* The upper and lower limits are scalar expanded
* so their size determines the size of the output
* only if at least one of them is not scalar.

*/

if (!ssSetNumOutputPorts(S, 1)) return;

if (maxNumLimit > 1) {

ssSetOutputPortWidth(S, 0, maxNumLimit);
} else {

ssSetOutputPortWidth(S, 0, DYNAMICALLY_SIZED);
}

/
inputs
If the upper or lower limits are not scalar then
the input is set to the same size. However, the
ssSetOptions below allows the actual width to
be reduced to 1 if needed for scalar expansion.

L

/
if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortDirectFeedThrough(S, 0, 1);

if (maxNumLimit > 1) {

ssSetInputPortWidth(S, 0, maxNumLimit);
} else {

ssSetInputPortWidth(S, 0, DYNAMICALLY_SIZED);
}

/*

* sample times

*/

ssSetNumSampleTimes (S, 1);

/*

* work

*/

ssSetNumRWork (S, 0);
ssSetNumIWork (S, 0);
ssSetNumPWork (S, 0);

S-Function Examples

Modes and zero crossings:
If we have a variable-step solver and this block has a continuous
sample time, then
0 One mode element will be needed for each scalar output
in order to specify which equation is valid (1), (2), or (3).
o Two ZC elements will be needed for each scalar output
in order to help the solver find the exact instants
at which either of the two possible "equation switches"
One will be for the switch from eq. (1) to (2);
the other will be for eq. (2) to (3) and vice versa.
otherwise
o No modes and nonsampled zero crossings will be used.

EE R O . R I R

/
ssSetNumModes (S, DYNAMICALLY_SIZED);
ssSetNumNonsampledZCs (S, DYNAMICALLY_SIZED);

/
options
o No mexFunctions and no problematic mxFunctions are called
so the exception free code option safely gives faster simulations.
o Scalar expansion of the inputs is desired. The option provides
this without the need to write mdlSetOutputPortWidth and
mdlSetInputPortWidth functions.

LI T

/
ssSetOptions(S, (SS_OPTION_EXCEPTION FREE_CODE |
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION));

} /* end mdlInitializeSizes */

/* Function: mdlInitializeSampleTimes —————————————————=——————————————————————==

* Abstract:
* Specify that the block is continuous.
*/
static void mdlInitializeSampleTimes(SimStruct *S)
{
ssSetSampleTime (S, 0, INHERITED_SAMPLE_TIME);
ssSetOffsetTime (S, 0, 0);

#define MDL_SET_WORK_WIDTHS
#if defined (MDL_SET_WORK_WIDTHS) && defined(MATLAB_MEX_FILE)
/* Function: mdlSetWorkWidths = =====================
* The width of the Modes and the ZCs depends on the width of the output.
* This width is not always known in mdlInitializeSizes so it is handled
* here.
*/
static void mdlSetWorkWidths(SimStruct *S)

7-61

7 Implementing Block Features

{
int nModes;
int nNonsampledZCs;
if (ssIsVariableStepSolver(S) &&
ssGetSampleTime (S,0) == CONTINUOUS_SAMPLE_TIME &&
ssGetOffsetTime(S,0) == 0.0) {
int numOutput = ssGetOutputPortWidth(S, 0);
/*
* modes and zero crossings
* 0 One mode element will be needed for each scalar output
* in order to specify which equation is valid (1), (2), or (3).
* o Two ZC elements will be needed for each scalar output
* in order to help the solver find the exact instants
* at which either of the two possible "equation switches"
* One will be for the switch from eq. (1) to (2);
* the other will be for eq. (2) to (3) and vice versa.
*/
nModes = numOutput;
nNonsampledZCs = 2 * numOutput;
} else {
nModes = 0;
nNonsampledZCs = 0;
}
ssSetNumModes (S, nModes) ;
ssSetNumNonsampledZCs (S,nNonsampledZCs) ;
}

#endif /* MDL_SET WORK WIDTHS */

/* Function: mdlOutputs ======== ==
Abstract:
A saturation is described by three equations
(1) y = UpperLimit
(2) y =u
(3) y = LowerLimit

When this block is used with a fixed-step solver or it has a noncontinuous
sample time, the equations are used as it

Now consider the case of this block being used with a variable-step solver
and it has a continusous sample time. Solvers work best on smooth problems.
In order for the solver to work without chattering, limit cycles, or
similar problems, it is absolutely crucial that the same equation be used
throughout the duration of a MajorTimeStep. To visualize this, consider
the case of the Saturation block feeding an Integrator block.

To implement this rule, the mode vector is used to specify the

7-62

S-Function Examples

valid equation based on the following:

if UpperLimit < u then use (1)
if LowerLimit <= u <= UpperLimit then use (2)
if u < LowerLimit then use (3)

The mode vector is changed only at the beginning of a MajorTimeStep.

During a minor time step, the equation specified by the mode vector

is used without question. Most of the time, the value of u will agree
with the equation specified by the mode vector. However, sometimes u's
value will indicate a different equation. Nonetheless, the equation
specified by the mode vector must be used.

When the mode and u indicate different equations, the corresponding
calculations are not correct. However, this is not a problem. From

the ZC function, the solver will know that an equation switch occurred

in the middle of the last MajorTimeStep. The calculations for that

time step will be discarded. The ZC function will help the solver

find the exact instant at which the switch occurred. Using this knowledge,
the length of the MajorTimeStep will be reduced so that only one equation
is valid throughout the entire time step.

L T I N I T T R R R

*

*/

static void mdlOutputs(SimStruct *S, int_T tid)

{
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
real_T *y = ssGetOutputPortRealSignal(S,0);
int_ T numOutput = ssGetOutputPortWidth(S,0);
int_ T iOutput;
/*

* Set index and increment for input signal, upper limit, and lower limit
* parameters so that each gives scalar expansion if needed.

*/
int T uldx = 0;
int_ T wulnc = (ssGetInputPortWidth(S,0) > 1);
const real T *upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);
int_T upperLimitInc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);
const real_T *lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

int_T lowerLimitInc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);
UNUSED_ARG(tid); /* not used in single tasking mode */

if (ssGetNumNonsampledZCs(S) == 0) {
/*
* This block is being used with a fixed-step solver or it has
* a noncontinuous sample time, so we always saturate.
*/
for (iOutput = 0; iOutput < numOutput; iOutput++) {
if (*uPtrs[uldx] >= *upperLimit) {
*y++ = *upperLimit;
} else if (*uPtrs[uldx] > *lowerLimit) {
*y++ = *uPtrs[uldx];

7-63

7 Implementing Block Features

} else {
*y++ = *lowerLimit;

}

upperLimit += upperLimitInc;
lowerLimit += lowerLimitInc;
uldx += ulnc;

}

} else {
/*
* This block is being used with a variable-step solver.
*/
int_T *mode = ssGetModeVector(S);

/*

* Specify indices for each equation.

*/

enum { UpperLimitEquation, NonLimitEquation, LowerLimitEquation };

/*
* Update the Mode Vector ONLY at the beginning of a MajorTimeStep
*/
if (ssIsMajorTimeStep(S)) {
/*
* Specify the mode, ie the valid equation for each output scalar.
*/
for (iOutput = 0; iOutput < numOutput; iOutput++) {
if (*uPtrs[uldx] > *upperLimit) {
/*
* Upper limit eq is valid.
*/
mode[iOutput] = UpperLimitEquation;
} else if (*uPtrs[uldx] < *lowerLimit) {

/*
* Lower limit eq is valid.
*/
mode[iOutput] = LowerLimitEquation;
} else {
/*
* Nonlimit eq is valid.
*/
mode[iOutput] = NonLimitEquation;
}
/*
* Adjust indices to give scalar expansion if needed.
*/
uldx += ulnc;

upperLimit += upperLimitInc;
lowerLimit += lowerLimitInc;

/*

7-64

S-Function Examples

* Reset index to input and limits.
*/
uldx = 0;
upperLimit = mxGetPr(P_PAR_UPPER_LIMIT);
lowerLimit = mxGetPr(P_PAR_LOWER_LIMIT);

} /* end IsMajorTimeStep */

/*
* For both MinorTimeSteps and MajorTimeSteps calculate each scalar
* output using the equation specified by the mode vector.
*/
for (iOutput = 0; iOutput < numOutput; iOutput++) {
if (mode[iOutput] == UpperLimitEquation) {
/*
* Upper limit eq.
*/
*y++ = *upperLimit;
} else if (mode[iOutput] == LowerLimitEquation) {

/*

* Lower limit eq.

*/

*y++ = *lowerLimit;
} else {

/*

* Nonlimit eq.

*/

*y++ = *uPtrs[uldx];
}
/*
* Adjust indices to give scalar expansion if needed.
*/
uldx += ulnc;

upperLimit += upperLimitInc;
lowerLimit += lowerLimitInc;
}

}
} /* end mdlOutputs */

#define MDL_ZERO_CROSSINGS
#if defined(MDL_ZERO_CROSSINGS) && (defined(MATLAB_MEX_FILE) || defined(NRT))

/* Function: mdlZeroCrossings = =======================
* Abstract:

* This will only be called if the number of nonsampled zero crossings is

* greater than 0 which means this block has a continuous sample time and the
* model is using a variable-step solver.

*

* Calculate zero crossing (ZC) signals that help the solver find the

*

exact instants at which equation switches occur:

7-65

7 Implementing Block Features

7-66

I I R R . T I T T R R R S TR R I T T R

/

if UpperLimit < u then use (1)
if LowerLimit <= u <= UpperLimit then use (2)
if u < LowerLimit then use (3)

The key words are help find. There is no choice of a function that will
direct the solver to the exact instant of the change. The solver will
track the zero crossing signal and do a bisection style search for the
exact instant of equation switch.

There is generally one ZC signal for each pair of signals that can

switch. The three equations above would break into two pairs (1)&(2)
and (2)&(3). The possibility of a "long jump" from (1) to (3) does
not need to be handled as a separate case. It is implicitly handled.

When ZCs are calculated, the value is normally used twice. When it is
first calculated, it is used as the end of the current time step. Later,
it will be used as the beginning of the following step.

The sign of the ZC signal always indicates an equation from the pair. For
S-functions, which equation is associated with a positive ZC and which is
associated with a negative ZC doesn't really matter. If the ZC is positive
at the beginning and at the end of the time step, this implies that the
"positive" equation was valid throughout the time step. Likewise, if the
ZC is negative at the beginning and at the end of the time step, this
implies that the "negative" equation was valid throughout the time step.
Like any other nonlinear solver, this is not foolproof, but it is an
excellent indicator. If the ZC has a different sign at the beginning and
at the end of the time step, then a equation switch definitely occurred
during the time step.

Ideally, the ZC signal gives an estimate of when an equation switch
occurred. For example, if the ZC signal is -2 at the beginning and +6 at
the end, then this suggests that the switch occurred

25% = 100%*(-2)/(-2-(+6)) of the way into the time step. It will almost
never be true that 25% is perfectly correct. There is no perfect choice
for a ZC signal, but there are some good rules. First, choose the ZC
signal to be continuous. Second, choose the ZC signal to give a monotonic
measure of the "distance" to a signal switch; strictly monotonic is ideal.

static void mdlZeroCrossings(SimStruct *S)

{

int_ T iOutput;

int T numOutput = ssGetOutputPortWidth(S,0);

real T *zcSignals = ssGetNonsampledZCs(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
/*

* Set index and increment for the input signal, upper limit, and lower
* limit parameters so that each gives scalar expansion if needed.

*/

int_ T uldx = 0;
int_ T wulnc (ssGetInputPortWidth(S,0) > 1);

S-Function Examples

real_T *upperLimit mxGetPr(P_PAR_UPPER_LIMIT);
int_T upperLimitInc = (mxGetNumberOfElements(P_PAR_UPPER_LIMIT) > 1);
real_T *lowerLimit mxGetPr(P_PAR_LOWER_LIMIT);
int_T lowerLimitInc = (mxGetNumberOfElements(P_PAR_LOWER_LIMIT) > 1);

/*

* For each output scalar, give the solver a measure of "how close things
* are" to an equation switch.

*/

for (iOutput = 0; iOutput < numOutput; iOutput++) {

/* The switch from eq (1) to eq (2)

*

* if UpperLimit < u then use (1)
* if LowerLimit <= u <= UpperLimit then use (2)
*

* is related to how close u is to UpperLimit. A ZC choice

* that is continuous, strictly monotonic, and is

* u - UpperLimit

* or it is negative.

*/

zcSignals[2*iOutput] = *uPtrs[uldx] - *upperLimit;

/* The switch from eq (2) to eq (3)

*

* if LowerLimit <= u <= UpperLimit then use (2)
* if u < LowerLimit then use (3)
*

* is related to how close u is to LowerLimit. A ZC choice

* that is continuous, strictly monotonic, and is

* u - LowerLimit.

*/

zcSignals[2*iOutput+1] = *uPtrs[uldx] - *lowerLimit;

/*

* Adjust indices to give scalar expansion if needed.
*/

uldx += ulnc;

upperLimit += upperLimitInc;
lowerLimit += lowerLimitInc;

}

#endif /* end mdlZeroCrossings */

/* Function: mdlTerminate =======================

* Abstract:
* No termination needed, but we are required to have this routine.
*/

static void mdlTerminate (SimStruct *S)

{

7-67

7 Implementing Block Features

7-68

UNUSED_ARG(S); /* unused input argument */

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

Example of a Time-Varying Continuous Transfer

Function

The S-function stvctf is an example of a time-varying continuous transfer
function. It demonstrates how to work with the solvers so that the simulation
maintains consistency, which means that the block maintains smooth and
consistent signals for the integrators although the equations that are being
integrated are changing.

S-Function Examples

matlabroot/simulink/src/stvctf.c

/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

stvctf.c

Abstract:

Time Varying Continuous Transfer Function block

This S-function implements a continuous time transfer function
whose transfer function polynomials are passed in via the input
vector. This is useful for continuous time adaptive control
applications.

This S-function is also an example of how to use banks to avoid
problems with computing derivatives when a continuous output has
discontinuities. The consistency checker can be used to verify that
your S-function is correct with respect to always maintaining smooth
and consistent signals for the integrators. By consistent we mean that
two mdlOutputs calls at major time t and minor time t are always the
same. The consistency checker is enabled on the diagnostics page of the

Configuraion parameters dialog box. The update method of this S-function

modifies the coefficients of the transfer function, which cause the
output to "jump." To have the simulation work properly, we need to let
the solver know of these discontinuities by setting
ssSetSolverNeedsReset and then we need to use multiple banks of
coefficients so the coefficients used in the major time step output
and the minor time step outputs are the same. In the simulation loop
we have:
Loop:
o Output in major time step at time t
o Update in major time step at time t
o Integrate (minor time step):
o Consistency check: recompute outputs at time t and compare
with current outputs.
o Derivatives at time t
0 One or more Output,Derivative evaluations at time t+k
where k <= step_size to be taken.
o Compute state, x
ot=1t + step_size
End_Integrate
End_Loop
Another purpose of the consistency checker is to verify that when
the solver needs to try a smaller step_size, the recomputing of
the output and derivatives at time t doesn't change. Step size
reduction occurs when tolerances aren't met for the current step size.
The ideal ordering would be to update after integrate. To achieve
this we have two banks of coefficients. And the use of the new
coefficients, which were computed in update, is delayed until after
the integrate phase is complete.

This block has multiple sample times and will not work correctly
in a multitasking environment. It is designed to be used in
a single tasking (or variable step) simulation environment.
Because this block accesses the input signal in both tasks,

7-69

7 Implementing Block Features

it cannot specify the sample times of the input and output ports
(SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED).

See simulink/src/sfuntmpl_doc.c.

E I B

Copyright 1990-2000 The MathWorks, Inc.
/

#define S_FUNCTION_NAME stvctf
#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

/*

* Defines for easy access to the numerator and denominator polynomials
* parameters

*/

#define NUM(S) ssGetSFcnParam(S, 0)

#define DEN(S) ssGetSFcnParam(S, 1)

#define TS(S) ssGetSFcnParam(S, 2)

#define NPARAMS 3

#define MDL_CHECK_PARAMETERS
#if defined(MDL_CHECK_PARAMETERS) && defined (MATLAB_MEX_FILE)
/* Function: mdlCheckParameters === ==

* Abstract:

* Validate our parameters to verify:

* o The numerator must be of a lower order than the denominator.

* 0 The sample time must be a real positive nonzero value.

*/

static void mdlCheckParameters(SimStruct *S)

{
int_T i;

for (i = 0; i < NPARAMS; i++) {

real T *pr;

int_T el;

int T nEls;

if (mxIsEmpty (ssGetSFcnParam(S,i)) ||
mxIsSparse(ssGetSFcnParam(S,i)) ||
mxIsComplex(ssGetSFcnParam(S,i)) ||
ImxIsNumeric(ssGetSFcnParam(S,i))) {
ssSetErrorStatus (S, "Parameters must be real finite vectors");
return;

}

pr = mxGetPr(ssGetSFcnParam(S,1i));

nEls = mxGetNumberOfElements(ssGetSFcnParam(S,i));
for (el = 0; el < nEls; el++) {
if (!mxIsFinite(pr[el])) {
ssSetErrorStatus (S, "Parameters must be real finite vectors");
return;

7-70

S-Function Examples

}

#en

/*

*

*

}

if (mxGetNumberOfElements(NUM(S)) > mxGetNumberOfElements(DEN(S)) &&
mxGetNumberOfElements (DEN(S)) > 0 && *mxGetPr(DEN(S)) != 0.0) {
ssSetErrorStatus(S, "The denominator must be of higher order than "
"the numerator, nonempty and with first "
"element nonzero");
return;

i

/* xxx verify finite */

if (mxGetNumberOfElements(TS(S)) != 1 || mxGetPr(TS(S))[0] <= 0.0) {
ssSetErrorStatus(S, "Invalid sample time specified");
return;

}

dif /* MDL_CHECK_PARAMETERS */

Function: mdlInitializeSizes ==== =======================
Abstract:
The sizes information is used by Simulink to determine the S-function
block's characteristics (number of inputs, outputs, states, etc.).

*/
static void mdlInitializeSizes(SimStruct *S)
{
int_T nContStates;
int_T nCoeffs;
/* See sfuntmpl_doc.c for more details on the macros below. */
ssSetNumSFcnParams (S, NPARAMS); /* Number of expected parameters. */
#if defined (MATLAB_MEX_FILE)
if (ssGetNumSFcnParams(S) == ssGetSFcnParamsCount(S)) {
mdlCheckParameters(S);
if (ssGetErrorStatus(S) != NULL) {
return;
}
} else {
return; /* Parameter mismatch will be reported by Simulink. */
}
#endif
/*
* Define the characteristics of the block:
*
* Number of continuous states: length of denominator - 1
* Inputs port width 2 * (NumContStates+1) + 1
* Output port width 1
* DirectFeedThrough: 0 (Although this should be computed.
*

We'll assume coefficients entered

7-71

7 Implementing Block Features

7-72

* are strictly proper).

* Number of sample times: 2 (continuous and discrete)

* Number of Real work elements: 4*NumCoeffs

* (Two banks for num and den coeff's:
* NumBank0Coeffs

* DenBank0Coeffs

* NumBank1Coeffs

* DenBank1Coeffs)

* Number of Integer work elements: 2 (indicator of active bank 0 or 1
* and flag to indicate when banks
* have been updated).

*

* The number of inputs arises from the following:

* o 1 input (u)

* o the numerator and denominator polynomials each have NumContStates+1
* coefficients

*/
nCoeffs = mxGetNumberOfElements (DEN(S));

nContStates = nCoeffs - 1;

ssSetNumContStates (S, nContStates);
ssSetNumDiscStates (S, 0);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, 1 + (2*nCoeffs));
ssSetInputPortDirectFeedThrough(S, 0, 0);
ssSetInputPortSampleTime (S, 0, mxGetPr(TS(S))[0]);
ssSetInputPortOffsetTime(S, 0, 0);

if (!ssSetNumOutputPorts(S,1)) return;
ssSetOutputPortWidth(S, 0, 1);
ssSetOutputPortSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME) ;
ssSetOutputPortOffsetTime(S, 0, 0);

ssSetNumSampleTimes (S, 2);
ssSetNumRWork (S, 4 * nCoeffs);
ssSetNumIWork (S, 2);
ssSetNumPWork (S, 0);

ssSetNumModes (S, 0);
ssSetNumNonsampledZCs (S, 0);

/* Take care when specifying exception free code - see sfuntmpl_doc.c */
ssSetOptions(S, (SS_OPTION_EXCEPTION_FREE_CODE));

} /* end mdlInitializeSizes */

/* Function: mdlInitializeSampleTimes ==== ==
* Abstract:

This function is used to specify the sample time(s) for the

S-Function Examples

* S-function. This S-function has two sample times. The
* first, a continous sample time, is used for the input to the
* transfer function, u. The second, a discrete sample time
* provided by the user, defines the rate at which the transfer
* function coefficients are updated.
*/
static void mdlInitializeSampleTimes(SimStruct *S)
{
/*
* the first sample time, continuous
*/

ssSetSampleTime (S, 0, CONTINUOUS_SAMPLE_TIME) ;
ssSetOffsetTime (S, 0, 0.0);

/*

* the second, discrete sample time, is user provided
*/

ssSetSampleTime (S, 1, mxGetPr(TS(S))[0]);
ssSetOffsetTime(S, 1, 0.0);

} /* end mdlInitializeSampleTimes */

#define MDL_INITIALIZE_CONDITIONS
/* Function: mdlInitializeConditions ==

* Abstract:
* Initalize the states, numerator and denominator coefficients.
*/
static void mdlInitializeConditions(SimStruct *S)
{
int. T i
int_T nContStates = ssGetNumContStates(S);
real_T *x0 = ssGetContStates(S);
int_T nCoeffs = nContStates + 1;
real_T *numBankO = ssGetRWork(S);
real_T *denBankO = numBank0 + nCoeffs;
int_T *activeBank = ssGetIWork(S);
/*
* The continuous states are all initialized to zero.
*/
for (1 = 0; i < nContStates; i++) {
x0[1i] = 0.0;

numBankO[i] = 0.0;
denBank0[i] = 0.0;

}
numBankO[nContStates] = 0.0;
denBankO[nContStates] = 0.0;
/*
* Set up the initial numerator and denominator.
*/

7-73

7 Implementing Block Features

7-74

{
const real_T *numParam = mxGetPr (NUM(S));
int numParamLen = mxGetNumberOfElements (NUM(S));
const real_T *denParam = mxGetPr(DEN(S));
int denParamLen = mxGetNumberOfElements(DEN(S));
real T den0 = denParam[0];
for (i = 0; i < denParamLen; i++) {
denBank0[i] = denParam[i] / denO0;
}
for (i = 0; i < numParamLen; i++) {
numBankO[i] = numParam[i] / denO;
}
}
/*
* Normalize if this transfer function has direct feedthrough.
*/

for (i = 1; i < nCoeffs; i++) {
numBank0[i] -= denBankO[i]*numBank0[O0];
}

/*

* Indicate bankO is active (i.e. bank1 is oldest).
*/
*activeBank = 0;

} /* end mdlInitializeConditions */

/* Function: mdlOutputs ======== =

* Abstract:
* The outputs for this block are computed by using a controllable state-
* space representation of the transfer function.
*/
static void mdlOutputs(SimStruct *S, int_T tid)
{
if (ssIsContinuousTask(S,tid)) {
int i;
real T *num;
int nContStates = ssGetNumContStates(S);
real T *X = ssGetContStates(S);
int_T nCoeffs = nContStates + 1;
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
real T *y = ssGetOutputPortRealSignal(S,0);
int_T *activeBank = ssGetIWork(S);
/*

* Switch banks because we've updated them in mdlUpdate and we're no
* longer in a minor time step.

S-Function Examples

*/

if (ssIsMajorTimeStep(S)) {
int_T *banksUpdated = s
if (*banksUpdated) {

sGetIWork(S) + 1;

*activeBank = ! (*activeBank);
*banksUpdated = 0;
/*

* Need to tell the solvers that the derivatives are no

* longer valid.
*/
ssSetSolverNeedsReset(S);

}

}
num = ssGetRWork(S) + (*activeBank) * (2*nCoeffs);

/*

* The continuous system is evaluated using a controllable state space
* representation of the transfer function. This implies that the
* output of the system is equal to:

*

* y(t) = Cx(t) + Du(t)

* = [b1 b2 ... bn]lx(t) + bOu(t)

*

* where b0, b1, b2, ... are the coefficients of the numerator

* polynomial:

*

* B(s) = b0 s*n + b1 s”"n-1 + b2 s"n-2 + ... + bn-1 s + bn

*/

*y = *num++ * (*uPtrs[0]);
for (1 = 0; i < nContStates; i++) {
*y += *numtt * *x++g
}
}

} /* end mdlOutputs */

#define MDL_UPDATE

/* Function: mdlUpdate === ================

* Abstract:

* Every time through the simulation loop, update the

* transfer function coefficients. Here we update the oldest bank.
*/

static void mdlUpdate(SimStruct *S, int_T tid)

{
UNUSED_ARG(tid); /* not used in single tasking mode */

if (ssIsSampleHit(S, 1, tid)) {

int T i

InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
int T uldx =

int T nContStates = ssGetNumContStates(S);

int T nCoeffs = nContStates + 1;

1;/*1st coeff is after signal input*/

7-75

7 Implementing Block Features

7-76

int_T bankToUpdate = !ssGetIWork(S)[0];

real T *num = ssGetRWork(S)+bankToUpdate*2*nCoeffs;
real_T *den = num + nCoeffs;

real_T den0;

int_T allZero;

/*

* Get the first denominator coefficient. It will be used

* for normalizing the numerator and denominator coefficients.

*

* If all inputs are zero, we probably could have unconnected

* inputs, so use the parameter as the first denominator coefficient.
*

/

den0 = *uPtrs[uldx+nCoeffs];
if (den0 == 0.0) {

den0 = mxGetPr(DEN(S))[O0];

}

/*

* Grab the numerator.
*/

allZero = 1;

for (i = 0; (i < nCoeffs) && allZero; i++) {
allZero &= *uPtrs[uldx+i] == 0.0;

}

if (allzero) { /* if numerator is all zero */
const real_T *numParam = mxGetPr(NUM(S));
int_ T numParamLen = mxGetNumberOfElements (NUM(S));
/*

* Move the input to the denominator input and
* get the denominator from the input parameter.
*/
uldx += nCoeffs;
num += nCoeffs - numParamLen;
for (i = 0; i < numParamLen; i++) {
*num++ = *numParam++ / den0;

}
} else {
for (1 = 0; i < nCoeffs; i++) {
*num++ = *uPtrs[uldx++] / denO;

}
}
/*
* Grab the denominator.
*/
allZero = 1;

for (i = 0; (i < nCoeffs) && allZero; i++) {
allZero &= *uPtrs[uldx+i] == 0.0;
}

S-Function Examples

if (allZero) { /* If denominator is all zero. */
const real_T *denParam = mxGetPr(DEN(S));
int T denParamLen = mxGetNumberOfElements (DEN(S));

den0 = denParam[O0];
for (1 = 0; i < denParamLen; i++) {
*den++ = *denParam++ / denO;

}
} else {
for (1 = 0; 1 < nCoeffs; i++) {
*den++ = *uPtrs[uldx++] / denO;

}
}
/*
* Normalize if this transfer function has direct feedthrough.
*/

num = ssGetRWork(S) + bankToUpdate*2*nCoeffs;
den = num + nCoeffs;
for (1 = 1; 1 < nCoeffs; i++) {

num[i] -= den[i]*num[O0];
}
/*
* Indicate oldest bank has been updated.
*/

ssGetIWork(S)[1] = 1;
}

} /* end mdlUpdate */

#define MDL_DERIVATIVES

/* Function: mdlDerivatives === =======================

* Abstract:
* The derivatives for this block are computed by using a controllable
* state-space representation of the transfer function.
*/
static void mdlDerivatives(SimStruct *S)
{
int_T ij;
int_ T nContStates = ssGetNumContStates(S);
real_T *X = ssGetContStates(S);
real T *dx = ssGetdX(S);
int T nCoeffs = nContStates + 1;
int. T activeBank = ssGetIWork(S)[0];
const real T *num = ssGetRWork(S) + activeBank*(2*nCoeffs);
const real T *den = num + nCoeffs;
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
/*

7-77

7 Implementing Block Features

The continuous system is evaluated using a controllable state-space
representation of the transfer function. This implies that the
next continuous states are computed using:

dx

Ax(t) + Bu(t)
= [-al -a2 ... -an] [x1(t)] +
[1 0 ... 0] [x2(t)] +

o 1 ... 0] [x3(t)] +

.1 . +
+

+

+

[

[.

[.1
[

[

[u(t)]
[0]
[0]

*
*
*
*
*
*
*
*
*
* .
* e e .1 . .
* 0 0 ... 107 [xn(t)] [0]
*
* where al, a2, ... are the coefficients of the numerator polynomial:
*
* A(s) = s*n + a1l s"n-1 + a2 s"n-2 + ... + an-1 s + an
*/
dx[0] = -den[1] * x[0] + *uPtrs[O];
for (1 = 1; i < nContStates; i++) {

dx[i] = x[1i-1];

dx[0] -= den[i+1] * x[i];
}

} /* end mdlDerivatives */

/* Function: mdlTerminate ======
* Abstract:
* Called when the simulation is terminated.
* For this block, there are no end of simulation tasks.
*/
static void mdlTerminate(SimStruct *S)
{
UNUSED_ARG(S); /* unused input argument */
} /* end mdlTerminate */

#ifdef MATLAB_MEX_FILE /* Is this file being compiled as a MEX-file? */

#include "simulink.c" /* MEX-file interface mechanism */

#else

#include "cg_sfun.h" /* Code generation registration function */
#endif

7-78

S-Function Callback
Methods

Every user-written S-function must implement a set of methods, called callback methods or simply
callbacks, that Simulink invokes when simulating a model that contains the S-function. Some
callback methods are optional. Simulink invokes an optional callback only if the S-function defines
the callback. This section describes the purpose and syntax of all callback methods that an S-function
can implement. In each case, the documentation for a callback method indicates whether it is
required or optional.

mdICheckParameters

Purpose
Syntax

Arguments

Description

Example

Check the validity of an S-function’s parameters
void mdlCheckParameters(SimStruct *S)

S
SimStruct representing an S-Function block.

Verifies new parameter settings whenever parameters change or are
reevaluated during a simulation.

When a simulation is running, changes to S-function parameters can occur at
any time during the simulation loop, that is, either at the start of a simulation
step or during a simulation step. When the change occurs during a simulation
step, Simulink calls this routine twice to handle the parameter change. The
first call during the simulation step is used to verify that the parameters are
correct. After verifying the new parameters, the simulation continues using the
original parameter values until the next simulation step, at which time the
new parameter values are used. Redundant calls are needed to maintain
simulation consistency.

Note You cannot access the work, state, input, output, and other vectors in
this routine. Use this routine only to validate the parameters. Additional
processing of the parameters should be done in md1ProcessParameters.

This example checks the first S-function parameter to verify that it is a real
nonnegative scalar.

#define PARAMI1(S) ssGetSFcnParam(S,0)

#define MDL_CHECK_PARAMETERS /* Change to #undef to remove function */
#if defined (MDL_CHECK_PARAMETERS) && defined(MATLAB_MEX_FILE)

static void mdlCheckParameters(SimStruct *S)

{
if (mxGetNumberOfElements(PARAM1(S)) != 1) {
ssSetErrorStatus(S, "Parameter to S-function must be a scalar");
return;

} else if (mxGetPr(PARAM1(S))[0] < 0) {
ssSetErrorStatus(S, "Parameter to S-function must be nonnegative");
return;

}

}
#endif /* MDL_CHECK_PARAMETERS */

mdIlCheckParameters

Languages

See Also

In addition to the preceding routine, you must add a call to this routine from
mdlInitializeSizes to check parameters during initialization, because
md1lCheckParameters is only called while the simulation is running. To do this,
after setting the number of parameters you expect in your S-function by using
ssSetNumSFcnParams, use this code in mdlInitializeSizes:

static void mdlInitializeSizes(SimStruct *S)
{

ssSetNumSFcnParams(S, 1); /* Number of expected parameters */
#if defined (MATLAB_MEX_FILE)

if (ssGetNumSFcnParams(s) == ssGetSFcnParamsCount(s) {
mdlCheckParameters(S);
if(ssGetErrorStates(S) != NULL) return;
} else {
return; /* Simulink will report a mismatch error. */
}
#endif

}

Note The macro ssGetSFcnParamsCount returns the actual number of
parameters entered in the dialog box.

See matlabroot/simulink/src/sfun_errhdl.c for an example.
Ada, C

mdlProcessParameters, ssGetSFcnParamsCount

8-3

mdIDerivatives

Purpose
Syntax

Arguments

Description

Example
Languages

See Also

8-4

Compute the S-function’s derivatives
void mdlDerivatives(SimStruct *S)

S
SimStruct representing an S-Function block.

Simulink invokes this optional method at each time step to compute the
derivatives of the S-function’s continuous states. This method should store the
derivatives in the S-function’s state derivatives vector. This method can use
ssGetdX to get a pointer to the derivatives vector.

Each time the md1Derivatives routine is called, it must explicitly set the
values of all derivatives. The derivative vector does not maintain the values
from the last call to this routine. The memory allocated to the derivative vector
changes during execution.

For an example, see matlabroot/simulink/src/csfunc.c.

Ada,C,M

ssGetdx

mdIGetTimeOfNextVarHit

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

Initialize the state vectors of this S-function
void mdlGetTimeOfNextVarHit (SimStruct *S)

S
SimStruct representing an S-Function block.

Simulink invokes this optional method at every major integration step to get
the time of the next sample time hit. This method should set the time of next
hit, using ssSetTNext. The time of the next hit must be greater than the
current simulation time as returned by ssGetT. The S-function must
implement this method if it operates at a discrete, variable-step sample time.

Note The time of the next hit can be a function of the input signals.

C,M

static void mdlGetTimeOfNextVarHit (SimStruct *S)

{
time T offset = getOffset();
time T timeOfNextHit = ssGetT(S) + offset;
ssSetTNext (S, timeOfNextHit);

}

mdlInitializeSampleTimes, ssSetTNext, ssGetT

8-5

mdlInitializeConditions

Purpose
Syntax

Arguments

Description

Example

Initialize the state vectors of this S-function
void mdlInitializeConditions(SimStruct *S)

S
SimStruct representing an S-Function block.

Simulink invokes this optional method at the beginning of a simulation. It
should initialize the continuous and discrete states, if any, of this S-Function
block. Use ssGetContStates and/or ssGetDiscStates to get the states. This
method can also perform any other initialization activities that this S-function
requires.

If this S-function resides in an enabled subsystem configured to reset states,
Simulink also calls this method when the enabled subsystem restarts
execution. This method can use ssIsFirstInitCond macro to determine
whether it is being called for the first time.

This example is an S-function with both continuous and discrete states. It
initializes both sets of states to 1.0:

#define MDL_INITIALIZE_CONDITIONS /* Change to #undef to remove function */
#if defined (MDL_INITIALIZE_CONDITIONS)

static void mdlInitializeConditions(SimStruct *S)
{
int i;

real_T *xcont ssGetContStates(S);

int T nCStates = ssGetNumContStates(S);
real_T *xdisc = ssGetRealDiscStates(S);
int T nDStates = ssGetNumDiscStates(S);

for (i = 0; i < nCStates; i++) {
*xcont++ = 1.0;

}

for (i = 0; i < nDStates; i++) {
*xdisc++ = 1.0;

}

}
#endif /* MDL_INITIALIZE_CONDITIONS */

For another example that initializes only the continuous states, see
matlabroot/simulink/src/resetint.c.

mdlInitializeConditions

Languages

See Also

C

mdlStart, ssIsFirstInitCond, ssGetContStates, ssGetDiscStates

8-7

mdlInitializeSampleTimes

Purpose
Syntax

Arguments

Description

8-8

Specify the sample rates at which this S-function operates
void mdlInitializeSampleTimes(SimStruct *S)

S
SimStruct representing an S-Function block.

This method should specify the sample time and offset time for each sample
rate at which this S-function operates via the following paired macros

ssSetSampleTime (S, sampleTimeIndex, sample_time)
ssSetOffsetTime (S, offsetTimeIndex, offset_time)

where sampleTimeIndex runs from O to one less than the number of sample
times specified in md1InitializeSizes via ssSetNumSampleTimes.

If the S-function operates at one or more sample rates, this method can specify
any of the following sample time and offset values for a given sample time:

® [CONTINUOUS SAMPLE TIME, 0.0]

® [CONTINUOUS SAMPLE TIME, FIXED IN MINOR_STEP_ OFFSET]
® [discrete_sample_period, offset]

® [VARIABLE_SAMPLE_TIME, 0.0]

The uppercase values are macros defined in simstruc. h.

If the S-function operates at one rate, this method can alternatively set the
sample time to one of the following sample/offset time pairs.

® [INHERITED_SAMPLE_TIME, 0.0]
® [INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

If the number of sample times is 0, Simulink assumes that the S-function
inherits its sample time from the block to which it is connected, i.e., that the
sample time is

[INHERITED_SAMPLE_TIME, 0.0]
This method can therefore return without doing anything.
Use the following guidelines when specifying sample times.

¢ A continuous function that changes during minor integration steps should
set the sample time to

mdlinitializeSampleTimes

[CONTINUOUS_SAMPLE_TIME, 0.0]

¢ A continuous function that does not change during minor integration steps
should set the sample time to

[CONTINUOUS_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

¢ A discrete function that changes at a specified rate should set the sample
time to

[discrete_sample_period, offset]

where
discrete_sample_period > 0.0

and
0.0 <= offset < discrete_sample_period

¢ A discrete function that changes at a variable rate should set the sample
time to

[VARIABLE_SAMPLE_TIME, 0.0]

Simulink invokes the md1GetTimeOfNextVarHit function to get the time of
the next sample hit for the variable-step discrete task.
Note that VARIABLE_SAMPLE_TIME requires a variable-step solver.
¢ To operate correctly in a triggered subsystem or a periodic system, a discrete
S-function should
= Specify a single sample time set to
[INHERITED_SAMPLE_TIME, 0.0]

= Use ssSetOptions to set the
SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME simulation option in
mdlInitializeSizes

= Verify that it was assigned a discrete or triggered sample time in
mdlSetWorkWidths:

if (ssGetSampleTime(S, 0) == CONTINUOUS SAMPLE_TIME) ({

ssSetErrorStatus(S,
"This block cannot be assigned a continuous sample time");

8-9

mdlInitializeSampleTimes

}

After propagating sample times throughout the block diagram, Simulink
assigns the sample time

[INHERITED_SAMPLE_TIME, INHERITED_SAMPLE_TIME]
to discrete blocks residing in triggered subsystems.

If this function has no intrinsic sample time, it should set its sample time to
inherited according to the following guidelines:

¢ A function that changes as its input changes, even during minor integration
steps, should set its sample time to

[INHERITED_SAMPLE_TIME, 0.0]

A function that changes as its input changes, but doesn't change during
minor integration steps (i.e., is held during minor steps) should set its
sample time to

[INHERITED_SAMPLE_TIME, FIXED_IN_MINOR_STEP_OFFSET]

The S-function should use the ssIsSampleHit or ssIsContinuousTask macros
to check for a sample hit during execution (in md10utputs or mdlUpdate). For
example, if the block’s first sample time is continuous, the function can use the
following code fragment to check for a sample hit.

if (ssIsContinuousTask(S,tid)) {
}

Note The function receives incorrect results if it uses
ssIsSampleHit (S,0,tid).

If the function wants to determine whether the third (discrete) task has a hit,
it can use the following code fragment.

if (ssIsSampleHit(S,2,tid) {
}

8-10

mdlinitializeSampleTimes

Languages C

See Also mdlSetInputPortSampleTime, md1SetOutputPortSampleTime

8-11

mdlinitializeSizes

Purpose

Syntax

Arguments

Description

8-12

Specify the number of inputs, outputs, states, parameters, and other
characteristics of the S-function

void mdlInitializeSizes(SimStruct *S)

S
SimStruct representing an S-Function block.

This is the first of the S-function’s callback methods that Simulink calls. This
method should perform the following tasks:

¢ Specify the number of parameters that this S-function supports, using
ssSetNumSFcnParams.

Use ssSetSFcnParamTunable (S,paramIdx, 0) when a parameter cannot
change during simulation, where paramIdx starts at 0. When a parameter
has been specified as not tunable, Simulink issues an error during
simulation (or the Real-Time Workshop external mode) if an attempt is made
to change the parameter.

¢ Specify the number of states that this function has, using
ssSetNumContStates and ssSetNumDiscStates.

¢ Configure the block’s input ports.
This entails the following tasks:

= Specify the number of input ports that this S-function has, using
ssSetNumInputPorts.

= Specify the dimensions of the input ports.

See“Dynamically Sized Block Features” on page 8-13 for more
information.

= For each input port, specify whether it has direct feedthrough, using
ssSetInputPortDirectFeedThrough.

A port has direct feedthrough if the input is used in either the md10utputs
or md1GetTimeOfNextVarHit function. The direct feedthrough flag for each
input port can be set to either 1=yes or 0=no. It should be set to 1 if the
input, u, is used in the md10utputs or md1GetTimeOfNextVarHit routine.
Setting the direct feedthrough flag to 0 tells Simulink that u is not used in
either of these S-function routines. Violating this leads to unpredictable
results.

mdlInitializeSizes

¢ Configure the block’s output ports.
This entails the following tasks:

= Specify the number of output ports that the block has, using
ssSetNumOutputPorts.

= Specify the dimensions of the output ports.
See md1SetOutputPortDimensionInfo for more information.

If your S-function outputs are discrete (e.g., can only take the values 1 and
2), specify SS_OPTION_DISCRETE_VALUED_ OUTPUT.

¢ Set the number of sample times (i.e., sample rates) at which the block
operates.
There are two ways of specifying sample times:
= Port-based sample times
= Block-based sample times
See “Sample Times” on page 7-17 for a complete discussion of sample time
issues.
For multirate S-functions, the suggested approach to setting sample times is
via the port-based sample times method. When you create a multirate
S-function, you must take care to verify that, when slower tasks are
preempted, your S-function correctly manages data so as to avoid race
conditions. When port-based sample times are specified, the block cannot
inherit a constant sample time at any port.

® Set the size of the block’s work vectors, using ssSetNumRWork,
ssSetNumIWork, ssSetNumPWork, ssSetNumModes, ssSetNumNonsampledZCs.

¢ Set the simulation options that this block implements, using ssSetOptions.
All options have the form SS_OPTION_<name>. See ssSetOptions for
information on each option. The options should be bitwise OR'd together, as
in

ssSetOptions(S, (SS_OPTION _namel | SS_OPTION_name2))

Dynamically Sized Block Features

You can set the parameters NumContStates, NumDiscStates, NumInputs,
NumOutputs, NumRWork, NumIWork, NumPWork, NumModes, and NumNonsampledZCs
to a fixed nonnegative integer or tell Simulink to size them dynamically:

8-13

mdlinitializeSizes

® DYNAMICALLY_SIZED — Sets lengths of states, work vectors, and so on to
values inherited from the driving block. It sets widths to the actual input
widths, according to the scalar expansion rules unless you use
md1lSetWorkWidths to set the widths.

® 0 or positive number — Sets lengths (or widths) to the specified values. The
default is 0.

Languages Ada,C,M
Example static void mdlInitializeSizes(SimStruct *S)
{

|
—_

int_T nInputPorts
int_T nOutputPorts
int_T needsInput =

5 /* number of input ports */
5 /* number of output ports */
/* direct feed through */

I
RPN

int_T inputPortIdx 0;
int_T outputPortIdx = 0;

ssSetNumSFcnParams (S, 0); /* Number of expected parameters */
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) {
/*
* If the the number of expected input parameters is not
* equal to the number of parameters entered in the
* dialog box, return. Simulink will generate an error
* indicating that there is aparameter mismatch.
*/
return;
}else {
mdlCheckParameters(S);

if (ssGetErrorStatus(s) != NULL)
return;

ssSetNumContStates(S, 0);
ssSetNumDiscStates(S, 0);

/*

* Configure the input ports. First set the number of input
* ports.

*/

if (!ssSetNumInputPorts(S, nInputPorts)) return;

/*

* Set input port dimensions for each input port index

* starting at 0.

*/

8-14

mdlInitializeSizes

if(!ssSetInputPortDimensionInfo(S, inputPortlIdx,
DYNAMIC_DIMENSION)) return;

/*

* Set direct feedthrough flag (1=yes, 0=no).

*/

ssSetInputPortDirectFeedThrough(S, inputPortlIdx, needsInput);

/*

* Configure the output ports. First set the number of
* output ports.

*/

if (!ssSetNumOutputPorts(S, nOutputPorts)) return;

/*

* Set output port dimensions for each output port index

* starting at O.

*/

if (!ssSetOutputPortbDimensionInfo(S,outputPortlIdx,
DYNAMIC_DIMENSION)) return;

/*
* Set the number of sample times. */
ssSetNumSampleTimes (S, 1);

/*

* Set size of the work vectors.

*/

ssSetNumRWork (S, 0); /* real vector */
ssSetNumIWork(S, 0); /* integer vector */
ssSetNumPWork (S, 0); /* pointer vector */
ssSetNumModes(S, 0); /* mode vector */
ssSetNumNonsampledZCs(S, 0); /* zero crossings */

ssSetOptions(S, 0);

} /* end mdlInitializeSizes */

8-15

mdIlOutputs

Purpose
Syntax

Arguments

Description

Languages

See Also

8-16

Compute the signals that this block emits
void mdlOutputs(SimStruct *S, int_T tid)

S

SimStruct representing an S-Function block.
tid

Task ID.

Simulink invokes this required method at each simulation time step. The
method should compute the S-function’s outputs at the current time step and
store the results in the S-function’s output signal arrays.

The tid (task ID) argument specifies the task running when the md10utputs
routine is invoked. You can use this argument in the md10utports routine of a
multirate S-Function block to encapsulate task-specific blocks of code (see
“Multirate S-Function Blocks” on page 7-25).

For an example of an md10utputs routine that works with multiple input and
output ports, see matlabroot/simulink/src/sfun_multiport.c.

A C,M

ssGetOutputPortSignal, ssGetOutputPortRealSignal,
ssGetOutputPortComplexSignal

mdIProcessParameters

Purpose
Syntax

Arguments

Description

Example

Process the S-function’s parameters
void mdlProcessParameters(SimStruct *S)

S
SimStruct representing an S-Function block.

This is an optional routine that Simulink calls after md1CheckParameters
changes and verifies parameters. The processing is done at the top of the
simulation loop when it is safe to process the changed parameters. This routine
can only be used in a C MEX S-function.

The purpose of this routine is to process newly changed parameters. An
example is to cache parameter changes in work vectors. Simulink does not call
this routine when it is used with the Real-Time Workshop. Therefore, if you use
this routine in an S-function designed for use with the Real-Time Workshop,
you must write your S-function so that it doesn’t rely on this routine. To do this,
you must inline your S-function by using the Target Language Compiler. See
The Target Language Compiler Reference Guide for information on inlining
S-functions.

The synopsis is

#define MDL_PROCESS_PARAMETERS /* Change to #undef to remove function */
#if defined (MDL_PROCESS_PARAMETERS) && defined(MATLAB_MEX_FILE)

static void mdlProcessParameters(SimStruct *S)

{

}
#endif /* MDL_PROCESS_PARAMETERS */

This example processes a string parameter that md1CheckParameters has
verified to be of the form '+++' (where there could be any number of '+' or ' -
characters).

#define MDL_PROCESS_PARAMETERS /* Change to #undef to remove function */

8-17

mdIProcessParameters

#if defined (MDL_PROCESS_PARAMETERS) && defined (MATLAB_MEX_FILE)
static void mdlProcessParameters(SimStruct *S)

{
int_T 1i;
char_T *plusMinusStr;
int_T nInputPorts = ssGetNumInputPorts(S);
int_T *iwork = ssGetIWork(S);
if ((plusMinusStr=(char_T*)malloc(nInputPorts+1)) == NULL) {
ssSetErrorStatus (S, "Memory allocation error in mdlStart");
return;
}
if (mxGetString(SIGNS_PARAM(S),plusMinusStr,nInputPorts+1) != 0) {
free(plusMinusStr);
ssSetErrorStatus (S, "mxGetString error in mdlStart");
return;
}
for (i = 0; i < nInputPorts; i++) {
iwork[i] = plusMinusStr[i] == "+'? 1: -1;
}
free(plusMinusStr);
}

#endif /* MDL_PROCESS_PARAMETERS */

mdlProcessParameters is called from md1Start to load the signs string prior to
the start of the simulation loop.

#define MDL_START

#if defined(MDL_START)

static void mdlStart(SimStruct *S)
{

mdlProcessParameters(S);
}
#endif /* MDL_START */

For more details on this example, see matlabroot/simulink/src/
sfun_multiport.c.

Languages Ada,C,M

See Also mdlCheckParameters

8-18

mdIRTW

Purpose
Syntax

Arguments

Description

Languages

See Also

Generate code generation data
void mdlRTW(SimStruct *S)

S
SimStruct representing an S-Function block.

This function is called when the Real-Time Workshop is generating the
model . rtw file. In this method, you can call the following functions that add
fields to the model.rtw file:

® ssWriteRTWParameters

® ssWriteRTWParamSettings
ssWriteRTWWorkVect
ssWriteRTWStr
ssWriteRTWStrParam
ssWriteRTWScalarParam
ssWriteRTWStrVectParam
ssWriteRTWVectParam
ssWriteRTW2dMatParam
ssWriteRTWMxVectParam
ssWriteRTWMx2dMatParam

C

ssSetInputPortFrameData, ssSetOutputPortFrameData, ssSetErrorStatus

8-19

mdISetDefaultPortComplexSignals

Purpose

Syntax

Arguments

Description

Languages

See Also

8-20

Set the numeric types (real, complex, or inherited) of ports whose numeric
types cannot be determined from block connectivity

void mdlSetDefaultPortComplexSignals(SimStruct *S)

S
SimStruct representing an S-Function block.

Simulink invokes this method if the block has ports whose numeric types
cannot be determined from connectivity. (This usually happens when the block
is unconnected or is part of a feedback loop.) This method must set the numeric
types of all ports whose numeric types are not set.

If the block does not implement this method and at least one port is known to
be complex, Simulink sets the unknown ports to COMPLEX_YES; otherwise, it
sets the unknown ports to COMPLEX_NO.

C

ssSetOutputPortComplexSignal, ssSetInputPortComplexSignal

mdISetDefaultPortDataTypes

Purpose

Syntax

Arguments

Description

Languages

See Also

Set the data types of ports whose data types cannot be determined from block
connectivity

void mdlSetDefaultPortDataTypes(SimStruct *S)

S
SimStruct representing an S-Function block.

Simulink invokes this method if the block has ports whose data types cannot
be determined from block connectivity. (This usually happens when the block
is unconnected or is part of a feedback loop.) This method must set the data
types of all ports whose data types are not set.

If the block does not implement this method and Simulink cannot determine
the data types of any of its ports, Simulink sets the data types of all the ports
to double. If the block does not implement this method and Simulink cannot
determine the data types of some, but not all, of its ports, Simulink sets the
unknown ports to the data type of the port whose data type has the largest size.

C

ssSetOutputPortDataType, ssSetInputPortDataType

8-21

mdlSetDefaultPortDimensioninfo

Purpose

Syntax

Arguments

Description

Example

Languages

See Also

8-22

Set the default dimensions of the signals accepted or emitted by an S-function’s
ports

void mdlSetDefaultPortDimensionInfo(SimStruct *S, int_T port)

S
SimStruct representing an S-Function block.

Simulink calls this method during signal dimension propagation when a model
does not supply enough information to determine the dimensionality of signals
that can enter or leave the block represented by S. This method should set the
dimensions of any input and output ports that are dynamically sized to default
values. If S does not implement this method, Simulink sets the dimensions of
dynamically sized ports for which dimension information is unavailable to
scalar, i.e., 1-D signals containing one element.

See matlabroot/simulink/src/sfun_matadd.c for an example of how to use
this function.

C

ssSetOutputPortMatrixDimensions, ssSetErrorStatus

mdISetinputPortComplexSignal

Purpose

Syntax

Arguments

Description

Languages

See Also

Set the numeric types (real, complex, or inherited) of the signals accepted by
an input port

void mdlSetInputPortDataType(SimStruct *S, int T port, CSignal T
csig)

S
SimStruct representing an S-Function block.

port
Index of a port.

csig
Numeric type of signal.

Simulink calls this routine to set the input port signal type. The S-function
must check whether the specified signal type is a valid type for the specified
port. If it is valid, the S-function must set the signal type of the specified input
port. Otherwise, it must report an error using ssSetErrorStatus. The
S-function can also set the signal types of other input and output ports with
unknown signal types. Simulink reports an error if the S-function changes the
signal type of a port whose signal type is known.

If the S-function does not implement this routine, Simulink assumes that the
S-function accepts a real or complex signal and sets the input port signal type
to the specified value.

C

ssSetInputPortComplexSignal, ssSetErrorStatus

8-23

mdISetinputPortDataType

Purpose
Syntax

Arguments

Description

Languages

See Also

8-24

Set the data types of the signals accepted by an input port
void mdlSetInputPortDataType(SimStruct *S, int_T port, DTypeld id)

S
SimStruct representing an S-Function block.

port

Index of a port.
id

Data type ID.

Simulink calls this routine to set the data type of port. The S-function must
check whether the specified data type is a valid data type for the specified port.
If it is a valid data type, it must set the data type of the input port. Otherwise,
it must report an error using ssSetErrorStatus.

The S-function can also set the data types of other input and output ports if
they are unknown. Simulink reports an error if the S-function changes the data
type of a port whose data type has been set.

If the block does not implement this routine, Simulink assumes that the block
accepts any data type and sets the input port data type to the specified value.

C

ssSetInputPortDataType, ssSetErrorStatus

mdISetinputPortDimensioninfo

Purpose

Syntax

Arguments

Description

Set the dimensions of the signals accepted by an input port

void mdlSetInputPortDimensionInfo(SimStruct *S, int_T port,
const DimsInfo_T *dimsInfo)

S
SimStruct representing an S-Function block.

port
Index of a port.

dimsInfo
Structure that specifies the signal dimensions supported by port.

See ssSetInputPortDimensionInfo for a description of this structure.

Simulink calls this method during dimension propagation with candidate
dimensions dimsInfo for port. If the proposed dimensions are acceptable, this
method should go ahead and set the actual port dimensions, using
ssSetInputPortDimensionInfo. If they are unacceptable, this method should
generate an error via ssSetErrorStatus.

Note This method can set the dimensions of any other input or output port
whose dimensions derive from the dimensions of port.

By default, Simulink calls this method only if it can fully determine the
dimensionality of port from the port to which it is connected. If it cannot
completely determine the dimensionality from port connectivity, it invokes
mdlSetDefaultPortDimensionInfo. If an S-function can fully determine the
port dimensionality from partial information, the function should set the
option SS_OPTION_ALLOW_PARTIAL DIMENSIONS CALLinmdlInitializeSizes,
using ssSetOptions. If this option is set, Simulink invokes
md1lSetInputPortDimensionInfo even if it can only partially determine the
dimensionality of the input port from connectivity.

8-25

mdISetinputPortDimensioninfo

Languages C

Example See matlabroot/simulink/src/sfun_matadd.c for an example of how to use
this function.

See Also ssSetErrorStatus

8-26

mdISetinputPortFrameData

Purpose

Syntax

Arguments

Description

Languages

See Also

Set frame data entering an input port

void mdlSetInputPortFrameData(SimStruct *S, int_T port,
Frame_T frameData)

S
SimStruct representing an S-Function block.

port
Index of a port.

frameData
Frame data.

This method is called with the candidate frame setting (FRAME_YES or
FRAME_NO) for an input port. If the proposed setting is acceptable, the method
should go ahead and set the actual frame data setting using
ssSetInputPortFrameData. If the setting is unacceptable, an error should be
generated via ssSetErrorStatus. Note that any other dynamic frame input or
output ports whose frame data settings are implicitly defined by virtue of
knowing the frame data setting of the given port can also have their frame data
settings set via calls to ssSetInputPortFrameData and
ssSetOutputPortFrameData.

C

ssSetInputPortFrameData, ssSetOutputPortFrameData, ssSetErrorStatus

8-27

mdISetinputPortSampleTime

Purpose
Syntax

Arguments

Description

8-28

Set the sample time of an input port that inherits its sample time from the port
to which it is connected

void mdlSetInputPortSampleTime(SimStruct *S, int T port,
real T sampleTime, real T offsetTime)

S
SimStruct representing an S-Function block.

port
Index of a port.

sampleTime
Inherited sample time for port.

offsetTime
Inherited offset time for port.

Simulink invokes this method with the sample time that port inherits from the
port to which it is connected. If the inherited sample time is acceptable, this
method should set the sample time of port to the inherited time, using
ssSetInputPortSampleTime. If the sample time is unacceptable, this method
should generate an error via ssSetErrorStatus. Note that any other inherited
input or output ports whose sample times are implicitly defined by virtue of
knowing the sample time of the given port can also have their sample times set
via calls to ssSetInputPortSampleTime or ssSetOutputPortSampleTime.

When inherited port-based sample times are specified, the sample time is
guaranteed to be one of the following where 0.0 < period < inf and
0.0 <= offset < period.

Sample Time Offset Time
Continuous 0.0 0.0
Discrete period offset

Constant, triggered, and variable step sample times are not propagated to
S-functions with port- based sample times.

Generally md1SetInputPortSampleTime is called once with the input port
sample time. However, there can be cases where this function is called more

mdISetinputPortSampleTime

Languages

See Also

than once. This happens when the simulation engine is converting continuous
sample times to continuous but fixed in minor steps sample times. When this
occurs, the original values of the sample times specified in
mdlInitializeSizes are restored before this method is called again.

The final sample time specified at the port can be different from (but equivalent
to) the sample time specified by this method. This occurs when

® The model uses a fixed-step solver and the port has a continuous but fixed in
minor step sample time. In this case, Simulink converts the sample time to
the fundamental sample time for the model.

¢ Simulink adjusts the sample time to be as numerically sound as possible. For
example, Simulink converts [0.2499999999999, 0] to [0.25, O0].

The S-function can examine the final sample times in
mdlInitializeSampleTimes.

C

ssSetInputPortSampleTime, ssSetOutputPortSampleTime,
mdlInitializeSampleTimes

8-29

mdISetinputPortWidth

Purpose
Syntax

Arguments

Description

Languages

See Also

8-30

Set the width of an input port that accepts 1-D (vector) signals
void mdlSetInputPortWidth(SimStruct *S, int_T port, int_T width)

S
SimStruct representing an S-Function block.

port
Index of a port.

width
Width of signal.

This method is called with the candidate width for a dynamically sized port. If
the proposed width is acceptable, the method should go ahead and set the
actual port width using ssSetInputPortWidth. If the size is unacceptable, an
error should be generated via ssSetErrorStatus. Note that any other
dynamically sized input or output ports whose widths are implicitly defined by
virtue of knowing the width of the given port can also have their widths set via
calls to ssSetInputPortWidth or ssSetOutputPortWidth.

C

ssSetInputPortWidth, ssSetOutputPortWidth, ssSetErrorStatus

mdISetOutputPortComplexSignal

Purpose

Syntax

Arguments

Description

Languages

See Also

Set the numeric types (real, complex, or inherited) of the signals accepted by
an output port

void mdlSetOutputPortDataType(SimStruct *S, int T port, CSignal T
csig)

S
SimStruct representing an S-Function block.

port
Index of a port.

csig
Numeric type of signal.

Simulink calls this routine to set the output port signal type. The S-function
must check whether the specified signal type is a valid type for the specified
port. Ifit is valid, the S-function must set the signal type of the specified output
port. Otherwise, it must report an error, using ssSetErrorStatus. The
S-function can also set the signal types of other input and output ports with
unknown signal types. Simulink reports an error if the S-function changes the
signal type of a port whose signal type is known.

If the S-function does not implement this routine, Simulink assumes that the
S-function accepts a real or complex signal and sets the output port signal type
to the specified value.

C

ssSetOutputPortComplexSignal, ssSetErrorStatus

8-31

mdISetOutputPoriDataType

Purpose
Syntax

Arguments

Description

Languages

See Also

8-32

Set the data type of the signals emitted by an output port
void mdlSetOutputPortDataType(SimStruct *S, int_T port, DTypeld id)

S
SimStruct representing an S-Function block.

port

Index of an output port.
id

Data type ID.

Simulink calls this routine to set the data type of port. The S-function must
check whether the specified data type is a valid data type for the specified port.
If it is a valid data type, it must set the data type of port. Otherwise, it must
report an error, using ssSetErrorStatus.

The S-function can also set the data types of other input and output ports if
their data types have not been set. Simulink reports an error if the S-function
changes the data type of a port whose data type has been set.

If the block does not implement this method, Simulink assumes that the block
accepts any data type and sets the input port data type to the specified value.

C

ssSetOutputPortDataType, ssSetErrorStatus

mdISetOutputPortDimensioninfo

Purpose

Syntax

Arguments

Description

Languages

Example

Set the dimensions of the signals accepted by an output port

void mdlSetOutputPortDimensionInfo(SimStruct *S, int_T port, const
DimsInfo_T *dimsInfo)

S
SimStruct representing an S-Function block or a Simulink model.

port
Index of a port.

dimsInfo
Structure that specifies the signal dimensions supported by port.

See ssSetInputPortDimensionInfo for a description of this structure.

Simulink calls this method with candidate dimensions dimsInfo for port. If
the proposed dimensions are acceptable, this method should go ahead and set
the actual port dimensions, using ssSetOutputPortDimensionInfo. Ifthey are
unacceptable, this method should generate an error via ssSetErrorStatus.

Note This method can set the dimensions of any other input or output port
whose dimensions derive from the dimensions of port.

By default, Simulink calls this method only if it can fully determine the
dimensionality of port from the port to which it is connected. If it cannot
completely determine the dimensionality from port connectivity, it invokes
mdlSetDefaultPortDimensionInfo. If an S-function can fully determine the
port dimensionality from partial information, the function should set the
option SS_OPTION_ALLOW_PARTIAL DIMENSIONS CALLinmdlInitializeSizes,
using ssSetOptions. If this option is set, Simulink invokes
md1lSetOutputPortDimensionInfo even if it can only partially determine the
dimensionality of the input port from connectivity.

C

See matlabroot/simulink/src/sfun_matadd.c for an example of how to use
this function.

8-33

mdISetOutputPortDimensioninfo

See Also ssSetOutputPortDimensionInfo, ssSetErrorStatus

8-34

mdISetOutputPortSampleTime

Purpose

Syntax

Arguments

Description

Languages

See Also

Set the sample time of an output port that inherits its sample time from the
port to which it is connected

void mdlSetOutputPortSampleTime(SimStruct *S, int T port,
real T sampleTime, real T offsetTime)

S
SimStruct representing an S-Function block.

port
Index of a port.

sampleTime
Inherited sample time for port.

offsetTime
Inherited offset time for port.

Simulink calls this method with the sample time that port inherits from the
port to which it is connected. If the inherited sample time is acceptable, this
method should set the sample time of port to the inherited sample time, using
ssSetOutputPortSampleTime. If the inherited sample time is unacceptable,
this method should generate an error via ssSetErrorStatus. Note that this
method can set the sample time of any other input or output port whose sample
time derives from the sample time of port, using ssSetInputPortSampleTime
or ssSetOutputPortSampleTime.

Normally, sample times are propagated forward; however, if sources feeding
this block have inherited sample times, Simulink might choose to
back-propagate known sample times to this block. When back-propagating
sample times, we call this method in succession for all inherited output port
signals.

See md1SetInputPortSampleTime for more information about when this
method is called.

C

ssSetOutputPortSampleTime, ssSetErrorStatus,
ssSetInputPortSampleTime, ssSetOutputPortSampleTime,
mdlSetInputPortSampleTime

8-35

mdISetOutputPortWidth

Purpose
Syntax

Arguments

Description

Languages

See Also

8-36

Set the width of an output port that outputs 1-D (vector) signals
void mdlSetOutputPortWidth(SimStruct *S, int_T port, int_T width)

S
SimStruct representing an S-Function block.

port
Index of a port.

width
Width of signal.

This method is called with the candidate width for a dynamically sized port. If
the proposed width is acceptable, the method should go ahead and set the
actual port width, using ssSetOutputPortWidth. Ifthe size is unacceptable, an
error should be generated via ssSetErrorStatus. Note that any other
dynamically sized input or output ports whose widths are implicitly defined by
virtue of knowing the width of the given port can also have their widths set via
calls to ssSetInputPortWidth or ssSetOutputPortWidth.

C

ssSetInputPortWidth, ssSetOutputPortWidth, ssSetErrorStatus

mdISetWorkWidths

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify the sizes of the work vectors and create the run-time parameters
required by this S-function

void mdlSetWorkWidths (SimStruct *S)

S
SimStruct representing an S-Function block.

Simulink calls this optional method to enable this S-function to set the sizes of
state and work vectors that it needs to store global data and to create run-time
parameters (see “Run-Time Parameters” on page 7-6). Simulink invokes this
method after it has determined the input port width, output port width, and
sample times of the S-function. This allows the S-function to size the state and
work vectors based on the number and sizes of inputs and outputs and/or the
number of sample times. This method specifies the state and work vector sizes
via the macros ssGetNumContStates, ssSetNumDiscStates, ssSetNumRWork,
ssSetNumIWork, ssSetNumPWork, ssSetNumModes, and
ssSetNumNonsampledZCs.

The S-function needs to implement this method only if it does not know the
sizes of all the work vectors it requires when Simulink invokes the function’s
mdlInitializeSizes method. If this S-function implements
md1SetWorkWidths, it should initialize the sizes of any work vectors that it
needs to DYNAMICALLY SIZED in mdlInitializeSizes, even for those whose
exact size it knows at that point. The S-function should then specify the actual
size in md1SetWorkWidths.

Ada, C

mdlInitializeSizes

8-37

mdISimStatusChange

Purpose
Syntax

Arguments

Description

Example

Languages

8-38

Respond to a pause or resumption of the simulation of the model that contains
this S-function.

void mdlSimStatusChange(SimStruct *s,
ssSimStatusChangeType simStatus)

S
SimStruct representing an S-Function block.

simStatus
Status of the simulation, either SIM_PAUSE or SIM_CONTINUE

Simulink calls this routine when a simulation of the model containing s pauses
or resumes.

#if defined (MATLAB_MEX_FILE)
#define MDL_SIM_STATUS_CHANGE
static void mdlSimStatusChange (SimStruct *S,
ssSimStatusChangeType simStatus) {
if (simStatus == SIM_PAUSE) {
slPrintf ("Pause has been called! \n");
} else if (simStatus == SIM_CONTINUE) {
slPrintf("Continue has been called! \n");
}

}
#endif

mdIStart

Purpose
Syntax

Arguments

Description

Languages

See Also

Initialize the state vectors of this S-function
void mdlStart(SimStruct *S)

S
SimStruct representing an S-Function block.

Simulink invokes this optional method at the beginning of a simulation. It
should initialize the continuous and discrete states, if any, of this S-Function
block. Use ssGetContStates and/or ssGetDiscStates to get the states. This

method can also perform any other initialization activities that this S-function
requires.

Ada, C

mdlInitializeConditions, ssGetContStates, ssGetDiscStates

8-39

mdITerminate

Purpose
Syntax

Arguments

Description

Languages

Example

8-40

Perform any actions required at termination of the simulation
void mdlTerminate (SimStruct *S)

S
SimStruct representing an S-Function block.

This method should perform any actions, such as freeing memory, that must be
performed at the end of simulation or when an S-Function block is destroyed
(e.g., when it is deleted from a model). The option

SS_OPTION CALL_TERMINATE_ON EXIT (see ssSetOptions)determines whether
Simulink invokes this method. If this option is not set, Simulink invokes
mdlTerminate at the end of simulation only if the md1Start method of at least
one block in the model has executed during simulation. If this option is set,
Simulink always invokes the md1Terminate method at the end of a simulation
run and whenever it destroys a block.

Ada,C,M

Suppose your S-function allocates blocks of memory in md1Start and saves
pointers to the blocks in a PWork vector. The following code fragment would free
this memory.

{
int i;
for (i = 0; i<ssGetNumPWork(S); i++) {
if (ssGetPWorkValue(S,i) != NULL) {
free(ssGetPWorkValue(S,1i));
}
}
}

mdlUpdate

Purpose
Syntax

Arguments

Description

Example
Languages

See Also

Update a block’s states
void mdlUpdate(SimStruct *S, int_T tid)

S

SimStruct representing an S-Function block.
tid

Task ID.

Simulink invokes this optional method at each major simulation time step. The
method should compute the S-function’s states at the current time step and

store the states in the S-function’s state vector. The method can also perform
any other tasks that the S-function needs to perform at each major time step.

Use this code if your S-function has one or more discrete states or does not have
direct feedthrough.

The reason for this is that most S-functions that do not have discrete states but
do have direct feedthrough do not have update functions. Therefore, Simulink
is able to eliminate the need for the extra call in these circumstances.

If your S-function needs to have its mdlUpdate routine called and it does not
satisfy either of the above two conditions, specify that it has a discrete state,
using the ssSetNumDiscStates macro in the mdlInitializeSizes function.

The tid (task ID) argument specifies the task running when the md10utputs
routine is invoked. You can use this argument in the md1lUpdate routine of a
multirate S-Function block to encapsulate task-specific blocks of code (see
“Multirate S-Function Blocks” on page 7-25).

For an example, see matlabroot/simulink/src/dsfunc.c.

Ada, C,M

mdlDerivatives, ssGetContStates, ssGetDiscStates

8-41

mdlZeroCrossings

Purpose
Syntax

Arguments

Description

Example
Languages

See Also

8-42

Update zero-crossing vector
void mdlZeroCrossings(SimStruct *S)

S
SimStruct representing an S-Function block.

An S-function needs to provide this optional method only if it does zero-crossing
detection. This method should update the S-function’s zero-crossing vector,
using ssGetNonsampledZCs.

You can use the optional md1ZeroCrossings routine when your S-function has
registered the CONTINUOUS SAMPLE_TIME and has nonsampled zero crossings
(ssGetNumNonsampledZCs(S) > 0). The mdlZeroCrossings routine is used to
provide Simulink with signals that are to be tracked for zero crossings. These
are typically

® Continuous signals entering the S-function

¢ Internally generated signals that cross zero when a discontinuity would
normally occur in md10utputs

Thus, the zero-crossing signals are used to locate the discontinuities and end
the current time step at the point of the zero crossing. To provide Simulink with
zero-crossing signals, md1ZeroCrossings updates the ssGetNonsampleZCs(S)
vector.

See matlabroot/simulink/src/sfun_zc.c.

C

mdlInitializeSizes, ssGetNonsampledZCs

SimStruct Functions

The following sections describe SimStruct macros and functions.

Introduction (p. 9-2) Overview of SimStruct macros and functions.

SimStruct Macros and Functions SimStruct functions listed by usage.
Listed by Usage (p. 9-3)

Function Reference (p. 9-22) Descriptions of the SimStruct macros and functions.

9 SimStruct Functions

9-2

Introduction

Simulink provides a set of functions for accessing the fields of an S-function’s
simulation data structure (SimStruct). S-function callback methods use these
functions to store and retrieve information about an S-function.

This reference describes the syntax and usage of each SimStruct or function.
The descriptions appear alphabetically by name to facilitate location of a
particular function. This section also provides listings of functions by usage to
speed location of macros and functions for specific purposes, such as
implementing data type support.

Language Support

Some SimStruct functions are available only in some of the languages
supported by Simulink. The reference page for each SimStruct macro or
function lists the languages in which it is available. If the SimStruct function
is available in C, the reference page gives its C syntax. Otherwise, it gives its
syntax in the language in which it is available.

Note Most SimStruct functions available in C are implemented as C macros.

The SimStruct

The file matlabroot/simulink/include/simstruc.h is a C language header
file that defines the Simulink data structure and the SimStruct access macros.
It encapsulates all the data relating to the model or S-function, including block
parameters and outputs.

There is one SimStruct data structure allocated for the Simulink model. Each
S-function in the model has its own SimStruct associated with it. The
organization of these SimStructs is much like a directory tree. The SimStruct
associated with the model is the root SimStruct. The SimStructs associated
with the S-functions are the child SimStructs.

SimStruct Macros and Functions Listed by Usage

SimStruct Macros and Functions Listed by Usage

This section groups SimStruct macros by usage.

Miscellaneous

Macro

Description

ssCallExternalModeFcn

ssGetModelName

ssGetParentSS

ssGetPath

ssGetRootSS
ssGetUserData

ssSetExternalModeFcn

ssSetOptions

ssSetPlacementGroup

ssSetUserData

Invoke the external mode function for an
S-function.

Get the name of an S-Function block or
model containing the S-function.

Get the parent of an S-function.

Get the path of an S-function or the model
containing the S-function.

Return the root (model) SimStruct.
Access user data.

Specify the external mode function for an
S-function.

Set various simulation options.

Specify the execution order of a sink or
source S-function.

Specify user data.

Error Handling and Status

Macro Description
ssGetErrorStatus Get a string that identifies the last error.
ssPrintf Print a variable-content msg.

9-3

9 SimStruct Functions

Macro Description
ssSetErrorStatus Report errors.
ssWarning Display a warning message.
1/0 Port
Macro Description
ssGetInputPortBufferDstPort Determine the output port that is
overwriting an input port’s memory
buffer.
ssGetInputPortComplexSignal Get the numeric type (complex or

real) of an input port.

ssGetInputPortConnected Determine whether an S-Function
block port is connected to a
nonvirtual block.

ssGetInputPortDataType Get the data type of an input port.

ssGetInputPortDimensions Get the dimensions of the signal
accepted by an input port.

ssGetInputPortDirectFeedThrough Determine whether an input port has
direct feedthrough.

ssGetInputPortFrameData Determine whether a port accepts
signal frames.

ssGetInputPortNumDimensions Get the dimensionality of the signals
accepted by an input port.

ssGetInputPortOffsetTime Determine the offset time of an input
port.
ssGetInputPortOverWritable Determine whether an input port can

be overwritten.

9-4

SimStruct Macros and Functions Listed by Usage

Macro

Description

ssGetInputPortRealSignal

ssGetInputPortRealSignalPtrs

ssGetInputPortRequiredContiguous

ssGetInputPortSampleTime

ssGetInputPortSampleTimeIndex

ssGetInputPortSignal

ssGetInputPortSignalAddress

ssGetInputPortSignalPtrs

ssGetInputPortWidth

ssGetNumInputPorts

ssGetNumOutputPorts

ssGetOutputPortBeingMerged

ssGetOutputPortComplexSignal

ssGetOutputPortDataType

Get the address of a real, contiguous
signal entering an input port.

Access the signal elements connected
to an input port.

Determine whether the signal
elements entering a port must be
contiguous.

Determine the sample time of an
input port.

Get the sample time index of an input
port.

Get the address of a contiguous signal
entering an input port.

Get the address of an input port’s
signal (Ada only).

Get pointers to input signal elements
of type other than double.

Determine the width of an input port.

Determine how many input ports a
block has.

Can be used in any routine (except
mdlInitializeSizes) to determine
how many output ports you have set.

Determine whether the output of this
block is connected to a Merge block.

Get the numeric type (complex or
real) of an output port.

Get the data type of an output port.

9-5

9 SimStruct Functions

9-6

Macro

Description

ssGetOutputPortDimensions

ssGetOutputPortFrameData

ssGetOutputPortNumDimensions

ssGetOutputPortOffsetTime

ssGetOutputPortRealSignal

ssGetOutputPortSampleTime

ssGetOutputPortSignal

ssGetOutputPortSignalAddress

ssGetOutputPortWidth

ssSetInputPortComplexSignal

ssSetInputPortDataType

ssSetInputPortDimensionInfo

ssSetInputPortDirectFeedThrough

ssSetInputPortFrameData

Get the dimensions of the signal
leaving an output port.

Determine whether a port outputs
signal frames.

Get the number of dimensions of an
output port.

Determine the offset time of an
output port.

Access the elements of a signal
connected to an output port.

Determine the sample time of an
output port.

Get the vector of signal elements
emitted by an output port.

Get the address of an output port’s
signal (Ada only).

Determine the width of an output
port.

Set the numeric type (real or
complex) of an input port.

Set the data type of an input port.

Set the dimensionality of an input
port.

Specify that an input port is a
direct-feedthrough port.

Specify whether a port accepts signal
frames.

SimStruct Macros and Functions Listed by Usage

Macro

Description

ssSetInputPortMatrixDimensions

ssSetInputPortOffsetTime

ssSetInputPortOverWritable

ssSetInputPortRequiredContiguous

ssSetInputPortSampleTime

ssSetInputPortVectorDimension

ssSetInputPortWidth

ssSetNumInputPorts

ssSetNumOutputPorts

ssSetOneBasedIndexInputPort

ssSetOneBasedIndexOutputPort

ssSetOutputPortComplexSignal

ssSetOutputPortDataType

ssSetOutputPortDimensionInfo

Specify dimension information for an
input port that accepts matrix
signals.

Specify the sample time offset for an
input port.

Specify whether an input port is
overwritable by an output port.

Specify that the signal elements
entering a port must be contiguous.

Set the sample time of an input port.

Specify dimension information for an

input port that accepts vector signals.

Set the width of an input port.

Set the number of input ports on an
S-Function block.

Specify the number of output ports on
an S-Function block.

Specify that an input port expects
one-based indices.

Specify that an output port emits
one-based indices.

Specify the numeric type (real or
complex) of this port.

Specify the data type of an output
port.

Specify the dimensionality of an
output port.

9-7

9 SimStruct Functions

9-8

Macro

Description

ssSetOutputPortFrameData

ssSetOutputPortMatrixDimensions

ssSetOutputPortOffsetTime

ssSetOutputPortSampleTime

ssSetOutputPortVectorDimension

ssSetOutputPortWidth

ssSetOutputPortMatrixDimensions

ssSetOutputPortVectorDimension

ssSetVectorMode

ssSetZeroBasedIndexInputPort

ssSetZeroBasedIndexOutputPort

Specify whether a port outputs
framed data.

Specify dimension information for an
output port that emits matrix signals.

Specify the sample time offset value
of an output port.

Specify the sample time of an output
port.

Specify dimension information for an
output port that emits vector signals.

Specify the width of a 1-D (vector)
output port.

Specify the dimensions of a 2-D
(matrix) signal.

Specify the dimension of a 1-2
(vector) signal.

Specify the vector mode that an
S-function supports.

Specify that an input port expects
zero-based indices.

Specify that an output port emits
zero-based indices.

SimStruct Macros and Functions Listed by Usage

Dialog Box Parameters

These macros enable an S-function to access and set the tunability of
parameters that a user specifies in the S-function’s dialog box.

Macro

Description

ssGetDTypeIdFromMxArray

ssGetNumParameters

ssGetNumSFcnParams

ssGetSFcnParam

ssSetNumSFcnParams

ssSetParameterName

ssSetParameterTunable

ssGetSFcnParamsCount

ssSetSFcnParamNotTunable

ssSetSFcnParamTunable

Return the Simulink data type of a dialog
parameter.

Get the number of parameters that this
block has (Ada only).

Get the number of parameters that an
S-function expects.

Get a parameter entered by a user in the
S-Function block dialog box.

Set the number of parameters that an
S-function expects.

Set the name of a parameter (Ada only).

Set the tunability of a parameter (Ada
only).

Get the actual number of parameters
specified by the user.

Obsolete.

Specify the tunability of a dialog box
parameter.

9-9

9 SimStruct Functions

9-10

Run-Time Parameters

These macros allow you to create, update, and access run-time parameters
corresponding to a block’s dialog parameters.

Macro

Description

ssRegDlgParamAsRunTimePa
ram

ssUpdateDlgParamAsRunTim
eParam

ssGetNumRunTimeParams

ssGetRunTimeParamInfo

ssRegAllTunableParamsAsR

unTimeParams

ssSetNumRunTimeParams

ssSetRunTimeParamInfo

ssUpdateAllTunableParams
AsRunTimeParams

ssUpdateRunTimeParambData

ssUpdateRunTimeParamInfo

Register a run-time parameter.

Update a run-time parameter.

Get the number of run-time parameters
created by this S-function.

Get the attributes of a specified run-time
parameter.

Register all tunable dialog parameters as
run-time parameters.

Specify the number of run-time parameters
to be created by this S-function.

Specify the attributes of a specified
run-time parameter.

Update all run-time parameters
corresponding to tunable dialog
parameters.

Update the value of a specified run-time
parameter.

Update the attributes of a specified
run-time parameter from the attributes of
the corresponding dialog parameters.

SimStruct Macros and Functions Listed by Usage

Sample Time

Macro

Description

ssGetInputPortSampleTime

ssGetInputPortSampleTime
Index

ssGetSampleTimeOffset

ssGetSampleTimePeriod

ssGetTNext

ssGetNumSampleTimes
ssGetOutputPortSampleTim
e

ssGetPortBasedSampleTime
BlockIsTriggered

ssIsContinuousTask

ssIsSampleHit

ssIsSpecialSampleHit

ssSampleAndOffsetAreTrig
gered

Determine the sample time of an input
port.

Get the sample time index of an input port.

Get the offset of the current sample time
(Ada only).

Get the period of the current sample time
(Ada only).

Get the time of the next sample hit in a
discrete S-function with a variable sample
time.

Get the number of sample times an
S-function has.

Determine the sample time of an output
port.

Determine whether a block that uses
port-based sample times resides in a
triggered subsystem.

Determine whether a specified rate is the
continuous rate.

Determine the sample rate at which an
S-function is operating.

Determine whether the current sample
time hits two specified rates.

Determine whether a sample time and
offset value pair indicate a triggered
sample time.

9-11

9 SimStruct Functions

Macro Description

ssSetInputPortSampleTime Set the sample time of an input port.

ssSetModelReferenceSampl Specify whether use of an S-function in a

eTimeInheritanceRule submodel prevents the submodel from
inheriting its sample time from the parent
model.

ssSetNumSampleTimes Set the number of sample times an

S-function has.

ssSetOffsetTime Specify the offset of a sample time.
ssSetSampleTime Specify a sample time for an S-function.
ssSetTNext Specify the time of the next sample hit in

an S-function.

9-12

SimStruct Macros and Functions Listed by Usage

State and Work Vector

Macro

Description

ssGetContStateAddress

ssGetContStates
ssGetDiscStates
ssGetDWork

ssGetDWorkComplexSignal

ssGetDWorkDataType

ssGetDWorkName

ssGetDWorkUsedAsDState

ssGetDWorkWidth

ssGetdX

ssGetIWork

ssGetIWorkValue

ssGetModeVector
ssGetModeVectorValue

ssGetNonsampledZCs

Get the address of a block’s continuous
state vector.

Get an S-function’s continuous states.
Get an S-function’s discrete states.
Get a DWork vector.

Determine whether the elements of a data
type work vector are real or complex
numbers.

Get the data type of a data type work
vector.

Get the name of a data type work vector.

Determine whether a data type work vector
is used as a discrete state vector.

Get the size of a data type work vector.

Get the derivatives of the continuous states
of an S-function.

Get an S-function’s integer-valued (int_T)
work vector.

Get a value from a block’s integer work
vector.

Get an S-function’s mode work vector.
Get an element of a block’s mode vector.

Get an S-function’s zero-crossing signals
vector.

9-13

9 SimStruct Functions

9-14

Macro Description

ssGetNumContStates Determine the number of continuous states
that an S-function has.

ssGetNumDiscStates Determine the number of discrete states
that an S-function has.

ssGetNumDWork Get the number of data type work vectors
used by a block.

ssGetNumIWork Get the size of an S-function’s integer work
vector.

ssGetNumModes Determine the size of an S-function’s mode

ssGetNumNonsampledZCs

ssGetNumPWork

ssGetNumRWork

ssGetPWork

ssGetPWorkValue

ssGetRealDiscStates

ssGetRWork

ssGetRWorkValue

ssSetDWorkComplexSignal

vector.

Determine the number of nonsampled zero
crossings that an S-function detects.

Determine the size of an S-function’s
pointer work vector.

Determine the size of an S-function’s
real-valued (real_T) work vector.

Get an S-function’s pointer (void *) work
vector.

Get a pointer from a pointer work vector.

Get the real (real_T) values of an
S-function’s discrete state vector.

Get an S-function’s real-valued (real_T)
work vector.

Get an element of an S-function’s
real-valued work vector.

Specify whether the elements of a data type
work vector are real or complex.

SimStruct Macros and Functions Listed by Usage

Macro Description

ssSetDWorkDataType Specify the data type of a data type work
vector.

ssSetDWorkName Specify the name of a data type work

ssSetDWorkUsedAsDState

ssSetDWorkWidth

ssSetIWorkValue

ssSetModeVectorValue

ssSetNumContStates

ssSetNumDiscStates

ssSetNumDWork

ssSetNumIWork

ssSetNumModes

ssSetNumNonsampledZCs

ssSetNumPWork

ssSetNumRWork

vector.

Specify that a data type work vector is used
as a discrete state vector.

Specify the width of a data type work
vector.

Set an element of a block’s integer work
vector.

Set an element of a block’s mode vector.

Specify the number of continuous states
that an S-function has.

Specify the number of discrete states that
an S-function has.

Specify the number of data type work
vectors used by a block.

Specify the size of an S-function’s integer
(int_T) work vector.

Specify the number of operating modes that
an S-function has.

Specify the number of zero crossings that
an S-function detects.

Specify the size of an S-function’s pointer
(void *) work vector.

Specify the size of an S-function’s real
(real_T) work vector.

9-15

9 SimStruct Functions

9-16

Macro Description

ssSetPWorkValue Set an element of a block’s pointer work
vector.

ssSetRWorkValue Set an element of a block’s floating-point

work vector.

SimStruct Macros and Functions Listed by Usage

Simulation Information

Macro

Description

ssGetAbsTol

ssGetBlockReduction

ssGetErrorStatus

ssGetInlineParameters

ssGetSimMode

ssGetSolverMode

ssGetSolverName

ssGetStateAbsTol

ssGetStopRequested

ssGetT
ssGetTaskTime

ssGetTFinal

Get the absolute tolerances used by a
model’s variable-step solver.

Determine whether a block has requested
block reduction before the simulation has
begun and whether it has actually been
reduced after the simulation loop has
begun.

Get a string that identifies the last error.

Determine whether the user has set the
inline parameters option for the model
containing this S-function.

Determine the context in which an
S-function is being invoked: normal
simulation, external-mode simulation,
model editor, etc.

Get the solver mode being used to solve the
S-function.

Get the name of the solver being used for
the simulation.

Get the absolute tolerance used by the
model’s variable-step solver for a specified
state.

Get the value of the simulation stop
requested flag.

Get the current base simulation time.
Get the current time for a task.

Get the end time of the current simulation.

9-17

9 SimStruct Functions

Macro Description

ssGetTNext Get the time of the next sample hit.

ssGetTStart Get the start time of the current
simulation.

ssIsFirstInitCond Determine whether this is the first call to

mdlInitializeConditions.

ssIsMajorTimeStep Determine whether the current time step is
a major time step.

ssIsMinorTimeStep Determine whether the current time step is
a minor time step.

ssIsVariableStepSolver Determine whether the current solver is a
variable-step solver.

ssSetBlockReduction Request that Simulink attempt to reduce a
block.

ssSetSolverNeedsReset Ask Simulink to reset the solver.

ssSetStopRequested Ask Simulink to terminate the simulation

at the end of the current time step.

9-18

SimStruct Macros and Functions Listed by Usage

Function Call

Macro

Description

ssCallSystemWithTid

ssDisableSystemWithTid

ssEnableSystemWithTid

ssSetCallSystemOutput

ssSetExplicitFCSSCtrl

Execute a function-call subsystem
connected to an S-function.

Disable a function-call subsystem
connected to this S-function block.

Enable a function-call subsystem connected
to this S-function.

Specify that an output port element issues
a function call.

Specify whether an S-function explicitly
enables and disables the function-call
subsystem that it calls.

Data Type
Macro Description
ssGetDataTypeld Get the ID for a data type.
ssGetDataTypeName Get a data type’s name.
ssGetDataTypeSize Get a data type’s size.
ssGetDataTypeZero Get the zero representation of a data type.

ssGetInputPortDataType

ssGetNumDataTypes

ssGetOutputPortDataType

ssGetOutputPortSignal

Get the data type of an input port.

Get the number of data types defined by an
S-function or the model.

Get the data type of an output port.

Get an output signal of any type except
double.

9-19

9 SimStruct Functions

9-20

Macro Description

ssRegisterDataType Register a data type.
ssSetDataTypeSize Specify the size of a data type.
ssSetDataTypeZero Specify the zero representation of a data

ssSetInputPortDataType

type.

Specify the data type of signals accepted by
an input port.

Real-Time Workshop

Macro

Description

ssGetDWorkRTWIdentifier

ssGetDWorkRTWStorageClas
S

ssGetDWorkRTWTypeQualifi
er

ssGetDWorkRTWTypeQualifi
er

ssGetPlacementGroup

ssSetDWorkRTWIdentifier

Get the identifier used to declare a DWork
vector in code generated from the
associated S-function.

Get the storage class of a DWork vector in
code generated from the associated
S-function.

Get the C type qualifier (e.g., const) used to
declare a DWork vector in code generated
from the associated S-function.

Set the identifier used to declare a DWork
vector in code generated from the
associated S-function.

Get the name of the placement group of a
block.

Set the storage class of a DWork vector in
code generated from the associated
S-function.

SimStruct Macros and Functions Listed by Usage

Macro

Description

ssSetDWorkRTWStorageClas
]

ssSetPlacementGroup

ssWriteRTW2dMatParam

ssWriteRTWMx2dMatParam

ssWriteRTWMxVectParam

ssWriteRTWParameters

ssWriteRTWParamSettings

ssWriteRTWScalarParam

ssWriteRTWStr

ssWriteRTWStrParam

ssWriteRTWStrVectParam

ssWriteRTWVectParam

ssWriteRTWWorkVect

Set the C type qualifier (e.g., const) used to
declare a DWork vector in code generated
from the associated S-function.

Specify the name of the placement group of
a block.

Write a Simulink matrix parameter to the
S-function’s model. rtw file.

Write a MATLAB matrix parameter to the
S-function’s model. rtw file.

Write a MATLAB vector parameter to the
S-function’s model. rtw file.

Write tunable parameters to the
S-function’s model. rtw file.

Write settings for the S-function’s
parameters to the model. rtw file.

Write a scalar parameter to the S-function’s
model.rtw file.

Write a string to the S-function’s model. rtw
file.

Write a string parameter to the S-function’s
model.rtw file.

Write a string vector parameter to the
S-function’s model. rtw file.

Write a Simulink vector parameter to the
S-function’s model. rtw file.

Write the S-function’s work vectors to the
model.rtw file.

9-21

9 SimStruct Functions

Function Reference

This section contains descriptions of each SimStruct function or macro.

9-22

FssCallExternalModeFcn

Purpose
Syntax

Arguments

Description
Languages

See Also

Invoke the external mode function for an S-function
void ssCallExternalModeFcn(SimStruct *S, SFunExtModeFcn *fcn)

S
SimStruct representing an S-Function block or a Simulink model.

fcn
External mode function.

Specifies the external mode function for S.

C

ssSetExternalModeFcn

9-23

ssCallSystemWithTid

Purpose
Syntax

Arguments

Description

Languages

See Also

9-24

Call the update and outputs methods of a function-call subsystem.
int_T ssCallSystemWithTid(SimStruct *S, port_index, tid)

S
SimStruct representing an S-Function block.

element
Index of the output port element corresponding to the function-call subsystem.

tid
Task ID.

Use in md10utputs to call the update and outputs methods of a function-call
subsystem connected to the S-function. The invoking syntax is

if (!ssCallSystemWithTid(S, element, tid)) {
/* Error occurred which will be reported by Simulink */
return;

}

C

ssSetCallSystemOutput, ssDisableSystemWithTid,
ssEnableSystemWithTid

ssDisableSystemWithTid

Purpose
Syntax

Arguments

Description

Languages

See Also

Disable a function-call subsystem connected to this S-function block.
ssDisableSystemWithTid (SimStruct *S, element, tid)

S
SimStruct representing an S-Function block.

element
Index of the output port element corresponding to the function-call subsystem.

Use in md10utputs to disable a function-call subsystem connected to the
S-function. The invoking syntax is

if (!ssDisableSystemWithTid(S, element, tid)) {
/* Error occurred which will be reported by Simulink */
return;

}

Note Before invoking this function, the S-function must have specified that it
explicitly enables and disables the function-call subsystems that it calls. See
ssSetExplicitFCSSCtrl for more information. If the S-function has not done
this, invoking ssEnableSystemWithTid results in an error.

This function resets the outputs of any Outport blocks in the function-call
subsystem whose Outputs when disabled parameter is set to reset.

C

ssCallSystemWithTid, ssEnableSystemWithTid, ssSetExplicitFCSSCtrl

9-25

ssEnableSystemWithTid

Purpose
Syntax

Arguments

Description

Languages

9-26

Enable a function-call subsystem connected to this S-function.
ssEnableSystemWithTid (SimStruct *S, element, tid)

S
SimStruct representing an S-Function block.

element
Index of the output port element corresponding to the function-call subsystem.

Use in md10utputs to enable a function-call subsystem connected to the
S-function. The invoking syntax is

if (!ssEnableSystemWithTid(S, element, tid)) {
/* Error occurred which will be reported by Simulink */
return;

}

Note Before invoking this function, the S-function must have specified that it
explicitly enables and disables the function-call subsystems that it calls. See
ssSetExplicitFCSSCtrl for more information. If the S-function has not done
this, invoking ssEnableSystemWithTid results in an error.

The effect of invoking this function depends on the setting of the States when
enabling parameter of the function-call subsystem’s Trigger block. If the
parameter is set to reset, this function invokes the function-call subsystem’s
initialize method and then its enable method. The subsystem’s initialize and
enable methods in turn invoke the initialize and enable methods of any blocks
in the subsystem that have these methods. Initialize methods reset the states
of blocks that have states, e.g., Integrator blocks, to their initial values. Thus,
if the Trigger block’s States when enabling option is set to reset, invoking
this function effectively resets the states of the function-call subsystem. If the
Trigger block’s States when enabling option is set to held, this function
simply invokes the subsystem’s enable method, without invoking its initialize
method and hence without resetting its states.

C

ssEnableSystemWithTid
|

See Also ssCallSystemWithTid, ssDisableSystemWithTid, ssSetExplicitFCSSCtrl

9-27

ssGetAbsTol

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

9-28

Get the absolute tolerances used by a model’s variable-step solver
real_T *ssGetAbsTol(SimStruct *S)

S
SimStruct representing an S-Function block.

Use in md1Start to get the absolute tolerances used by the variable-step solver
for this simulation. Returns a pointer to an array that contains the tolerance
for each continuous state.

Note Absolute tolerances are not allocated for fixed-step solvers. Therefore,
you should not invoke this macro until you have verified that the simulation is
using a variable-step solver, using ssIsVariableStepSolver.

C, C++

int isVarSolver = ssIsVariableStepSolver(S);
if (isVarSolver) {

real_T *absTol = ssGetAbsTol(S);

int nCStates = ssGetNumContStates(S);

absTol[0] = whatever_value;

absTol[nCStates-1] = whatever_value;

ssGetStateAbsTol, ssIsVariableStepSolver

ssGetBlockReduction

Purpose

Syntax

Arguments

Description

Languages

See Also

Determine whether a block has requested block reduction before the
simulation has begun and whether it has actually been reduced after the
simulation loop has begun

unsigned int T ssGetBlockReduction(SimStruct *S)

S
SimStruct representing an S-Function block.

The result of this function depends on when it is invoked. When invoked before
the simulation loop has started, i.e., in md1SetWorkWidths or earlier, this macro
returns true if the block has previously requested that it be reduced. When
invoked after the simulation loop has begun, this macro returns true if the
block has actually been reduced, i.e., eliminated from the list of blocks to be
executed during the simulation loop.

Note If a block has been reduced, the only callback method invoked for the
block after the simulation loop has begun is the block’s md1Terminate method.
Further, Simulink invokes the md1Terminate method only if the block has set
its SS_OPTION CALL_TERMINATE_AT EXIT option, using ssSetOptions. Thus, if
your block needs to determine whether it has actually been reduced, it must
set the SS_OPTION CALL TERMINATE_AT_EXIT option before the simulation loop
has begun and invoke ssGetBlockReduction in its md1Terminate method.

C

ssSetBlockReduction

9-29

ssGetContStateAddress

Purpose
Ada Syntax

Arguments

Description

Languages

See Also

9-30

Get the address of a block’s continuous state vector
ssGetContStateAddress(S : in SimStruct) return System.Address

S
SimStruct representing an S-Function block.

Can be used in the simulation loop, md1lInitializeConditions, or md1Start
routines to get the address of the S-function’s continuous state vector. This
vector has length ssGetNumContStates(S). Typically, this vector is initialized
in mdlInitializeConditions and used in md10utputs.

Ada

ssGetNumContStates, ssGetRealDiscStates, ssGetdX,
mdlInitializeConditions, md1lStart

ssGetContStates

Purpose
Syntax

Arguments

Description

Languages

See Also

Get a block’s continuous states
real_T *ssGetContStates(SimStruct *S)

S
SimStruct representing an S-Function block.

Can be used in the simulation loop, md1lInitializeConditions, or md1Start
routines to get the real T continuous state vector. This vector has length
ssGetNumContStates(S). Typically, this vector is initialized in
mdlInitializeConditions and used in md1Outputs.

C

ssGetNumContStates, ssGetRealDiscStates, ssGetdX,
mdlInitializeConditions, md1lStart

9-31

ssGetDataTypeld

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

9-32

Get the ID of a data type

DTypeID ssGetDataTypeId(SimStruct *S, char *name)
S

SimStruct representing an S-Function block.

name

Name of a data type.

Returns the ID of the data type specified by name if name is a registered type
name. Otherwise, this macro returns INVALID DTYPE_IDL and reports an error.
Because this macro reports any error that occurs, you do not need to use
ssSetErrorStatus to report the error.

C

The following example gets the ID of the data type named Color.

int T id = ssGetDataTypeId (S, "Color");
if(id == INVALID_DTYPE_ID) return;

ssRegisterDataType

ssGetDataTypeName

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

Get the name of a data type
char *ssGetDataTypeName(SimStruct *S, DTypeId id)

S
SimStruct representing an S-Function block.
id
ID of data type.
Returns the name of the data type specified by id, if id is valid. Otherwise, this
macro returns NULL and reports an error. Because this macro reports any error
that occurs, you do not need to use ssSetErrorStatus to report the error.
The following example gets the name of a custom data type.

const char *dtypeName = ssGetDataName (S, id);

if (dtypeName == NULL) return;
C

ssRegisterDataType

9-33

ssGetDataTypeSize

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

9-34

Get the size of a custom data type

ssGetDataTypeSize (SimStruct *S, DTypeId id)

S

SimStruct representing an S-Function block.

id

ID of data type.

Returns the size of the data type specified by id, if id is valid and the data

type’s size has been set. Otherwise, this macro returns INVALID DTYPE_SIZE
and reports an error.

Note Because this macro reports any error that occurs when it is invoked,
you do not need to use ssSetErrorStatus to report the error.

C

The following example gets the size of the int16 data type.

int T size = ssGetDataTypeSize(S, SS_INT16);
if(size == INVALID DTYPE_SIZE) return;

ssSetDataTypeSize

ssGetDataTypeZero

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

Get the zero representation of a data type
void* ssGetDataTypeZero(SimStruct *S, DTypeld id)

S

SimStruct representing an S-Function block.

id

ID of data type.

Returns a pointer to the zero representation of the data type specified by id, if
idis valid and the data type’s size has been set. Otherwise, this macro returns

NULL and reports an error. Because this macro reports any error that occurs,
you do not need to use ssSetErrorStatus to report the error.

C

The following example gets the zero representation of a custom data type.

const void *myZero = ssGetDataTypeZero(S, id);
if (myZero == NULL) return;

ssRegisterDataType, ssSetDataTypeSize, ssSetDataTypeZero

9-35

ssGetDiscStates

Purpose
Syntax

Arguments

Description

Languages

See Also

9-36

Get a block’s discrete states
real_T *ssGetDiscStates(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns a block’s discrete state vector has an array of real_T elements of
length ssGetNumDiscStates(S). Typically, the state vector is initialized in
mdlInitializeConditions, updated in mdlUpdate, and used in md1Outputs.
You can use this macro in the simulation loop, md1InitializeConditions, or
md1lStart routines.

C

ssGetNumDiscStates, mdlInitializeConditions, mdlUpdate, md1lOutputs,
mdlStart

ssGetDTypeldFromMxArray

Purpose
Syntax

Arguments

Description

Get the data type of an S-function parameter
DTypeld ssGetDTypeIdFromMxArray(const mxArray *m)

m
MATLAB array representing the parameter.

Returns the data type of an S-function parameter represented by a MATLAB
array. This macro returns an enumerated type representing the data type. The
enumerated type DTypelId is defined in simstruc.h. The following table shows
the equivalency of Simulink, MATLAB, and C data types.

Simulink Data Type MATLAB Data Type

DTypeld mxClassID C- Data Type
SS_DOUBLE mxDOUBLE_CLASS real T
SS_SINGLE mxSINGLE_CLASS real32_T
SS_INT8 mxINT8_CLASS ints T
SS_UINTS mxUINT8_CLASS uints T
SS_INT16 mxINT16_CLASS int16 T
SS_UINT16 mXUINT16_CLASS uint16_T
SS_INT32 mxINT32_CLASS int32_T
SS_UINT32 mxUINT32_CLASS uint32_T
SS_BOOLEAN mxUINT8_CLASS+ logical boolean_T

ssGetDTypeIdFromMxArray returns INVALID DTYPE ID if the mxClassId does
not map to any built-in Simulink data type ID. For example, if mxId ==
mxSTRUCT_CLASS, the return value is INVALID DTYPE_ID. Otherwise the return
value is one of the enum values in BuiltInDTypeld. For example, if mxId ==
mxUINT16_CLASS, the return value is SS_UINT16.

9-37

ssGetDTypeldFromMxArray

Note Use ssGetSFcnParam to get the array representing the parameter.

Example See the example in matlabroot/simulink/src/sfun_dtype _param.c to learn
how to use data typed parameters in an S-function.

Languages C

See Also ssGetSFcnParam

9-38

ssGetDWork

Purpose
Syntax

Arguments

Description
Languages

See Also

Get a DWork vector
void *ssGetDWork (SimStruct *S, int_T vector)

S
SimStruct representing an S-Function block.

vector

Index of a data type work vector, where the index is one of 0, 1, 2, ...
ssGetNumbDWork (S).

Returns a pointer to the specified vector.

C, C++

ssSetNumbDWork

9-39

ssGetDWorkComplexSignal

Purpose

Syntax

Arguments

Description

Languages

See Also

9-40

Determine whether the elements of a data type work vector are real or complex
numbers

CSignal T ssGetDWorkComplexSignal(SimStruct *S, int T vector)

S
SimStruct representing an S-Function block.

vector
Index of a data type work vector, where the index is one of 0, 1, 2, ...
ssGetNumbDWork (S).

Returns COMPLEX_YES if the specified vector contains complex numbers;
otherwise, COMPLEX_NO.

C, C++

ssSetDWorkComplexSignal

ssGetDWorkDataType

Purpose
Syntax

Arguments

Description
Languages

See Also

Get the data type of a data type work vector
DTypelId ssGetDWorkDataType(SimStruct *S, int_T vector)

S
SimStruct representing an S-Function block.

vector

Index of a data type work vector, where the index is one of 0, 1, 2, ...
ssGetNumbDWork (S).

Returns the data type of the specified data type work vector.

C, C++

ssSetDWorkDataType

941

ssGetDWorkName

Purpose
Syntax

Arguments

Description
Languages

See Also

9-42

Get the name of a data type work vector
char_T *ssGetDWorkName(SimStruct *S, int_T vector)

S
SimStruct representing an S-Function block.

vector

Index of the work vector, where the index is one of 0, 1, 2, ...

ssGetNumbDWork (S).
Returns the name of the specified data type work vector.
C, C++

ssSetDWorkName

ssGetDWorkRTWIldentifier

Purpose

Syntax

Arguments

Description

Languages

See Also

Get the identifier used to declare a DWork vector in code generated from the
associated S-function

char_T * ssGetDWorkRTWIdentifier (SimStruct* S, int idx)

S
SimStruct representing an S-Function block.

idx
Index of the work vector, where the index is one of 0, 1, 2, ...
ssGetNumbDWork (S).

Returns the identifier used in code generated by the Real-Time Workshop to
declare the DWork vector specified by idx.

C, C++

ssSetDWorkRTWIdentifier

9-43

ssGetDWorkRTWStorageClass

Purpose

Syntax

Arguments

Description

Languages

See Also

9-44

Get the storage class of a DWork vector in code generated from the associated
S-function

ssRTWStorageType ssGetDWorkRTWStorageClass(SimStruct* S, int idx)

S

SimStruct representing an S-Function block.

idx

Index of the work vector, where the index is one of 0, 1, 2, . ..
ssGetNumbDWork (S).

Returns the storage class of the the DWork vector specified by idx. The storage
class is a code-generation attribute that determines how the code generated by
the Real-Time Workshop for this S-function allocates memory for this work
vector (see “Signal Storage Concepts” in the online documentation for the
Real-Time Workshop). The returned storage class specifier is a value of type
ssRTWStorageType:

typedef enum {
SS_RTW_STORAGE_AUTO = 0,
SS_RTW_STORAGE_EXPORTED_GLOBAL,
SS_RTW_STORAGE_IMPORTED_ EXTERN,
SS_RTW_STORAGE_IMPORTED EXTERN_POINTER
} ssRTWStorageType;

C, C++

ssSetDWorkRTWStorageClass

ssGetDWorkRTWTypeQualifier

Purpose

Syntax

Arguments

Description

Languages

See Also

Get the C type qualifier (e.g., const) used to declare a DWork vector in code
generated from the associated S-function

char_T * ssGetDWorkRTWTypeQualifier(SimStruct* S, int idx)

S

SimStruct representing an S-Function block.

idx

Index of the work vector, where the index is one of 0, 1, 2, ...
ssGetNumbDWork (S).

Returns the C type qualifier (e.g., const) used to declare the DWork vector
specified by idx in code generated by the Real-Time Workshop from the
associated S-function.

C, C++

ssSetDWorkRTWTypeQualifier

9-45

ssGetDWorkUsedAsDState

Purpose
Syntax

Arguments

Description

Languages

See Also

9-46

Determine whether a data type work vector is used as a discrete state vector
int_T ssGetDWorkUsedAsDState(SimStruct *S, int_T vector)

S
SimStruct representing an S-Function block.

vector
Index of a data type work vector, where the index is one 0of 0, 1, 2, ...
ssGetNumbDWork (S).

Returns SS_DWORK_USED_AS DSTATE if this vector is used to store a block’s
discrete states.

C, C++

ssSetDWorkUsedAsDState

ssGetDWorkWidth

Purpose
Syntax

Arguments

Description
Languages

See Also

Get the size of a data type work vector
int_T ssGetDWorkWidth(SimStruct *S, int_T vector)

S
SimStruct representing an S-Function block.

vector
Index of a work vector, where the index is one of 0, 1, 2, ... ssGetNumDWork(S).

Returns the number of elements in the specified work vector.
C, C++

ssSetDWorkWidth

9-47

ssGetdX

Purpose
Syntax

Arguments

Description

Languages

See Also

9-48

Get the derivatives of a block’s continuous states
(real_T *) ssGetdX(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns a pointer to an array containing the continuous states of S, which can
be a block or the model. Use ssGetNumContStates(S) to get the length of the

array. Use this macro in md1Derivatives to get the derivatives of a model or

block’s continuous states.

Note The pointer returned by this macro changes as the solver evaluates
different integration stages to compute the integral.

C

ssGetNumContStates, ssGetContStates

ssGetErrorStatus

Purpose
C Syntax
Ada Syntax

Arguments

Description
Languages

See Also

Get a string that identifies the last error
const char_T *ssGetErrorStatus(SimStruct *S)
const char_T *ssGetErrorStatus(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns a string that identifies the last error.
Ada, C

ssSetErrorStatus

9-49

ssGetExplicitFCSSCirl

Purpose

Syntax

Arguments
Description

Languages

See Also

9-50

Determine whether this S-function explicitly enables and disables the
function-call subsystems that it invokes.

unsigned int T ssGetExplicitFCSSCtrl(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns TRUE if S explicitly enables or disables the function-control subsystem
that it invokes.

C

ssSetExplicitFCSSCtrl, ssEnableSystemWithTid, ssDisableSystemWithTid

ssGetinlineParameters

Purpose

Syntax

Arguments

Description

Languages

Determine whether the user has set the inline parameters option for the model
containing this S-function

boolean T ssGetInlineParameters(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns TRUE if the user has checked the Inline parameters option on the

Optimization pane of the Configuration Parameters dialog box (see “The
Optimization Pane” in the online Simulink documentation).

C

9-51

ssGetinputPoriBufferDstPort

Purpose
Syntax

Arguments

Description

Languages

See Also

9-52

Determine the output port that is sharing this input port’s buffer
ssGetInputPortBufferDstPort(SimStruct *S, int_T inputPortIdx)

S
SimStruct representing an S-Function block.

inputPortIdx
Index of the port overwritten by an output port.

Use in any run-time S-function callback routine to determine the output port
that is overwriting the specified input port. This can be used when you have
specified the following:

¢ The input port and some output port on an S-function are not test points
(ssSetInputPortTestPoint and ssSetOutputPortTestPoint).

® The input port is overwritable (ssSetInputPortOverWritable).

If you have this set of conditions, Simulink can use the same memory buffer for
an input port and an output port. Simulink determines which ports share
memory buffers. Use this function any time after model initialization to get the
index of the output port that reuses the specified input port’s buffer. If none of
the S-function’s output ports reuse this input port buffer, this macro returns
INVALID_PORT_IDX (= -1).

C

ssSetNumInputPorts, ssSetInputPortOverWritable

ssGetlnputPortComplexSignal

Purpose
Syntax

Arguments

Description
Languages

See Also

Get the numeric type (complex or real) of an input port
DTypelId ssGetInputPortComplexSignal(SimStruct *S,input_T port)

S
SimStruct representing an S-Function block.

port
Index of an input port.

Returns the numeric type of port.

C

ssSetInputPortComplexSignal

9-53

ssGetinputPortConnected

Purpose
Syntax

Arguments

Description

Languages

See Also

9-54

Determine whether a port is connected to a nonvirtual block
int_T ssGetInputPortConnected(SimStruct *S, int_T port)
S

SimStruct representing an S-Function block or a Simulink model.
port

Port whose connection status is needed.

Returns true if the specified port on the block represented by S is connected
directly or indirectly, i.e., via virtual blocks, to a nonvirtual block. Can be
invoked anywhere exceptinmdlInitializeSizes or md1CheckParameters. The
S-function must have previously set the number of input ports in
mdlInitializeSizes, using ssSetNumInputPorts.

C

ssGetOutputPortConnected, ssSetNumInputPorts

ssGetinputPortDataType

Purpose
C Syntax

Ada Syntax

Arguments

Description
Languages

See Also

Get the data type of an input port
DTypelId ssGetInputPortDataType(SimStruct *S,input_T port)

function ssGetInputPortDataType(S : in SimStruct; port : in Integer
:= 0) return Integer;

S
SimStruct representing an S-Function block or a Simulink model.

port
Index of an input port.

Returns the data type of the input port specified by port.
Ada, C

ssSetInputPortDataType

9-55

ssGetlnputPortDimensions

Purpose
Syntax

Arguments

Description

Languages

See Also

9-56

Get the dimensions of the signal accepted by an input port
int_T *ssGetInputPortDimensions(SimStruct *S, int_T port)

S
SimStruct representing an S-Function block.

port
Index of an input port.

Returns an array of integers that specifies the dimensions of the signal
accepted by port, e.g., [4 2] for a 4-by-2 matrix array. The size of the
dimensions array is equal to the number of signal dimensions accepted by the
port, e.g., 1 for a vector signal or 2 for a matrix signal.

C

ssGetInputPortNumDimensions

ssGetinputPoriDirectFeedThrough

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

Determine whether a port has direct feedthrough
int_T ssGetInputPortDirectFeedThrough(SimStruct *S, int_T port)

function ssGetInputPortDirectFeedThrough(S : in SimStruct;
port : in Integer := 0) return Boolean;

S
SimStruct representing an S-Function block.

port
Index of the port whose direct feedthrough property is required.

Use in any routine (except mdlInitializeSizes) to determine whether an
input port has direct feedthrough.

Ada, C

ssSetInputPortDirectFeedThrough

9-57

ssGetinputPortFrameData

Purpose Determine whether a port accepts signal frames
Syntax int_T ssGetInputPortFrameData(SimStruct *S, int_T port)
Arguments S

SimStruct representing an S-Function block.
port
Index of an input port.
Description Returns one of the following:
° -1
Port accepts either frame or unframed input.
°0
Port accepts unframed input only.
°q
Port accepts frame input only.

Languages C

See Also ssSetInputPortFrameData, mdlSetInputPortFrameData

9-58

ssGetlnputPortNumDimensions

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the dimensionality of the signals accepted by an input port
int_T ssGetInputPortNumDimensions(SimStruct *S, int_T port)

S
SimStruct representing an S-Function block.

port
Index of an input port.

Returns the number of dimensions of port or DYNAMICALLY_SIZED, if the
number of dimensions is unknown.

C

ssGetInputPortDimensions

9-59

ssGetinputPortOffsetTime

Purpose
Syntax

Arguments

Description

Languages

See Also

9-60

Get the offset time of an input port
ssGetInputPortOffsetTime (SimStruct *S,inputPortIdx)

S
SimStruct representing an S-Function block.

inputPortIdx
Index of the port whose offset time is required.

Use in any routine (except md1InitializeSizes) to determine the offset time
of an input port. This should only be used if you have specified the sample times
as port-based.

C

ssSetInputPortOffsetTime, ssGetInputPortSampleTime

ssGetinputPortOptimOpts

Purpose

Syntax

Arguments

Description

Language

See Also

Get the reusability setting of the memory allocated to the input port of an
S-function.

uint_T ssSetInputPortOptimOpts(SimStruct *S, int T port)

S

SimStruct representing an S-Function block or a Simulink model.

port

Index of an input port of S.

Use this macro to get the reusability of an S-function input port. It returns one
of the following values:

® SS_REUSABLE_AND_LOCAL

e SS_NOT_REUSABLE_AND_GLOBAL

C

ssSetInputPortOptimOpts

9-61

ssGetinputPortOverWritable

Purpose
C Syntax

Ada Syntax

Arguments

Description
Languages

See Also

9-62

Determine whether an input port can be overwritten

int_T ssGetInputPortOverWritable(SimStruct *S, int_T port)

function ssGetInputPortOverWritable(S : in SimStruct; port :

Integer := 0) return Boolean;

S
SimStruct representing an S-Function block or a Simulink model.

port
Index of the input port whose overwritability is being set.

Returns true if the input port can be overwritten.
Ada, C

ssSetInputPortOverWritable

in

ssGetinputPortRealSignal

Purpose
Syntax

Arguments

Description

Languages

Example

Get the address of a real, contiguous signal entering an input port
const real_T *ssGetInputPortRealSignal(SimStruct *S, inputPortIdx)

S
SimStruct representing an S-Function block.

inputPortIdx
Index of the port whose siganl is required.

Returns the address of a real signal on the specified input port. A method
should use this macro only if the input signal is known to be real and
mdlInitializeSizes has specified that the elements of the input signal be
contiguous, using ssSetInputPortRequiredContiguous

C, C++

The following code demonstrates the use of ssGetInputPortRealSignal.
Set flags to require that the input ports be contiguous:

void mdlInitializeSizes(SimStruct* S) {
int T i;
/* snip */
if (!ssSetNumInputPorts(S,2))
for (i = 0; 1 < 2; i++) {
/* snip */
ssSetInputPortDirectFeedThrough(S,i,1);
ssSetInputPortRequiredContiguous(S,i,1);

return;

/* snip */

}

You can now use ssGetInputPortRealSignal in md1lOutputs:

void mdlOutputs(SimStruct* S, int T tid) {
int T i

/[* snip */

for (1 =0; 1 < 2; i++) {

9-63

ssGetinputPortRealSignal

int_T nu = ssGetInputPortWidth(S,1i);
const real_T* u = ssGetInputPortRealSignal(S,1i);
UseInputVectorInSomeFunction(u, nu);

}

/* snip */

See Also ssSetInputPortRequiredContiguous, ssGetInputPortSignal,
mdlInitializeSizes

9-64

ssGetinputPortRealSignalPtrs

Purpose

Syntax

Arguments

Description

Languages

Example

See Also

Get pointers to signals of type double connected to an input port

InputRealPtrsType ssGetInputPortRealSignalPtrs(SimStruct *S, int_ T
port)

S
SimStruct representing an S-Function block.

port
Index of port whose signal is required.

Returns pointers to the elements of a signal of type double connected to port.
The input port index starts at 0 and ends at the number of input ports minus
1. This macro returns a pointer to an array of pointers to the real T input
signal elements. The length of the array of pointers is equal to the width of the
input port.

C

The following example reads all input port signals.
int T i,j;
int_T nInputPorts = ssGetNumInputPorts(S);
for (i = 0; i < nInputPorts; i++) {
InputRealPtrsType uPtrs =
ssGetInputPortRealSignalPtrs(S,1i);
int_T nu = ssGetInputPortWidth(S,1i);
for (j =05 j < nu; j++) {
SomeFunctionToUseInputSignalElement (*uPtrs
(i)

ssGetInputPortWidth, ssGetInputPortDataType,
ssGetInputPortSignalPtrs

9-65

ssGetinputPortRequiredContiguous

Purpose Determine whether the signal elements entering a port must be contiguous
Syni'ax int_T ssGetInputPortRequiredContiguous(SimStruct *S, int_T port)
Arguments S

SimStruct representing an S-Function block or a Simulink model.

port
Index of an input port.

Description Returns true if the signal elements entering the specified port must occupy
contiguous areas of memory. If the elements are contiguous, a method can
access the elements of the signal simply by incrementing the signal pointer
returned by ssGetInputPortSignal.

Note The default setting for this flag is false. Hence, the default method for
accessing the input signals is ssGetInputSignalPtrs.

Languages C, C++

See Also ssSetInputPortRequiredContiguous, ssGetInputPortSignal,
ssGetInputPortSignalPtrs

9-66

ssGetlnputPortSampleTime

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the sample time of an input port
ssGetInputPortSampleTime (SimStruct *S, inputPortIdx)

S
SimStruct representing an S-Function block.

inputPortIdx
Index of port whose sample time is required.

Use in any routine (except md1InitializeSizes) to determine the sample time

of an input port. You should use this macro only if you have specified the
sample times as port-based.

C

ssSetInputPortSampleTime, ssGetInputPortOffsetTime

9-67

ssGetinputPortSampleTimelndex

Purpose

Syntax

Arguments

Description
Languages

See Also

9-68

Get the sample time index of an input port

int_T ssGetInputPortSampleTimeIndex(SimStruct *S,
int_T inputPortIdx)

S
SimStruct representing an S-Function block or a Simulink model.

inputPortIdx
Index of the input port whose sample time index is to be returned.

Returns the index of the sample time for the port.
C, C++

ssSetInputPortSampleTime

ssGetinputPortSignal

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

Get the address of a contiguous signal entering an input port

const void* ssGetInputPortSignal(SimStruct *S, inputPortIdx)
S

SimStruct representing an S-Function block.

inputPortIdx

Index of port whose sample time is required.

Returns the address of the specified input port. A method should use this macro
onlyifmdlInitializeSizes has specified that the elements of the input signal
be contiguous, using ssSetInputPortRequiredContiguous.

C, C++

The following code demonstrates the use of ssGetInputPortSignal.
nInputPorts = ssGetNumInputPorts(S);
for (1 = 0; i < nInputPorts; i++) {
int_T nu = ssGetInputPortWidth(S,1i);
if (ssGetInputPortRequiredContiguous(S,i)) {

const void *u = ssGetInputPortSignal(S,i);
UseInputVectorInSomeFunction(u, nu);

} else {

InputPtrsType u = ssGetInputPortSignalPtrs(S,i);
for (j = 0; j < nuj j++) {
UseInputInSomeFunction(*ul[j]);

}

}

If you know that the inputs are always real T signals, the
ssGetInputPortSignal line in the above code snippet would be

const real T *u = ssGetInputPortRealSignal(S,i);

ssSetInputPortRequiredContiguous, ssGetInputPortRealSignal

9-69

ssGetinputPortSignalAddress

Purpose Get the address of an input port’s signal

Syni'ax function ssGetInputPortSignalAddress(S : in SimStruct;
port : in Integer := 0) return System.Address;

Arguments S

SimStruct representing an S-Function block.

port
Index of an input port.

Description Returns the address of the signal connected to port.
Languages Ada
Example The following code gets the signal connected to a block’s input port.

uWidth : Integer := ssGetInputPortWidth(S,0);
U : array(0 .. uWidth-1) of Real_T;
for U'Address use ssGetInputPortSignalAddress(S,0);

See Also ssGetInputPortWidth

9-70

ssGetlnputPortSignalPtrs

Purpose
Syntax

Arguments

Description

Languages

Example

See Also

Get pointers to an input port’s signal elements
InputPtrsType ssGetInputPortSignalPtrs(SimStruct *S, int T port)

S
SimStruct representing an S-Function block.

port
Index of an input port.

Returns a pointer to an array of signal element pointers for the specified input
port. For example, if the input port width is 5, this function returns a pointer
to a 5-element pointer array. Each element in the pointer array points to the

specific element of the input signal.

You must use ssGetInputPortRealSignalPtrs to get pointers to signals of
type double (real T).

C

Assume that the input port data types are int8_T.

int_T nInputPorts = ssGetNumInputPorts(S);
for (i = 0; i < nInputPorts; i++) {
InputPtrsType u = ssGetInputPortSignalPtrs(S,1i);
InputInt8PtrsType uPtrs (InputInt8PtrsType)u;
int T nu = ssGetInputPortWidth(S,1i);
for (j =05 j < nu; j++) {
/* uPtrs[j] is an int8_T pointer that points to the j-th
element of the input signal.
*/
UseInputInSomeFunction(*uPtrs[j]);

}

ssGetInputPortRealSignalPtrs

9-71

ssGetinputPortWidth

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

9-72

Get the width of an input port
int_T ssGetInputPortWidth(SimStruct *S, int_T port)

function ssGetInputPortWidth(S : in SimStruct;
port : in Integer := 0) return Integer;

S
SimStruct representing an S-Function block.

port
Index of port whose width is required.

Gets the input port number of elements. If the input port is a 1-D array with w
elements, this function returns w. If the input port is an M-by-N matrix, this
function returns m*n. If m or n is unknown, this function returns

DYNAMICALLY SIZED. Use in any routine (except mdlInitializeSizes) to
determine the width of an input port.

Ada, C

ssSetInputPortWidth

ssGetlWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Get a block’s integer work vector
int_T* ssGetIWork(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns the integer work vector used by the block represented by S. The vector
consists of elements of type int_T and is of length ssGetNumIWork(S).
Typically, this vector is initialized in md1Start or mdlInitializeConditions,
updated in md1lUpdate, and used in md10utputs. You can use this macro in the
simulation loop, mdlInitializeConditions, or md1lStart routines.

C

ssGetNumIWork, ssSetIWorkValue, ssGetIWorkValue

9-73

ssGetlWorkValue

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

9-74

Get an element of a block’s integer work vector

int_T ssGetIWorkValue(SimStruct *S, int_T idx)

S

SimStruct representing an S-Function block.

idx

Index of the element returned by this function.

Returns the idx element of the the integer vector used by the block represented
by S. The vector consists of elements of type int_T and is of length
ssGetNumIWork(S). Typically, this vector is initialized in md1Start or
mdlInitializeConditions, updated in mdlUpdate, and used in md1Outputs
You can use this macro in the simulation loop, md1InitializeConditions, or
md1lStart routines.

The following statement

int T v = ssGetIWorkValue(s, 0);

is equivalent to

int_T* wv = ssGetIWork(s);
int T v = wv[0];

C

ssGetNumIWork, ssGetIWork, ssSetIWorkValue

ssGetModelName

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the model name
ssGetModelName (SimStruct *S)

S
SimStruct representing an S-Function block or a Simulink model.

If S is a SimStruct for an S-Function block, this macro returns the name of the

S-function MEX-file associated with the block. If S is the root SimStruct, this
macro returns the name of the Simulink block diagram.

C

ssGetPath

9-75

ssGetModeVector

Purpose
Syntax

Arguments

Description

Languages

See Also

9-76

Get the mode vector
int_T *ssGetModeVector(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns a pointer (int_T *) to the mode vector.

This vector has length ssGetNumModes (S). Typically, this vector is initialized in
mdlInitializeConditions if the default value of 0 isn’t acceptable. It is then
used in md10utputs in conjunction with nonsampled zero crossings to
determine when the output function should change mode. For example,
consider an absolute value function. When the input is negative, negate it to
create a positive value; otherwise, take no action. This function has two modes.
The output function should be designed not to change modes during minor time
steps. You can also use the mode vector in the md1ZeroCrossings routine to
determine the current mode.

C, C++

ssSetNumModes

ssGetModeVectorValue

Purpose
Syntax

Arguments

Description
Languages

See Also

Get an element of a block’s mode vector
int_T ssGetModeVectorValue(SimStruct *S, element)

S
SimStruct representing an S-Function block.

elementx
Index of a mode vector element.

Returns the specified mode vector element.
C, C++

ssSetModeVectorValue, ssGetModeVector

9-77

ssGetNonsampledZCs

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

9-78

Get the zero-crossing signal values
ssGetNonsampledZCs(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns a pointer to the vector containing the current values of the signals that
the variable-step solver monitors for zero crossings. The variable-step solver
tracks the signs of these signals to bracket points where they cross zero. The
solver then takes simulation time steps at the points where the zero crossings
occur. This vector has length ssGetNumNonsampledZCs(S).

The following excerpt from matlabroot/simulink/src/sfun_zc.c illustrates
usage of this macro to update the zero-crossing array in the md1ZeroCrossings
callback function.

static void mdlZeroCrossings(SimStruct *S)

{
int T 1i;
real_T *zcSignals = ssGetNonsampledZCs(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,0);
int_T nzZCSignals = ssGetNumNonsampledZCs(S);
for (i = 0; i < nZCSignals; i++) {
zcSignals[i] = *uPtrs[i];
}
}
C

ssGetNumNonsampledZCs

ssGetNumContStates

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

Get the number of continuous states that a block has
int_T ssGetNumContStates(SimStruct *S)
function ssGetNumContStates(S : in SimStruct) return Integer;

S
SimStruct representing an S-Function block or model.

Returns the number of continuous states in the block or model represented by
S. You can use this macro in any routine except mdlInitializeSizes.

Ada, C

ssSetNumContStates, ssGetNumDiscStates, ssGetContStates

9-79

ssGetNumDataTypes

Purpose

Syntax

Arguments

Description

Languages

See Also

9-80

Get number of data types registered for this simulation, including built-in
types

int_T ssGetNumDataTypes(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns the number of data types registered for this simulation. This includes
all custom data types registered by custom S-Function blocks and all built-in
data types.

Note S-functions register their data types in their implementations of the
mdlInitializeSizes callback function. Therefore, to ensure that this macro
returns an accurate count, your S-function should invoke it only after the
point in the simulation at which Simulink invokes the mdlInitializeSizes
callback function.

C

ssRegisterDataType

ssGetNumbDiscStates

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the number of discrete states that a block has
int_T ssGetNumDiscStates(SimStruct *S)

S
SimStruct representing an S-Function block.

Use in any routine (except mdlInitializeSizes) to determine the number of
discrete states that the S-function has.

C

ssSetNumDiscStates, ssGetNumContStates

9-81

ssGetNumDWork

Purpose Get the number of data type work vectors used by a block
Syntax int_T ssGetNumDWork(SimStruct *S)
Arguments S

SimStruct representing an S-Function block.

Description Returns the number of data type work vectors used by S.
Languages C, C++
See Also ssSetNumDWork

9-82

ssGetNuminputPorts

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

Get the number of input ports that a block has
int_T ssGetNumInputPorts(SimStruct *S)
function ssGetNumInputPorts(S : in SimStruct) return Integer;

S
SimStruct representing an S-Function block.

Use in any routine (except md1InitializeSizes) to determine how many input
ports a block has.

Ada, C

ssGetNumOutputPorts

9-83

ssGetNumlIWork

Purpose
Syntax

Arguments

Description

Languages

See Also

9-84

Get the size of a block’s integer work vector
int_T ssGetNumIWork(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns the size of the integer (int_T) work vector used by the block
represented by S. You can use this macro in any routine except
mdlInitializeSizes.

C

ssSetNumIWork, ssGetNumRWork

ssGetNumModes

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the size of the mode vector
ssGetNumModes (SimStruct *S)

S
SimStruct representing an S-Function block.

Returns the size of the modes vector. You can use this macro in any routine
except mdlInitializeSizes.

C

ssSetNumNonsampledZCs, ssGetNonsampledZCs

9-85

ssGetNumNonsampledZCs

Purpose
Syntax

Arguments
Description

Languages

See Also

9-86

Get the size of the zero-crossing vector
ssGetNumNonsampledZCs (SimStruct *S)

S
SimStruct representing an S-Function block.

Returns the size of the zero-crossing vector. You can use this macro in any
routine except mdlInitializeSizes.

C

ssSetNumNonsampledZCs, ssGetNonsampledZCs

ssGetNumOutputPorts

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

Get the number of output ports that a block has
int_T ssGetNumOutputPorts(SimStruct *S)
function ssGetNumOutputPorts(S : in SimStruct) return Integer;

S
SimStruct representing an S-Function block.

Use in any routine (except md1InitializeSizes) to determine how many
output ports a block has.

Ada, C

ssGetNumInputPorts

9-87

ssGetNumParameters

Purpose Get the number of parameters that this block has
Syni'ax function ssGetNumParameters(S : in SimStruct) return Integer;
Arguments S

SimStruct representing an S-Function block.
Description Returns the number of parameters that this block has.

Languages Ada

9-88

ssGetNumRunTimeParams

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the number of run-time parameters created by this S-function
int_T ssGetNumRunTimeParams(SimStruct *S)

S
SimStruct representing an S-Function block.

Use this function to get the number of run-time parameters created by this
S-function.

C

ssSetNumRunTimeParams

9-89

ssGetNumPWork

Purpose
Syntax

Arguments
Description

Languages

See Also

9-90

Get the size of a block’s pointer work vector
int_T ssGetNumPWork (SimStruct *S)

S
SimStruct representing an S-Function block.

Returns the size of the pointer work vector used by the block represented by S.
You can use this macro in any routine except mdlInitializeSizes.

C

ssSetNumPWork

ssGetNumRWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the size of a block’s floating-point work vector
int_T ssGetNumRWork (SimStruct *S)

S
SimStruct representing an S-Function block.

Returns the size of the floating-point (real T) work vector used by the block
represented by S. You can use this macro in any routine except
mdlInitializeSizes.

C

ssSetNumRWork

9-91

ssGetNumSampleTimes

Purpose Get the number of sample times that a block has
Syntax int_T ssGetNumSampleTimes(SimStruct *S)
Arguments S

SimStruct representing an S-Function block.

Description Use in any routine (except mdlInitializeSizes) to determine the number of
sample times S has.

Languages C

See Also ssSetNumSampleTimes

9-92

ssGetNumSFcnParams

Purpose
Syntax

Arguments

Description
Languages

See Also

Get the number of parameters that an S-Function block expects
int_T ssGetNumSFcnParams(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns the number of parameters that S expects the user to enter.

C

ssSetNumSFcnParams

9-93

ssGetOffsetTime

Purpose
Syntax

Arguments

Description
Languages

See Also

9-94

Get one of an S-function’s sample time offsets.
time T ssGetOffsetTime(SimStruct *S, int_T sti);

S
SimStruct representing an S-Function block.

sti
Index of sample time offset to be returned

Returns the sample time offset of S corresponding to sti.
C

ssSetOffsetTime, ssGetSampleTime

ssGetOutputPortBeingMerged

Purpose
Syntax

Arguments

Description

Languages

See Also

Determine whether the output of this block is connected to a Merge block
int_T ssGetOutputPortBeingMerged(SimStruct *S, int_T port)

S

SimStruct representing an S-Function block or a Simulink model.
port

Index of the output port.

Returns true if this output port signal is being merged with other signals (this
happens if the S-Function block’s output port is connected to a Merge block
directly or via connection type blocks). This macro returns the correct answer
in and after the S-function's md1SetWorkWidths method.

C, C++

md1lSetWorkWidths

9-95

ssGetOutputPortComplexSignal

Purpose
Syntax

Arguments

Description

Languages

See Also

9-96

Get the numeric type (complex or real) of an output port
CSignal_T ssGetOutputPortComplexSignal(SimStruct *S, int_T port)

S
SimStruct representing an S-Function block.

port
Index of an output port.

Returns the numeric type of port: COMPLEX_NO (real signal), COMPLEX_YES
(complex signal) or COMPLEX_INHERITED (dynamically determined).

C

ssSetOutputPortComplexSignal

ssGetOutputPortConnected

Purpose
Syntax

Arguments

Description

Languages

See Also

Determine whether an output port is connected to a nonvirtual block
int_T ssGetOutputPortConnected(SimStruct *S, int_T port)

S
SimStruct representing an S-Function block or a Simulink model.

port
Port whose connection status is needed.

Returns true if the specified output port on the block represented by S is
connected directly or indirectly, i.e., via virtual blocks, to a nonvirtual block.
Can be invoked anywhere except in md1InitializeSizes or
mdlCheckParameters. The S-function must have previously set the number of
input ports in mdlInitializeSizes, using ssSetNumInputPorts.

C

ssGetInputPortConnected, ssSetNumInputPorts

9-97

ssGetOutputPortDataType

Purpose Get the data type of an output port

C Syntax DTypeld ssGetOutputPortDataType(SimStruct *S, int T port)

Ada Syntax function ssGetOutputPortDataType (S : in SimStruct;
port : in Integer := 0) return Integer;

Arguments S

SimStruct representing an S-Function block or a Simulink model.

port
Index of an output port.

Description Returns the data type of the output port specified by port.
Languages Ada, C
See Also ssSetOutputPortDataType

9-98

ssGetOutputPortDimensions

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the dimensions of the signal leaving an output port
int_T *ssGetOutputPortDimensions(SimStruct *S, int_T port)

S

SimStruct representing an S-Function block.
port

Index of an output port.

Returns an array of integers that specifies the dimensions of the signal leaving
port, e.g., [4 2] for a 4-by-2 matrix array. The size of the dimensions array is
equal to the number of signal dimensions accepted by the port, e.g., 1 for a
vector signal or 2 for a matrix signal.

C

ssGetOutputPortNumDimensions

9-99

ssGetOutputPortFrameData

Purpose Determine whether a port outputs signal frames
Syni'ax int_T ssGetOutputPortFrameData(SimStruct *S, int_T port)
Arguments S

SimStruct representing an S-Function block.
port
Index of an output port.
Description Returns one of the following:
° -1
Port outputs either frame or unframed data.
*0
Port outputs unframed data only.
°q
Port outputs frame data only.

Languages C

See Also ssSetOutputPortFrameData

9-100

ssGetOutputPortNumDimensions

Purpose
Syntax

Arguments

Description

Languages

Get the number of dimensions of an output port
int_T ssGetOutputPortNumDimensions(SimStruct *S, int_T port)

S
SimStruct representing an S-Function block.

port
Index of an output port.

Returns the number of dimensions of port.

C

9-101

ssGetOutputPortOffsetTime

Purpose
Syntax

Arguments

Description

Languages

See Also

9-102

Get the offset time of an output port
real_T ssGetOutputPortOffsetTime(SimStruct *S,outputPortIdx)

S
SimStruct representing an S-Function block.

outputPortIdx
Index of an output port.

Use in any routine (except md1InitializeSizes) to determine the sample time
of an output port. This macro should only be used if you have specified
port-based sample times.

C

ssSetOutputPortOffsetTime, ssGetOutputPortSampleTime

ssGetOutputPortOptimOpts

Purpose

Syntax

Arguments

Description

Language

See Also

Get the reusability setting of the memory allocated to the input port of an
S-function.

uint T ssSetOutputPortOptimOpts(SimStruct *S, int T port)

S

SimStruct representing an S-Function block or a Simulink model.

port

Index of an output port of S.

Use this macro to get the reusability of an S-function output port. It returns
one of the following values:

® SS_REUSABLE_AND_LOCAL

e SS_NOT_REUSABLE_AND_GLOBAL

C

ssSetOutputPortOptimOpts

9-103

ssGetOutputPortRealSignal

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

9-104

Get a pointer to an output signal of type double (real T)
real_T *ssGetOutputPortRealSignal(SimStruct *S, int_T port)

S
SimStruct representing an S-Function block.

port
Index of an output port.

Use in any simulation loop routine, md1InitializeConditions, or md1lStart to
access an output port signal where the output port index starts at 0 and must
be less than the number of output ports. This returns a contiguous real T
vector of length equal to the width of the output port.

To write to all output ports, you would use
int T i,j;
int_T nOutputPorts = ssGetNumOutputPorts(S);
for (i = 0; i1 < nOutputPorts; i++) {
real T *y ssGetOutputPortRealSignal(S,i);
int T ny = ssGetOutputPortWidth(S,1i);
for (3 =05 j < ny; j++) {
y[i]l = SomeFunctionToFillInOutput();

}
}

C

ssGetInputPortRealSignalPtrs

ssGetOutputPortSampleTime

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the sample time of an output port
ssGetOutputPortSampleTime (SimStruct *S,outputPortIdx)

S
SimStruct representing an S-Function block.

outputPortIdx
Index of an output port.

Use in any routine (except md1InitializeSizes) to determine the sample time

of an output port. This macro should only be used if you have specified
port-based sample times.

C

ssSetOutputPortSampleTime

9-105

ssGetOutputPortSignal

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

9-106

Get the vector of signal elements emitted by an output port
void *ssGetOutputPortSignal(SimStruct *S, int_T port)

S
SimStruct representing an S-Function block.

port
Index of an output port.

Returns a pointer to the vector of signal elements output by port.

Note Ifthe port outputs a signal of type double (real T), you must use
ssGetOutputPortRealSignal to get the signal vector.

Assume that the output port data types are int16_T.

nOutputPorts = ssGetNumOutputPorts(S);

for (i = 0; i < nOutputPorts; i++) {

int16_T *y = (int16_T *)ssGetOutputPortSignal(S,i);

int T ny = ssGetOutputPortWidth(S,1i);

for (j =05 j < ny; j++) {
SomeFunctionToFillInOutput(y[j]);

}

}

C

ssGetOutputPortRealSignal

ssGetOutputPoritSignalAddress

Purpose Get the address of an output port’s signal

Syni‘ax ssGetOutputPortSignalAddress(S : in SimStruct; port : in Integer :=
0) return System.Address

Arguments S
SimStruct representing an S-Function block.

port
Index of an output port.

Description Returns the address of the signal connected to port.
Languages Ada
Exumple The following code gets the signal connected to a block’s input port.

yWidth : Integer := ssGetOutputPortWidth(S,0);
Y : array(0 .. ywidth-1) of Real_T;
for Y'Address use ssGetOutputPortSignalAddress(S,0);

See Also ssGetOutputPortWidth

9-107

ssGetOutputPortWidth

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

9-108

Get the width of an output port

int_T ssGetOutputPortWidth (SimStruct *S, int_T port)

function ssGetOutputPortWidth(S : in SimStruct; port :

:= 0) return Integer;
S
SimStruct representing an S-Function block.

port
Index of an output port.

in Integer

Use in any routine (except mdlInitializeSizes) to determine the width of an
output port where the output port index starts at 0 and must be less than the

number of output ports.
Ada, C

ssSetOutputPortWidth

ssGetParentSS

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the parent of a SimStruct
SimStruct *ssGetParentSS(SimStruct *S)

S
SimStruct representing an S-Function block or a Simulink model.

Returns the parent SimStruct of S, or NULL if S is the root SimStruct.

Note There is one SimStruct for each S-function in your model and one for
the model itself. The structures are arranged as a tree with the model
SimStruct as the root. User-written S-functions should not use the
ssGetParentSS macro.

C

ssGetRootSS

9-109

ssGetPath

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

9-110

Get the path of a block
const char_T *ssGetPath(SimStruct *S)
function ssGetPath(S : in SimStruct) return String;

S
SimStruct representing an S-Function block or a Simulink model.

If S is an S-Function block, this macro returns the full Simulink path to the
block. If S is the root SimStruct of the model, this macro returns the model
name. In a C MEX S-function, in md1InitializeSizes, if

strcmp (ssGetModelName(S),ssGetPath(S))==0

the S-function is being called from MATLAB and is not part of a simulation.
Ada, C

ssGetModelName

ssGetPlacementGroup

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the name of the placement group of a block
const char *ssGetPlacementGroup(SimStruct *S)

S

SimStruct representing an S-Function block or a Simulink model. The block
must be either a source block (i.e., a block without input ports) or a sink block
(i.e., a block without output ports).

Use this macro in md1InitializeSizes to get the name of this block’s
placement group.

Note This macro is typically used to create Real-Time Workshop device
driver blocks.

C

ssSetPlacementGroup

9-111

ssGetPortBasedSampleTimeBlocklsTriggered

Purpose

Syntax

Arguments

Description

Languages

9-112

Determine whether a block that uses port-based sample times resides in a
triggered subsystem

boolean T ssGetPortBasedSampleTimeBlockIsTriggered(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns TRUE if S uses port-based sample times and resides in a triggered
subsystem. Use this macro in md10utputs and md1lUpdate to decode whether to
use the block’s triggered or non-triggered algorithms to compute its states and
outputs.

Note This macro returns a valid result only after sample time propagation.
Thus, you cannot use it in md1SetInputPortSampleTime and
md1lSetOutputPortSampleTime to determine whether a port’s sample time is
triggered. Use ssSampleAndOffsetAreTriggered instead.

ssGetPWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Get a block’s pointer work vector
void** ssGetPWork (SimStruct *S)

S
SimStruct representing an S-Function block.

Returns the pointer work vector used by the block represented by S. The vector
consists of elements of type void * and is of length ssGetNumPWork(S).
Typically, this vector is initialized in md1Start or mdlInitializeConditions,
updated in md1lUpdate, and used in md10utputs. You can use this macro in the
simulation loop, mdlInitializeConditions, or md1lStart routines.

C

ssGetNumPWork

9-113

ssGetPWorkValue

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

9-114

Get a pointer from a block’s pointer work vector

void* ssGetPWorkValue(SimStruct *S, int_T idx)

S

SimStruct representing an S-function block.

idx

Index of the pointer returned by this function.

Returns the idx element of the the pointer work vector used by the block
represented by S. The vector consists of elements of type void * and is of length
ssGetNumPWork (S). Typically, this vector is initialized in md1Start or
mdlInitializeConditions, updated in mdlUpdate, and used in md1Outputs.
You can use this macro in the simulation loop, md1InitializeConditions, or
md1lStart routines.

The following statement

void* v = ssGetPWorkValue(s, 0);

is equivalent to

void** wv = ssGetPWork(s);
void* v = wv[O0];

C

ssGetNumPWork, ssGetPWork, ssSetPWorkValue

ssGetRealDiscStates

Purpose
Syntax

Arguments

Description
Languages

See Also

Get a block’s discrete state vector
real_T *ssGetRealDiscStates(SimStruct *S)

S
SimStruct representing an S-Function block.

Same as ssGetDiscStates.

C

ssGetDiscStates

9-115

ssGetRootSS

Purpose Get the root of a SimStruct hierarchy
Syntax SimStruct *ssGetRootSS(SimStruct *S)
Arguments S

SimStruct representing an S-Function block or a Simulink model.

Description Returns the root of the SimStruct hierarchy containing S.
Languages C
See Also ssGetParentSS

9-116

ssGetRunTimeParaminfo

Purpose
Syntax

Arguments

Description

Languages

See Also

Gets the attributes of a run-time parameter
ssParamRec *ssGetRunTimeParamInfo(SimStruct *S, int_T param)

S
SimStruct representing an S-Function block.

param
Index of a run-time parameter.

Returns the attributes of the run-time parameter specified by param. See the

documentation for ssSetRunTimeParamInfo for a description of the ssParamRec
structure returned by this function.

C

ssSetRunTimeParamInfo

9-117

ssGetRWork

Purpose
Syntax

Arguments

Description

Languages

See Also

9-118

Get a block’s floating-point work vector
real_T* ssGetRWork(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns the floating-point work vector used by the block represented by S. The
vector consists of elements of type real T and is of length ssGetNumRWork (S).
Typically, this vector is initialized in md1Start or md1lInitializeConditions,
updated in md1lUpdate, and used in md10utputs. You can use this macro in the
simulation loop, mdlInitializeConditions, or md1lStart routines.

C

ssGetNumRWork, ssGetRWorkValue, ssSetRWorkValue

ssGetRWorkValue

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

Get an element of a block’s floating-point work vector
real_T ssGetRWorkValue(SimStruct *S, int_T idx)
S

SimStruct representing an S-Function block.

idx

Index of the element returned by this function.

Returns the idx element of the the floating-point work vector used by the block
represented by S. The vector consists of elements of type real_T and is of length
ssGetNumRWork (S). Typically, this vector is initialized in md1Start or
mdlInitializeConditions, updated in mdlUpdate, and used in md1Outputs.
You can use this macro or ssGetRWork to get the current values of the work
vector in the simulation loop, md1InitializeConditions, or md1Start
routines.

The following statement

real T v = ssGetRWorkValue(s, 0);

is equivalent to

real_T* wv = ssGetRWork(s);
real_T v = wv[O0];

C

ssGetNumRWork, ssGetRWork, ssSetRWorkValue

9-119

ssGetSampleTime

Purpose Get one of an S-function’s sample times.
Syni'ax time_T ssGetSampleTime(SimStruct *S, int_T sti);
Arguments S

SimStruct representing an S-Function block.

sti
Index of sample time to be returned

Description Returns the sample time of S corresponding to sti.
Languages C
See Also ssSetSampleTime

9-120

ssGetSampleTimeOffset

Purpose
Syntax

Arguments

Description
Languages

See Also

Get the offset of the current sample time
function ssGetSampleTimeOffset(S : in SimStruct) return time_T;

S
SimStruct representing an S-Function block.

Returns the offset of the current sample time.
Ada

ssGetSampleTimePeriod

9-121

ssGetSampleTimePeriod

Purpose Get the period of the current sample time
Syni'ax function ssGetSampleTimePeriod(S : in SimStruct) return time_T;
Arguments S
SimStruct representing an S-Function block.
Description Returns the period of the current sample time.
Languages Ada
See Also ssGetSampleTimeOffset

9-122

ssGetSFcnParam

Purpose
Syntax

Arguments

Description

Languages

See Also

Get a parameter of an S-Function block
const mxArray *ssGetSFcnParam(SimStruct *S, int_T index)

S
SimStruct representing an S-Function block.

index
Index of the parameter to be returned.

Use in any routine to access a parameter entered in the S-Function’s block
dialog box, where index starts at 0 and is less than ssGetSFcnParamsCount (S).

C

ssGetSFcnParamsCount

9-123

ssGetSFcnParamsCount

Purpose Get the number of block dialog parameters that an S-Function block has
Syntax int_T ssGetSFcnParamsCount (SimStruct *S)
Arguments S

SimStruct representing an S-Function block.

Description Returns the number of parameters that a user can set for the block represented
by S.

Languages C

See Also ssGetNumSFcnParams

9-124

ssGetSimMode
|

Purpose Get the simulation mode of an S-Function block
Syntax ssGetSimMode (SimStruct *S)
Arguments S

SimStruct representing an S-Function block or a Simulink model.

Description Returns the simulation mode of the block represented by S:

® SS_SIMMODE_NORMAL

Running in a normal Simulink simulation
* SS_SIMMODE_SIZES_CALL_ONLY

Invoked by editor to obtain number of ports
® SS_SIMMODE_RTWGEN

Generating code
® SS_SIMMODE_EXTERNAL

External mode simulation

Languages C

See Also ssGetSolverName

9-125

ssGetSolverMode

Purpose
Syntax

Arguments

Description

Languages

See Also

9-126

Get the solver mode being used to solve the S-function
SolverMode ssGetSolverMode (SimStruct *S)

S
SimStruct representing an S-Function block or a Simulink model.
Returns one of

* SOLVER_MODE_AUTO
* SOLVER_MODE_SINGLETASKING
* SOLVER_MODE_MULTITASKING

This macro can return SOLVER_MODE_AUTO in mdlInitializeSizes. However,
in md1SetWorkWidths and any methods called after md1SetWorkWidths, solver
mode is either SOLVER_MODE_SINGLETASKING or SOLVER_MODE_MULTITASKING.
C, C++

ssGetSimMode, ssIsVariableStepSolver

ssGetSolverName

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the name of the solver being used to solve the S-function
ssGetSolverName (SimStruct *S)

S
SimStruct representing an S-Function block or a Simulink model.

Returns a pointer (char *) to the name of the solver being used to solve the
S-function represented by S.

C

ssGetSimMode, ssIsVariableStepSolver

9-127

ssGetStateAbsTol

Purpose

Syntax

Arguments

Description

Languages

See Also

9-128

Get the absolute tolerance used by the model’s variable-step solver for a
specified state

real T ssGetStateAbsTol(SimStruct *S, int T state)

S
SimStruct representing an S-Function block.

Use in md1Start to get the absolute tolerance for a particular state.

Note Absolute tolerances are not allocated for fixed-step solvers. Therefore,
you should not invoke this macro until you have verified that the simulation is
using a variable-step solver, using ssIsVariableStepSolver.

C, C++

ssGetAbsTol, ssIsVariableStepSolver

ssGetStopRequested

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the value of the simulation stop requested flag
int_T ssGetStopRequested(SimStruct *S)

S
SimStruct representing an S-Function block or a Simulink model.

Gets the value of the simulation stop requested flag. If the value is not 0,
Simulink halts the simulation at the end of the current time step.

C

ssSetStopRequested

9-129

ssGetT

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

9-130

Get the current simulation time
ssGetT(SimStruct *S)
function ssGetT(S : in SimStruct) return Real T;

S
SimStruct representing an S-Function block.

Returns the current base simulation time (time_T) for the model. You can use
this macro in md10utputs and mdlUpdate to compute the output of your block.

Note Use this macro only if your block operates at the base rate of the model,
for example, if your block operates at a single continuous rate. If your block
operates at multiple rates or operates at a single rate that is different from
the model’s base, use ssGetTaskTime to get the correct time for the current
task.

Ada, C

ssGetTaskTime, ssGetTStart, ssGetTFinal

ssGetTaskTime

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the current time for the current task
ssGetTaskTime (SimStruct *S, st_index)

S
SimStruct representing an S-Function block.

st_index
Index of the sample time corresponding to the task for which the current time
is to be returned.

Returns the current time (time_T) of the task corresponding to the sample rate
specified by st_index. You can use this macro in md10utputs and mdlUpdate to
compute the output of your block.

The ssGetTaskTime macro should be called only inside an ssIsSampleHit
check. It will not give the correct results if called with the tid passed into
md1lOutputs. The following example illustrates a correct usage of this macro:

static void mdlOutputs(SimStruct *S, int_T tid)

{
double t;
if(ssIsSampleHit(S,0,tid)) {
t = ssGetTaskTime(S,0);
ssPrintf("Task O sample hit in %s time = %g\n",
ssGetPath(S),t);
}
if(ssIsSampleHit(S,1,tid)) {
t = ssGetTaskTime(S,1);
ssPrintf("Task 1 sample hit in %s time = %g\n",
ssGetPath(S),t);
}
}
C
ssGetT

9-131

ssGetTFinal

Purpose Get the simulation stop time

C Syntax time T ssGetTFinal(SimStruct *S)

Ada Syntax function ssGetTFinal(S : in SimStruct) return Real T;
Arguments S

SimStruct representing an S-Function block.

Description Returns the stop time of the current simulation.
Languages Ada, C
See Also ssGetT, ssGetTStart

9-132

ssGetTNext

Purpose
Syntax

Arguments

Description

Languages

See Also

Get the time of the next sample hit
time_T ssGetTNext(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns the next time that a sample hit occurs in a discrete S-function with a
variable sample time.

C

ssSetTNext, mdlGetTimeOfNextVarHit

9-133

ssGetTStart

Purpose Get the simulation start time

C Syntax time T ssGetTStart(SimStruct *S)

Ada Syntax function ssGetTStart(S : in SimStruct) return Real T;
Arguments S

SimStruct representing an S-Function block.

Description Returns the start time of the current simulation.
Languages Ada, C
See Also ssGetT, ssGetTFinal

9-134

ssGetUserData

Purpose
Syntax

Arguments

Description
Languages

See Also

Access user data
void* ssGetUserData(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns a pointer to user data associated with this block.
C, C++

ssSetUserData

9-135

sslsContinuousTask

Purpose
Syntax

Arguments

Description

Languages

See Also

9-136

Determine whether a task is continuous
ssIsContinuousTask(SimStruct *S,st_index,tid)

S

SimStruct representing an S-Function block.

tid

Task ID.

Use in md10utputs or mdlUpdate when your S-function has multiple sample
times to determine whether your S-function is executing in the continuous
task. You should not use this in single-rate S-functions, or if you did not
register a continuous sample time.

C

ssSetNumContStates

sslsFirstinitCond

Purpose
Syntax

Arguments

Description

Languages

See Also

Determine whether this is the first call to md1InitializeConditions
int_T ssIsFirstInitCond(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns true if the current simulation time is equal to the simulation start
time.

C

mdlInitializeConditions

9-137

sslsMajorTimeStep

Purpose Determine whether the simulation is in a major step

C Syntax int_T ssIsMajorTimeStep(SimStruct *S)

Ada Syntax function ssIsMajorTimeStep(S : in SimStruct) return Boolean;
Arguments S

SimStruct representing an S-Function block.

Description Returns 1 if the simulation is in a major time step.
Languages Ada, C
See Also ssIsMinorTimeStep

9-138

sslsMinorTimeStep

Purpose
Syntax

Arguments

Description
Languages

See Also

Determine whether the simulation is in a minor step
int_T ssIsMinorTimeStep(SimStruct *S)

S
SimStruct representing an S-Function block.

Returns 1 if the simulation is in a minor time step.

C

ssIsMajorTimeStep

9-139

sslsSampleHit

Purpose
Syntax

Arguments

Description

Languages

See Also

9-140

Determine whether the sample time is hit
ssIsSampleHit (SimStruct *S,st_index,tid)
S

SimStruct representing an S-Function block.

st_index

Index of the sample time.

tid

Task ID.

Use in md10utputs or mdlUpdate when your S-function has multiple sample
times to determine the task your S-function is executing in. You should not use
this in single-rate S-functions or for an st_index corresponding to a continuous

task.

C

ssIsContinuousTask, ssIsSpecialSampleHit

sslsSpecialSampleHit

Purpose
Syntax

Arguments

Description

Languages

See Also

Determine whether sample is hit
ssIsSpecialSampleHit (SimStruct *S, sti1, sti2, tid)
S

SimStruct representing an S-Function block.
stii

Index of the sample time.

sti2

Index of the sample time.

tid

Task ID.

Returns true if a sample hit has occurred at sti1 and a sample hit has also
occurred at sti2 in the same time step. You can use this macro in md1Update
and md10utputs to ensure the validity of data shared by multiple tasks running
at different rates. For more information, see “Synchronizing Multirate
S-Function Blocks” on page 7-27.

C

ssIsSampleHit

9-141

sslsVariableStepSolver

Purpose
Syntax

Arguments

Description

Languages

See Also

9-142

Get the name of the solver being used to solve the S-function
ssIsVariableStepSolver(SimStruct *S)

S
SimStruct representing an S-Function block or a Simulink model.

Returns 1 if the solver being used to solve S is a variable-step solver. This is
useful when you are creating S-functions that have zero crossings and an
inherited sample time.

C

ssGetSimMode, ssGetSolverName

ssPrintf

Purpose
Syntax

Arguments

Description

Languages

See Also

Print a variable-content message
ssPrintf(msg, ...)

msg
Message. Must be a string with optional variable replacement parameters.

Optional replacement arguments.

Prints variable-content msg. This macro expands to mexPrintf when the
S-function is compiled via mex for use with Simulink. When the S-function is
compiled for use with the Real-Time Workshop, this macro expands to printf
if the target has stdio facilities; otherwise, it becomes a call to an empty
function (rtPrintfNoOp). In the case of Real-Time Workshop, you can avoid a
call altogether, using the SS _STDIO AVAILABLE macro. For example:

#if defined(SS_STDIO_AVAILABLE)
ssPrintf("my message ...");
#endif

C

ssWarning

9-143

ssRegDIgParamAsRunTimeParam

Purpose
Syntax

Arguments

Description

Languages

See Also

9-144

Register a dialog parameter as a run-time parameter
ssRegDlgParamAsRunTimeParam(S, dlgIdx, rtIdx, name, dtId)

S
SimStruct representing an S-Function block or a Simulink model.

dlgIdx
Index of the dialog parameter.

rtIdx
Index of the run-time parameter.

name
Name of the parameter.

dtId
Value of type DTypeld that specifies the data type of the run-time parameter.

Use this function in md1SetWorkWidths to register the dialog parameter
specified by d1gIdx as a run-time parameter specified by rtIdx and having the
name and data type specified by name and dtId, respectively. This function also
initializes the run-time parameter to the initial value of the dialog parameter,
converting the value to the specified data type if necessary.

Note The first four characters of block’s run-time parameter names must be
unique. If they are not, Simulink signals an error. For example, trying to
register a parameter named param2 triggers an error if a parameter named
parami already exists.

C

ssRegAllTunableParamsAsRunTimeParams

ssRegAllTunableParamsAsRunTimeParams

Purpose

Syntax

Arguments

Description

Languages

See Also

Register all tunable parameters as run-time parameters

void ssRegAllTunableParamsAsRunTimeParams(S,
const char_T *names[]))

S
SimStruct representing an S-Function block.

names
Array of names for the run-time parameters.

Note The first four characters of block’s run-time parameter names must be
unique. If they are not, Simulink signals an error. For example, trying to
register a parameter named param2 triggers an error if a parameter named
parami already exists.

Use this function in md1SetWorkWidths to register all tunable dialog
parameters as run-time parameters. Specify the names of the run-time
versions of the parameters in the names array.

Note Simulink assumes that the names array is always available. Therefore,
you must allocate the names array in such a way that it persists throughout
the simulation.

You can register dialog parameters individually as run-time parameters, using
ssSetNumRunTimeParams and ssSetRunTimeParamInfo.

C

md1lSetWorkWidths, ssSetNumRunTimeParams, ssSetRunTimeParamInfo

9-145

ssRegisterDataType

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

9-146

Register a custom data type
DTypelId ssRegisterDataType(SimStruct *S, char *name)

S
SimStruct representing an S-Function block.

name
Name of custom data type.

Register a custom data type. Each data type must be a valid MATLAB
identifier. That is, the first char is an alpha and all subsequent characters are
alphanumeric or "_". The name length must be less than 32. Data types must be
registered in md1InitializeSizes.

Ifthe registration is successful, the function returns the DataTypeId associated
with the registered data type; otherwise, it reports an error and returns
INVALID DTYPE_ID.

After registering the data type, you must specify its size, using
ssSetDataTypeSize.

Note You can call this function to get the data type ID associated with a
registered data type.

The following example registers a custom data type named Color.

DTypeId id = ssRegisterDataType(S, "Color");
if(id == INVALID _DTYPE_ID) return;

C

ssSetDataTypeSize

ssSampleAndOffsetAreTriggered

Purpose

Syntax

Arguments

Description

Languages

Determine whether a sample time and offset value pair indicate a triggered
sample time

boolean T ssSampleAndOffsetAreTriggered(real T st, real T ot)
st

The sample time.

ot

The offset time.

Returns TRUE if both st and ot are equal to INHERITED SAMPLE_ TIME.
Simulink sets the sample time and offset pairs of a block or its ports (for
port-based sample times) to INHERITED SAMPLE_TIME if the block resides in a
triggered subsystem. By invoking this macro on its sample time/offset pairs, an
S-function can determine whether it resides in a triggered subsystem.

C

9-147

ssSetBlockReduction

Purpose
Syntax

Arguments

Description

Languages

See Also

9-148

Request that Simulink attempt to reduce a block
ssSetBlockReduction(SimStruct *S, unsigned int_T flag)

S
SimStruct representing an S-Function block.

flag
If true, Simulink should attempt to reduce this block.

Use this macro to ask Simulink to reduce this block. A block is reducible if it
can be eliminated from the model without affecting the model’s behavior.
Simulink optimizes performance by skipping execution of reducible blocks
during model simulation. In particular, Simulink does not invoke the
md1lStart, mdlUpdate, and md1Outputs methods of reducible blocks. Further,
Simulink executes the md1Terminate method of a reduced block only if the
block has set the SS OPTION CALL TERMINATE AT EXIT option before the
simulation loop has begun, using ssSetOptions.

A block must meet certain criteria to be considered reducible. For example, a
block must have at least one input, must have the same number of outputs as
inputs or no outputs, and none of the block’s inputs can be a bus signal. If a
block fails to meet any of these criteria, Simulink includes the block in the
simulation regardless of whether the block has requested reduction.

Your S-function must invoke this macro before Simulink would otherwise
invoke the S-function’s md1Start method (see the callback flow diagram in
“How Simulink Interacts with C S-Functions” on page 3-39). This means your
S-function must invoke this macro no later than its md1SetWorkWidths method
to be considered a candidate for block reduction.

C

ssGetBlockReduction

ssSetCallSystemOutput

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify that an output port is issuing a function call
ssSetCallSystemOutput (SimStruct *S, port_index)

S

SimStruct representing an S-Function block or a Simulink model.
port_index

Index of the port that is issuing the function call.

Use in mdlInitializeSampleTimes to specify that the output port element
specified by port_index is issuing a function call by using
ssCallSystemWithTid(S,index, tid). The index specified starts at 0 and
must be less than ssGetOutputPortWidth(S,0).

C

ssCallSystemWithTid

9-149

ssSetDataTypeSize

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

9-150

Set the size of a custom data type
int_T ssSetDataTypeSize(SimStruct *S, DTypeId id, int_T size)
S

SimStruct representing an S-Function block.
id

ID of data type.

size

Size of the custom data type in bytes.

Sets the size of the data type specified by id to size. If the call is successful,
the macro returns 1 (true), otherwise, it returns 0 (false). Use this macro in
mdlInitializeSizes to set the size of a data type you have registered.

The following example registers and sets the size of the custom data type
named Color to 4 bytes.

int T status;
DTypeld id;

id = ssRegisterDataType(SimStruct *S, "Color");
if(id == INVALID DTYPE_ID) return;

status = ssSetDataTypeSize(S, id, 4);
if(status == 0) return;

C

ssRegisterDataType, ssGetDataTypeSize

ssSetDataTypeZero

Purpose
Syntax

Arguments

Description

Languages

Example

Set zero representation of a data type
int_T ssSetDataTypeZero(SimStruct *S, DTypeId id, void* zero)

S
SimStruct representing an S-Function block.

id
ID of data type.

zero
Zero representation of the data type specified by id.

Sets the zero representation of the data type specified by id to 0 and returns 1
(true) if id is valid, the size of the data type has been set, and the zero
representation has not already been set. Otherwise, this macro returns 0 (false)
and reports an error. Because this macro reports any error that occurs, you do
not need to use ssSetErrorStatus to report the error.

Note This macro makes a copy of the zero representation of the data type for
Simulink to use. Thus, your S-function does not have to maintain the original
in memory.

C

The following example registers and sets the size and zero representation of a
custom data type named myDataType.

typedef struct{
int8_T a;
uint16_T b;

}myStruct;

int_ T status;
DTypelId id;
myStruct tmp;

id = ssRegisterDataType(S, "myDataType");

9-151

ssSetDataTypeZero

if(id == INVALID _DTYPE_ID) return;

status = ssSetDataTypeSize(S, id, sizeof(tmp));

if(status == 0) return;
tmp.a = 0;
tmp.b = 1;
status = ssSetDataTypeZero(S, id, &tmp);
if(status == 0) return;
See Also ssRegisterDataType, ssSetDataTypeSize, ssGetDataTypeZero

9-152

ssSetDWorkComplexSignal

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify whether the elements of a data type work vector are real or complex

void ssSetDWorkComplexSignal(SimStruct *S, int_T vector,
CSignal_T numType)

S
SimStruct representing an S-Function block.

vector
Index of a data type work vector, where the index is one of 0, 1, 2, ...
ssGetNumbDWork (S).

numType
Numeric type, either COMPLEX_YES or COMPLEX_NO.

Usein mdlInitializeSizes or md1SetWorkWidths to specify whether the
values of the specified work vector are complex numbers (COMPLEX_YES) or real
numbers (COMPLEX_NO, the default).

C, C++

ssSetDWorkDataType, ssGetNumDWork

9-153

ssSetDWorkDataType

Purpose
Syntax

Arguments

Description

Languages

See Also

9-154

Specify the data type of a data type work vector
void ssSetDWorkDataType(SimStruct *S, int_T vector, DTypeId dtID)
S

SimStruct representing an S-Function block.

vector
Index of a data type work vector, where the index is one 0of 0, 1, 2, ...
ssGetNumbDWork (S).

dtID
ID of a data type.

Use in mdlInitializeSizes or md1SetWorkWidths to set the data type of the
specified work vector.

C, C++

ssSetDWorkWidth, ssGetNumDWork

ssSetDWorkName

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify the name of a data type work vector
void ssSetDWorkName(SimStruct *S, int_T vector, char_T *name)
S

SimStruct representing an S-Function block.

vector
Index of the work vector, where the index is one of 0, 1, 2, ...
ssGetNumbDWork (S).

name
Name of a work vector.

Usein mdlInitializeSizes or in md1SetWorkWidths to specify a name for the
specified data type work vector. The Real-Time Workshop uses this name to

label the work vector in generated code. If you do not specify a name, the
Real-Time Workshop generates a name for the work vector.

C, C++

ssGetDWorkName, ssSetNumDWork

9-155

ssSetDWorkRTWIldentifier

Purpose

Syntax

Arguments

Description

Languages

See Also

9-156

Specify the identifier used to declare a DWork vector in code generated from
the associated S-function

void ssSetDWorkRTWIdentifier(SimStruct* S, int idx, char_T * id)
S

SimStruct representing an S-Function block.

idx

Index of the work vector, where the index is one of 0, 1, 2, . ..
ssGetNumbDWork (S).

id

Identifier.

Specifies id as the identifier used in code generated by the Real-Time
Workshop to declare the DWork vector specified by idx.

C, C++

ssSetDWorkRTWIdentifier

ssSetDWorkRTWStorageClass

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify the storage class of a DWork vector in code generated from the
associated S-function

void ssSetDWorkRTWStorageClass(SimStruct* S, int idx,
ssRTWStorageType sc)

S

SimStruct representing an S-Function block.

idx

Index of the work vector, where the index is one of 0, 1, 2, ...
ssGetNumbDWork (S).

sc
Storage class of the work vector. Must be one of the values enumerated by
ssRTWStorageType in simstruc.h:

typedef enum {
SS_RTW_STORAGE_AUTO = O,
SS_RTW_STORAGE_EXPORTED_GLOBAL,
SS_RTW_STORAGE_IMPORTED_ EXTERN,
SS_RTW_STORAGE_IMPORTED EXTERN_POINTER
} ssRTWStorageType

Sets sc as the storage class of the the DWork vector specified by idx. The
storage class is a code-generation attribute that determines how the code
generated by the Real-Time Workshop for this S-function allocates memory for
this work vector (see “Signal Storage Concepts” in the online documentation for
the Real-Time Workshop).

C, C++

ssGetDWorkRTWStorageClass

9-157

ssSetDWorkRTWTypeQualifier

Purpose

Syntax

Arguments

Description

Languages

See Also

9-158

Specify the C type qualifier (e.g., const) used to declare a DWork vector in code
generated from the associated S-function

void ssSetDWorkRTWTypeQualifier(SimStruct* S, int idx, char_T * tq)
S

SimStruct representing an S-Function block.

idx

Index of the work vector, where the index is one of 0, 1, 2, . ..

ssGetNumbDWork (S).

tq
Type qualifier.

Sets tq as the C type qualifier (e.g., const) used to declare the DWork vector
specified by idx in code generated by the Real-Time Workshop from the
associated S-function.

C, C++

ssGetDWorkRTWTypeQualifier

ssSetDWorkUsedAsDState

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify that a data type work vector is used as a discrete state vector

void ssSetDWorkUsedAsDState(SimStruct *S, int_T vector,
int_T usage)

S
SimStruct representing an S-Function block.

vector
Index of a data type work vector, where the index is one of 0, 1, 2, ...
ssGetNumbDWork (S).

usage
How this vector is used.

Usein mdlInitializeSizes or md1SetWorkWidths to specify the usage of the
specified work vector, either SS_DWORK_USED AS DSTATE (used to store the
block’s discrete states) or SS_DWORK_USED AS DWORK (used as a work vector, the
default).

Note Specify the usage as SS_DWORK_USED_AS DSTATE if the following
conditions are true. You want to use the vector to store discrete states and you
want Simulink to log the discrete states to the workspace at the end of a
simulation, if the user has selected the Save to Workspace options on the
Data Import/Export pane of the Configuration Parameters dialog.

C, C++

ssGetDWorkUsedAsDState

9-159

ssSetDWorkWidth

Purpose
Syntax

Arguments

Description

Languages

See Also

9-160

Specify the width of a data type work vector
void ssSetDWorkWidth(SimStruct *S, int_T vector, int_T width)
S

SimStruct representing an S-Function block.

vector
Index of the work vector, where the index is one of 0, 1, 2, ...
ssGetNumbDWork (S).

width
Number of elements in the work vector.

Use in mdlInitializeSizes or in md1SetWorkWidths to set the number of
elements in the specified data type work vector.

C, C++

ssGetDWorkWidth, ssSetDWorkDataType, ssSetNumDWork

ssSetErrorStatus

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

Report an error
void ssSetErrorStatus(SimStruct *S, const char_T *msg)
procedure ssSetErrorStatus(S : in SimStruct; msg : in String);

S

SimStruct representing an S-Function block or a Simulink model.
msg

Error message.

Use this function to report errors that occur in your S-function. For example:

ssSetErrorStatus(S, "error message");
return;

Note The error message string must be in persistent memory; it cannot be a
local variable.

This function causes Simulink to stop and display the specified error message.
The function does not generate an exception. Thus you can use it in your
S-function to avoid creating exceptions when reporting errors.

Ada, C

ssWarning

9-161

ssSetExplicitFCSSCtrl

Purpose Specify whether this S-function explicitly enables and disables the
function-call subsystem that it calls.

Syntax void ssSetExplicitFCSSCtrl(SimStruct *S, unsigned int T explicit)

Arguments S

SimStruct representing an S-Function block.

explicit
TRUE if this S-function explicitly enables and disables the function-call
subsystems it enables

Description Specify TRUE as the value of explicit if S explicitly enables or disables the
function-control subsystems that it calls.

Languages C

See Also ssGetExplicitFCSSCtrl, ssEnableSystemWithTid, ssDisableSystemWithTid

9-162

ssSetExternalModeFcn

Purpose
Syntax

Arguments

Description
Languages

See Also

Specify the external mode function for an S-function
void ssSetExternalModeFcn(SimStruct *S, SFunExtModeFcn *fcn)

S
SimStruct representing an S-Function block or a Simulink model.

fcn
External mode function.

Specifies the external mode function for S.
C

ssCallExternalModeFcn

9-163

ssSetlnputPortComplexSignal

Purpose

Syntax

Arguments

Description

Languages

Example

See Also

9-164

Set the numeric type (real or complex) of an input port

void ssSetInputPortComplexSignal(SimStruct *S, input_T port,
CSignal_T csig)

S
SimStruct representing an S-Function block or a Simulink model.

port
Index of an input port.

csignal

Numeric type of the signals accepted by port. Valid values are COMPLEX_NO
(real signal), COMPLEX_YES (complex signal), and COMPLEX_INHERITED (numeric
type inherited from driving block).

Use this function in md1InitializeSizes to initialize input port signal type. If
the numeric type of the input port is inherited from the block to which it is
connected, set the numeric type to COMPLEX INHERITED. The default numeric
type of an input port is real.

C

Assume that an S-function has three input ports. The first input port accepts
real (noncomplex) signals. The second input port accepts complex signals. The
third port accepts signals of either type. The following example specifies the
correct numeric type for each port.

ssSetInputPortComplexSignal(S, 0, COMPLEX_NO)
ssSetInputPortComplexSignal(S, 1, COMPLEX_YES)
ssSetInputPortComplexSignal(S, 2, COMPLEX_ INHERITED)

ssGetInputPortComplexSignal

ssSetlnputPortDataType

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

Example

See Also

Set the data type of an input port
void ssSetInputPortDataType(SimStruct *S,input_T port, DTypeld id)

procedure ssSetInputPortDataType(S : in SimStruct;
port : in Integer := 0; id : in Integer);

S
SimStruct representing an S-Function block or a Simulink model.

port

Index of an input port.

id

ID of the data type accepted by port.

Use this function in md1InitializeSizes to set the data type of the input port

specified by port. If the input port’s data type is inherited from the block
connected to the port, set the data type to DYNAMICALLY_ TYPED.

Note The data type of an input port is double (real_T) by default.

Ada, C

Suppose that you want to create an S-function with two input ports, the first of
which inherits its data type from the driving block and the second of which
accepts inputs of type int8_T. The following code sets up the data types.

ssSetInputPortDataType(S, O, DYNAMICALLY_TYPED)
ssSetInputPortDataType(S, 1, SS_INT8)

ssGetInputPortDataType

9-165

ssSetinputPortDimensioninfo

Purpose

Syntax

Arguments

9-166

Specify information about the dimensionality of an input port

void ssSetInputPortDimensionInfo(SimStruct *S, int_T port,
DimsInfo_T *dimsInfo)

S
SimStruct representing an S-function block.

port
Index of an input port.

dimsInfo
Structure of type DimsInfo_T that specifies the dimensionality of the signals
accepted by port.

The structure is defined as

typedef struct DimsInfo_tag{
int width;/* number of elements */
int numDims/* Number of dimensions */
int *dims;/* Dimensions. */
[snip]

}DimsInfo_T;

where

® numDims specifies the number of dimensions of the signal, e.g., 1 for a 1-D
(vector) signal or 2 for a 2-D (matrix) signal, or DYNAMICALLY_SIZED if the
number of dimensions is determined dynamically

® dims is an integer array that specifies the size of each dimension, e.g., [2 3]
for a 2-by-3 matrix signal, or DYNAMICALLY_ SIZED for each dimension that
is determined dynamically, e.g., [2 DYNAMICALL_SIZED]

¢ width equals the total number of elements in the signal, e.g., 12 for a 3-by-4
matrix signal or 8 for an 8-element vector signal, or DYNAMICALLY SIZED if
the total number of elements is determined dynamically

Note Use the macro, DECL_AND INIT DIMSINFO, to declare and initialize an
instance of this structure.

ssSetinputPortDimensioninfo

Description

Languages

Example

See Also

Specifies the dimension information for port. Use this function in
mdlInitializeSizes to initialize the input port dimension information. If you
want the port to inherit its dimensions from the port to which it is connected,
specify DYNAMIC_DIMENSION as the dimsInfo for port.

C

The following example specifies that input port 0 accepts 2-by-2 matrix signals.

{

DECL_AND_ INIT DIMSINFO(di);
int dims[2];

di.numDims = 2;

dims[0] = 2;
dims[1] = 2;
di.dims = &dims;

di.width = 4;
ssSetInputPortDimensionInfo(S, 0, &di);

ssSetInputPortMatrixDimensions, ssSetInputPortVectorDimension

9-167

ssSetinputPortDirectFeedThrough

Purpose

C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

9-168

Specify the direct feedthrough status of a block’s ports

void ssSetInputPortDirectFeedThrough(SimStruct *S, int_T port,
int_T dirFeed)

procedure ssSetInputPortDirectFeedThrough(S : in SimStruct; port :

in Integer := 0; dirFeed : in Boolean);

S
SimStruct representing an S-Function block or a Simulink model.

port
Index of the input port whose direct feedthrough property is being set.

dirFeed
Direct feedthrough status of block specified by port.

Use in mdlInitializeSizes (after ssSetNumInputPorts) to specify the direct
feedthrough (0 or 1) for each input port index. If not specified, the default direct
feedthrough is 0. Setting direct feedthrough to 0 for an input port is equivalent
to saying that the corresponding input port signal is not used in md10utputs or
md1GetTimeOfNextVarHit. If it is used, you might or might not see a delay of
one simulation step in the input signal. This might cause the simulation solver

to issue an error due to simulation inconsistencies.
Ada, C

ssGetInputPortDirectFeedThrough

ssSetinputPortFrameData

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify whether a port accepts signal frames

void ssSetInputPortFrameData(SimStruct *S, int_T port,
int_T acceptsFrames)

S
SimStruct representing an S-Function block.

port
Index of an input port.

acceptsFrames
Type of signal accepted by port. Acceptable values are -1 (either frame or
unframed input), 0 (unframed input only), and 1 (framed input only).

Use in md1SetInputPortFrameData to specify whether a port accepts frame
data only, unframed data only, or both.

C

ssGetInputPortFrameData, mdlSetInputPortFrameData

9-169

ssSetinputPortMatrixDimensions

Purpose

Syntax

Arguments

Description

Languages

Example

9-170

Specify dimension information for an input port that accepts matrix signals

int_T ssSetInputPortMatrixDimensions(SimStruct *S, int_T port,
int_ T m, int_T n)

S
SimStruct representing an S-Function block.

port
Index of an input port.

m
Row dimension of matrix signals accepted by port or DYNAMICALLY SIZED.

n
Column dimension of matrix signals accepted by port or DYNAMICALLY SIZED.

Specifies that port accepts an m-by-n matrix signal. If either dimension is
DYNAMICALLY SIZED, the other must be DYNAMICALLY SIZED or 1. Returns 1 if
successful; otherwise, 0.

C

The following example specifies that input port 0 accepts 2-by-2 matrix signals.

ssSetInputPortMatrixDimensions(S, 0, 2, 2);

ssSetlnputPortOffsetTime

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify the offset time of an input port

void ssSetInputPortOffsetTime (SimStruct *S,
int_T inputPortlIdx, int_T period)

S
SimStruct representing an S-Function block or a Simulink model.

inputPortIdx
Index of the input port whose offset time is being set.

offset
Offset time.

UseinmdlInitializeSizes (after ssSetNumInputPorts) to specify the sample
time offset for each input port index. You can use this macro in conjunction with

ssSetInputPortSampleTime if you have specified port-based sample times for
your S-function.

C

ssSetNumInputPorts, ssSetInputPortSampleTime

9-171

ssSetinputPortOptimOpts

Purpose Specify reusability of the memory allocated to the input port of an S-function.
Syni'ax ssSetInputPortOptimOpts(SimStruct *S, int_T port, uint_t val)
Arguments S

SimStruct representing an S-Function block or a Simulink model.

port
Index of an input port of S.

val
Reusability of port. Permissable values are

* SS_REUSABLE_AND_LOCAL
e SS_NOT_REUSABLE_AND_GLOBAL

Description Use this macro to specify the reusability of an S-function input port.
Language C
See Also ssGetInputPortOptimOpts, ssSetOutputPortOptimOpts,

ssSetInputPortOverWritable

9-172

ssSetlnputPortOverWritable

Purpose

C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

Specify whether one of an S-function’s input ports can be overwritten by one of
its output ports.

void ssSetInputPortOverWritable(SimStruct *S, int T port, int T
isOverwritable)

procedure ssSetInputPortOverWritable(S : in SimStruct; port : in
Integer := 0; isOverwritable : in Boolean);

S
SimStruct representing an S-Function block or a Simulink model.

port
Index of the input port whose overwritability is being set.

isOverwritable
Value specifying whether port is overwritable.

Usein mdlInitializeSizes (after ssSetNumInputPorts) to specify whether
port is overwritable by one of the S-function’s output ports. Simulink uses this
setting as one criterion in determining whether one of the output ports of this
S-function can share memory with port. If isOverwritable=1 and the other
criteria are satisfied, Simulink allocates a common block of memory for the
input port and one of the S-function’s output ports, thus reducing simulation
memory requirements. The default is isOverwritable=0, which means that
port cannot share memory with any of the S-function’s output ports.

Note If you set an input port to be overwritable, you must also specify that
the input port and at least one of the S-function’s output ports are reusable.
Use ssSetInputPortOptimOpts and ssSetOutputPortOptimOpts to do this.

Ada, C

ssSetNumInputPorts, ssSetInputPortOptimOpts,
ssSetOutputPortOptimOpts, ssGetInputPortBufferDstPort

9-173

ssSetinputPortRequiredContiguous

Purpose

Syntax

Arguments

Description

Languages

See Also

9-174

Specify that the signal elements entering a port must be contiguous

void ssSetInputPortRequiredContiguous(SimStruct *S, int_T port,
int_T flag)

S
SimStruct representing an S-Function block or a Simulink model.

port
Index of an input port.

flag
True if signal elements must be contiguous.

Specifies that the signal elements entering the specified port must occupy
contiguous areas of memory. This allows a method to access the elements of the
signal simply by incrementing the signal pointer returned by
ssGetInputPortSignal. The S-function can set the value of this attribute as
early as in the md1InitializeSizes method and at the latest in the
md1SetWorkWidths method.

Note The default setting for this flag is false. Hence, the default method for
accessing the input signals is ssGetInputSignalPtrs.

C, C++

mdlInitializeSizes, mdlSetWorkWidths, ssGetInputPortSignal,
ssGetInputPortSignalPtrs

ssSetinputPortSampleTime

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify the sample time of an input port
ssSetInputPortSampleTime (SimStruct *S,inputPortIdx,period)

S
SimStruct representing an S-Function block or a Simulink model.

inputPortIdx
Index of the input port whose sample time is being set.

period
Sample period.

UseinmdlInitializeSizes (after ssSetNumInputPorts) to specify the sample
time period as continuous or as a discrete value for each input port. Input port

index numbers start at 0 and end at the total number of input ports minus 1.
You should use this macro only if you have specified port-based sample times.

C

ssSetNumInputPorts, ssSetInputPortOffsetTime

9-175

ssSetinputPortVectorDimension

Purpose

Syntax

Arguments

Description

Languages

Example

See Also

9-176

Specify dimension information for an input port that accepts vector signals

int_T ssSetInputPortVectorDimension(SimStruct *S, int_T port, int_T
w)

S
SimStruct representing an S-Function block.

port
Index of an input port.

w
Width of vector or DYNAMICALLY SIZED.

Specifies that port accepts a w-element vector signal. Returns 1 if successful;
otherwise, 0.

Note This macro and ssSetInputPortWidth are functionally identical.

C

The following example specifies that input port 0 accepts an 8-element matrix
signal.

ssSetInputPortVectorDimension(S, 0, 8);

ssSetInputPortWidth

ssSetinputPortWidth

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

Specify the width of an input port
void ssSetInputPortWidth(SimStruct *S, int_T port, int_T width)

procedure ssSetInputPortWidth (S : in SimStruct;

port : in Integer := 0; width : in Integer);
S
SimStruct representing an S-Function block or a Simulink model.
port
Index of the input port whose width is being set.
width
Width of the input port.

Usein mdlInitializeSizes (after ssSetNumInputPorts) to specify a nonzero
positive integer width or DYNAMICALLY_SIZED for each input port index starting
at 0.

Ada, C

ssSetNumInputPorts, ssSetOutputPortWidth

9-177

ssSetlWorkValue

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

9-178

Set an element of a block’s integer work vector
int_T ssSetIWorkValue(SimStruct *S, int_T idx, int_T value)
S

SimStruct representing an S-Function block.
idx

Index of the element to be set.

value

New value of element.

Sets the idx element of S’s integer work vector to value. The vector consists of
elements of type int_T and is of length ssGetNumIWork(S). Typically, this
vector is initialized in md1Start or md1InitializeConditions, updated in
mdlUpdate, and used in md10utputs. You can use this macro in the simulation
loop, md1lInitializeConditions, or md1Start routines. This macro returns the
value that it sets.

The following statement

ssSetIWorkvalue(s, 0, 1);

sets the first element of the work vector to 1.
C

ssGetNumIWork, ssGetIWork, ssGetIWorkValue

ssSetModelReferenceSampleTimelnheritanceRule

Purpose Specify whether use of this S-function in a submodel prevents the submodel
from inheriting its sample time from its parent model.

Syntax void ssSetModelReferenceSampleTimeInheritanceRule(SimStruct *S,
int T rule)

Arguments S
SimStruct representing an S-Function block.

rule
Rule for allowing submodels containing this S-function to inherit their sample
times from the parent model.

Description Use this macro in any callback from md1InitializeSizes to
md1lSetWorkWidths to specify the rule that determines whether submodels
containing this S-function can inherit their sample times from their parent
model. If this S-function inherits its sample time and its output depends on the
inherited sample time, specify DISALLOW_SAMPLE_TIME_INHERITANCE as the
rule. Otherwise, specify USE_DEFAULT _FOR_DISCRETE_INHERITANCE as the rule.

Languages C, C++

9-179

ssSetModeVectorValue

Purpose Set an element of a block’s mode vector
Syni'ax void ssSetModeVectorValue(SimStruct *S, int_T element, int_T value)
Arguments S

SimStruct representing an S-Function block.

element
Index of a mode vector element.

value
Mode vector value.

Description Sets the specified mode vector element to the specified value.
Languages C, C++
See Also ssGetModeVectorValue, ssGetModeVector

9-180

ssSetNumContStates

Purpose
C Syntax
Ada Syntax

Arguments

Description

Languages

See Also

Specify the number of continuous states that a block has
void ssSetNumContStates(SimStruct *S, int_T n)
procedure ssSetNumContStates(S : in SimStruct; n : in Integer);

S
SimStruct representing an S-Function block.

n
Number of continuous states to be set for the block represented by S.

UseinmdlInitializeSizes to specify the number of continuous states as 0, a
positive integer, or DYNAMICALLY SIZED. Ifyou specify DYNAMICALLY SIZED, you
can specify the true (positive integer) width in md1SetWorkWidths; otherwise,
the width used is the width of the signal passing through the block. If your
S-function has continuous states, it needs to return the derivatives of the states
in md1Derivatives so that the solvers can integrate them. Continuous states
are logged if the States option is selected on the Data Import/Export pane of
the Configuration Parameters dialog box.

Ada, C

ssSetNumDiscStates, ssGetNumContStates

9-181

ssSetNumDiscStates

Purpose
Syntax

Arguments

Description

Languages

See Also

9-182

Specify the number of discrete states that a block has
ssSetNumDiscStates (SimStruct *S, int_T nDiscStates)

S
SimStruct representing an S-Function block.

nDiscStates
Number of discrete states to be set for the block represented by S.

Use in mdlInitializeSizes to specify the number of discrete states as 0, a
positive integer, or DYNAMICALLY_SIZED. Ifyou specify DYNAMICALLY SIZED, you
can specify the true (positive integer) width in md1SetWorkWidths; otherwise,
the width used is the width of the signal passing through the block. If your
S-function has discrete states, it should return the next discrete state (in place)
in mdlUpdate. Discrete states are logged if the States option is selected on the
Data Import/Export page of the Configuration Parameters dialog box.

C

ssSetNumContStates, ssGetNumDiscStates

ssSetNumDWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify the number of data type work vectors used by a block
boolean_T ssSetNumDWork(SimStruct *S, int_T nDWork)
S

SimStruct representing an S-Function block.

nDWork

Number of data type work vectors.

UseinmdlInitializeSizes to specify the number of data type work vectors as
0, a positive integer, or DYNAMICALLY_SIZED. If you specify DYNAMICALLY_SIZED,
you can specify the true (positive integer) number of vectors in
md1lSetWorkWidths.

You can specify the size and data type of each work vector, using the macros
ssSetDWorkWidth and ssSetDWorkDataType, respectively. You can also specify
that the work vector holds complex values, using ssSetDWorkComplexSignal.

This function returns TRUE if nDWork is zero or a positive integer; otherwise,
FALSE.

C, C++

ssGetNumDWork, ssSetDWorkWidth, ssSetDWorkDataType,
ssSetDWorkComplexSignal

9-183

ssSetNumlinputPorts

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

9-184

Specify the number of input ports that a block has
boolean_T ssSetNumInputPorts(SimStruct *S, int_T nInputPorts)

procedure ssSetNumInputPorts(S : in SimStruct;
nInputPorts : in Integer);

S
SimStruct representing an S-Function block.

nInputPorts
Number of input ports on the block represented by S. Must be a nonnegative
integer.

UseinmdlInitializeSizes to set the number of input ports to a nonnegative
integer. Invoke it using

if (!ssSetNumInputPorts(S,nInputPorts)) return;

where ssSetNumInputPorts returns 0 if nInputPorts is negative or an error
occurs while creating the ports.

Ada, C

ssSetInputPortWidth, ssSetNumOutputPorts

ssSetNumIWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify the size of a block’s integer work vector
void ssSetNumIWork(SimStruct *S, int_T nIWork)

S
SimStruct representing an S-Function block.

nIWork
Number of elements in the integer work vector.

Use in mdlInitializeSizes to specify the number of int_T work vector
elements as 0, a positive integer, or DYNAMICALLY_SIZED. If you specify
DYNAMICALLY_SIZED, you can specify the true (positive integer) width in
md1lSetWorkWidths; otherwise, the width used is the width of the signal passing
through the block.

C

ssSetNumRWork, ssSetNumPWork

9-185

ssSetNumModes

Purpose
Syntax

Arguments

Description

Languages

See Also

9-186

Specify the size of the block’s mode vector
ssSetNumModes (SimStruct *S,nModes)

S
SimStruct representing an S-Function block.

nModes
Size of the mode vector for the block represented by S. Valid values are 0, a
positive integer, or DYNAMICALLY SIZED.

Sets the size of the block’s mode vector to nModes. If nModes is
DYNAMICALLY_SIZED, you can specify the true (positive integer) width in
md1lSetWorkWidths; otherwise, the width used is the width of the signal passing
through the block. Use this macro in md1InitializeSizes to specify the
number of int_T elements in the mode vector. Simulink allocates the mode
vector and initializes its elements to 0. If the default value of 0 is not
appropriate, you can set the elements of the array to other initial values in
mdlInitializeConditions. Use ssGetModeVector to access the mode vector.

The mode vector, combined with zero-crossing detection, allows you to create
blocks that have distinct operating modes, depending on the current values of
input or output signals. For example, consider a block that outputs the absolute
value of its input. Such a block operates in two distinct modes, depending on
whether its input is positive or negative. If the input is positive, the block
outputs the input unchanged. If the input is negative, the block outputs the
negative of the input. You can use zero-crossing detection to detect when the
input changes sign and update the single-element mode vector accordingly (for
example, by setting its element to 0 for negative input and 1 for positive input).
You can then use the mode vector in md10utputs to determine the mode in
which the block is currently operating.

C

ssGetNumModes, ssGetModeVector

ssSetNumNonsampledZCs

Purpose

Syntax

Arguments

Description

Languages

See Also

Specify the number of states for which a block detects zero crossings that occur
between sample points

ssSetNumNonsampledZCs (SimStruct *S, nNonsampledZCs)

S
SimStruct representing an S-Function block.

nNonsampledZCs
Number of nonsampled zero crossings that a block detects.

UseinmdlInitializeSizes to specify the number of states for which the block
detects nonsampled zero crossings (real T) as 0, a positive integer, or
DYNAMICALLY SIZED. If you specify DYNAMICALLY SIZED, you can specify the
true (positive integer) width in md1SetWorkWidths; otherwise, the width used
is the width of the signal passing through the block.

C

ssSetNumModes

9-187

ssSetNumOutputPorts

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

9-188

Specify the number of output ports that a block has
void ssSetNumOutputPorts(SimStruct *S, int_T nOutputPorts)

procedure ssSetNumOutputPorts(S : in SimStruct;
nOutputPorts : in Integer);

S
SimStruct representing an S-Function block.

nOutputPorts
Number of output ports on the block represented by S. Must be a nonnegative
integer.

UseinmdlInitializeSizes to set the number of output ports to a nonnegative
integer. It should be invoked using

if (!ssSetNumOutputPorts(S,nOutputPorts)) return;

where ssSetNumOutputPorts returns 0 if nOutputPorts is negative or an error
occurs while creating the ports. When this occurs, and you return out of your
S-function, Simulink displays an error message.

Ada, C

ssSetInputPortWidth, ssSetNumInputPorts

ssSetNumPWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify the size of a block’s pointer work vector
void ssSetNumPWork(SimStruct *S, int_T nPWork)
S

SimStruct representing an S-Function block.

nPWork
Number of elements to be allocated to the pointer work vector of the block

represented by S.

Usein mdlInitializeSizes to specify the number of pointer (void *) work
vector elements as 0, a positive integer, or DYNAMICALLY_SIZED. If you specify
DYNAMICALLY_SIZED, you can specify the true (positive integer) width in
md1SetWorkWidths; otherwise, the width used is the width of the signal passing
through the block.

C

ssGetNumPWork

9-189

ssSetNumRunTimeParams

Purpose
Syntax

Arguments

Description

Languages

See Also

9-190

Specify the number of run-time parameters created by this S-function
void ssSetNumRunTimeParams (S, int_T num)

S
SimStruct representing an S-Function block.

num
Number of run-time parameters.

Use this function in md1SetWorkWidths to specify the number of run-time
parameters created by this S-function.

C

md1lSetWorkWidths, ssGetNumRunTimeParams, ssSetRunTimeParamInfo

ssSetNumRWork

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify the size of a block’s floating-point work vector
void ssSetNumRWork(SimStruct *S, int_T nRWork)

S
SimStruct representing an S-Function block.

nRWork
Number of elements in the floating-point work vector.

Usein mdlInitializeSizes to specify the number of real T work vector
elements as 0, a positive integer, or DYNAMICALLY_SIZED. If you specify
DYNAMICALLY_SIZED, you can specify the true (positive integer) width in
md1lSetWorkWidths; otherwise, the width used is the width of the signal passing
through the block.

C

ssSetNumIWork, ssSetNumPWork

9-191

ssSetNumSampleTimes

Purpose Specify the number of sample times that an S-Function block has
Syni'ax void ssSetNumSampleTimes(SimStruct *S, int_T nSampleTimes)
Arguments S

SimStruct representing an S-Function block.

nSampleTimes
Number of sample times that S has.

Description Use in md1lInitializeSizes to set the number of sample times S has. This
must be a positive integer greater than 0.

Languages C

See Also ssGetNumSampleTimes

9-192

ssSetNumSFcnParams

Purpose
Syntax

Arguments

Description
Languages

See Also

Specify the number of parameters that an S-Function block has
ssSetNumSFcnParams (SimStruct *S, int_T nSFcnParams)

S
SimStruct representing an S-Function block.

nSFcnParams
Number of parameters that S has.

Usein mdlInitializeSizes to set the number of S-function parameters.

C

ssGetNumSFcnParams

9-193

ssSetOffsetTime

Purpose
Syntax

Arguments

Description

Languages

See Also

9-194

Set the offset time of a block
ssSetOffsetTime (SimStruct *S, st_index, time_T period)
S

SimStruct representing an S-Function block.

st_index
Index of the sample time whose offset is to be set.

offset
Offset of the sample time specified by st_index.

Use this macroin mdlInitializeSizes to specify the offset of the sample time
where st_index starts at 0.

C

ssGetOffsetTime, ssSetSampleTime, ssSetInputPortOffsetTime,
ssSetOutputPortOffsetTime

ssSetOneBasedindexInputPort

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify that an input port expects one-based indices.
void ssSetOneBasedIndexInputPort(SimStruct *S, int_T pIdx)

S
SimStruct representing an S-Function block.

pIdx
Input port of the S-function.

Use this macro in md1InitializeSizes to specify that port pIdx expects
one-based index values. Simulink signals an error if it detects that the signal
connected to this block is zero-based when it updates a diagram containing the
S-function.

C, C++

mdlInitializeSizes, ssSetOneBasedIndexOutputPort,
ssSetZeroBasedIndexInputPort

9-195

ssSetOneBasedindexOutputPort

Purpose
Syntax

Arguments

Description

Languages

See Also

9-196

Specify that an output port emits one-based indices.
void ssSetOneBasedIndexOutputPort(SimStruct *S, int_T pIdx)

S
SimStruct representing an S-Function block.

pIdx
Output port of the S-function.

Use this macro in md1InitializeSizes to specify that port pIdx emits
one-based index values. Simulink signals an error if it detects during model
update that the port is connected to an input that expects zero-based indices.

C, C++

mdlInitializeSizes, ssSetOneBasedIndexOutputPort,
ssSetZeroBasedIndexOutputPort

ssSetOptions

Purpose
Syntax

Arguments

Description

Specify S-function options
void ssSetOptions(SimStruct *S, uint_T options)

S
SimStruct representing an S-Function block.

options
Options.

Usein mdlInitializeSizes to specify S-function options (see following). The
options must be joined using the OR operator. For example:

ssSetOption(S, (SS_OPTION EXCEPTION_FREE_CODE |
SS_OPTION_DISCRETE_VALUED OUTPUT));

S-Function Options
An S-function can specify the following options, using ssSetOptions:

* SS_OPTION_EXCEPTION_FREE_CODE
If your S-function does not use mexErrMsgTxt, mxCalloc, or any other
routines that can throw an exception when called, you can set this option for
improved performance.
* SS_OPTION_RUNTIME_EXCEPTION_ FREE_CODE
Similar to SS_OPTION_EXCEPTION FREE_CODE except it only applies to the
run-time routines md1GetTimeOfNextVarHit, md1Outputs, mdlUpdate, and
mdlDerivatives.
® SS OPTION _DISCRETE_VALUED OUTPUT
Specify this if your S-function has discrete valued outputs. This is checked
when your S-function is placed within an algebraic loop. If your S-function
has discrete valued outputs, its outputs are not assigned algebraic variables.
SS_OPTION_PLACE_ASAP

Use to specify that your S-function should be placed as soon as possible. This
is typically used by devices connecting to hardware.
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION

Use to specify that the input to your S-function input ports can be either 1 or
the size specified by the port, which is usually referred to as the block width.

9-197

ssSetOptions

9-198

SS_OPTION_DISALLOW_CONSTANT_SAMPLE_TIME
Use to disable an S-Function block from inheriting a constant sample time.
SS_OPTION_ASYNCHRONOUS

This option applies only to S-functions that have 0 or 1 input ports and 1
output port. The output port must be configured to perform function calls on
every element. If any of these requirements is not met, the
SS_OPTION_ASYNCHRONOUS option is ignored. Use this option when driving
function-call subsystems to attached to interrupt service routines.
SS_OPTION_ASYNC_RATE_TRANSITION

Use this option to create a read-write pair of blocks intended to guarantee
correct data transfers between a synchronously and an asynchronously
executing subsystem or between two asynchronously executing subsystems.
Both your “read” S-function and your “write” S-function should set this
option. See the comment for SS_ OPTION ASYNC RATE_TRANSITION in
symstruc.h for more information.

SS_OPTION_PORT SAMPLE_TIMES_ASSIGNED

Use this when you have registered multiple sample times
(ssSetNumSampleTimes > 1) to specify the rate at which each input and
output port is running. The simulation engine needs this information when
checking for illegal rate transitions.

SS_OPTION SFUNCTION_INLINED FOR_RTW
Set this if you have a . t1c file for your S-function and do not have an md1RTW
method. Setting this option has no effect if you have an md1RTW method.
SS_OPTION_ALLOW_PARTIAL DIMENSIONS CALL

Indicates that the S-function can handle dynamically dimensioned signals.
See md1SetDefaultPortDimensionInfo for more information.
SS_OPTION_FORCE_NONINLINED_FCNCALL

Use this flag if the block requires that all function-call subsystems that it
calls should be generated as procedures instead of possibly being generated
as inlined code.

SS_OPTION USE_TLC_WITH ACCELERATOR

Use this to force the Accelerator to use the TLC inlining code for an
S-function, which speeds up execution of the S-function. By default, the
Accelerator uses the mex version of the S-function even though a TLC file for
the S-function exists. This option should not be set for device driver blocks

ssSetOptions

(A/D) or when there is an incompatibility between running the mex
Start/InitializeConditions functions together with the TLC
Outputs/Update/Derivatives.

SS_OPTION_SIM_VIEWING_DEVICE

This S-function is a SimviewingDevice. As long as it meets the other
requirements for this type of block (no states, no outputs, etc.), it is
considered to be an external mode block (it show up in the external mode GUI
and no code is generated for it). During an external mode simulation, this
block is run on the host only.

SS_OPTION_CALL_TERMINATE_ON_EXIT

This option allows S-function authors to better manage the data cached in
run-time parameters and UserData. Setting this option guarantees that the
md1lTerminate functionis calledifmdlInitializeSizesis called. This means
that md1Terminate is called

= When a simulation ends

Note that it does not matter if the simulation fails and at what stage the
simulation fails. Therefore, if the md1SetWorkWidths of some block errors
out, the model’s other blocks have a chance to free the memory during a
call to md1Terminate.

= Every time an S-Function block is destroyed
= If the user is editing the S-function graphically

= Ifthe S-Function block was reduced as a result of invoking
ssSetBlockReduction

If this option is not set, md1Terminate is called only if at least one of the
blocks has had its md1Start called.

9-199

ssSetOptions

Languages

9-200

® SS_OPTION_REQ_INPUT_SAMPLE_TIME_MATCH

Use this to option to specify that the input signal sample times match the
sample time assigned to the block input port. For example:

S-function
src(0.1) ® Port-based Ts = 1

generates an error if this option is set. If the block (or input port) sample time
is inherited, no error is generated.

* SS_OPTION_WORKS WITH_CODE_REUSE
Signifies that this S-function is compatible with the subsystem code reuse
feature of the Real-Time Workshop (see “Creating Code-Reuse-Compatible
S-Functions” on page 8-42).

® SS_OPTION_ALLOW_CONSTANT_PORT_SAMPLE_TIME
Set this option in mdlInitializeSizes to allow your S-function’s ports to
specify or inherit a constant sample time (see “Specifying Constant Sample
Time for a Port” on page 7-22 for more information).

® SS_OPTION_CAN_BE_CALLED_CONDITIONALLY
Use this option if the S-function can be called conditionally by other blocks.

* SS_OPTION_ALLOW_PORT_BASED_SAMPLE_TIME_IN_TRIGSS
Set this option in mdlInitializeSizes to allow an S-function that uses
port-based sample times to operate in a triggered subsystem (see
“Configuring Port-Based Sample Times for Use in Triggered Subsystems” on
page 7-23 for more information).

C, C++

ssSetOutputPortComplexSignal

Purpose

Syntax

Arguments

Description

Languages

Example

See Also

Set the numeric type (real or complex) of an output port

void ssSetOutputPortComplexSignal(SimStruct *S, input_T port,
CSignal_T csig)

S
SimStruct representing an S-Function block or a Simulink model.

port
Index of an output port.

csignal

Numeric type of the signals emitted by port. Valid values are COMPLEX_NO (real
signal), COMPLEX_YES (complex signal), and COMPLEX_ INHERITED (dynamically
determined).

Use this functioninmdlInitializeSizes toinitialize an input port signal type.
If the numeric type of the input port is determined dynamically, e.g., by a
parameter setting, set the numeric type to COMPLEX INHERITED. The default
numeric type of an output port is real.

C

Assume that an S-function has three output ports. The first output port emits
real (noncomplex) signals. The second input port emits a complex signal. The
third port emits signals of a type determined by a parameter setting. The
following example specifies the correct numeric type for each port.

ssSetOutputPortComplexSignal(S, 0, COMPLEX NO)
ssSetOutputPortComplexSignal(S, 1, COMPLEX_YES)
ssSetOutputPortComplexSignal(S, 2, COMPLEX_ INHERITED)

ssGetOutputPortComplexSignal

9-201

ssSetOutputPoriDataType

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

Example

See Also

9-202

Set the data type of an output port
void ssSetOutputPortDataType(SimStruct *S, int_T port, DTypeld id)

procedure ssSetOutputPortDataType(S : in SimStruct;
port : in Integer := 0; id : in Integer);

S
SimStruct representing an S-Function block or a Simulink model.

port
Index of an output port.

id
ID of the data type accepted by port.

Use this functionin md1InitializeSizes to set the data type of the output port
specified by port. If the output port’s data type is determined dynamically, for
example, from the data type of a block parameter, set the data type to
DYNAMICALLY_TYPED.

Note The data type of an output port is double (real_T) by default.

Ada, C

Suppose that you want to create an S-function with two output ports, the first
of which gets its data type from a block parameter and the second of which
outputs signals of type int16_T. The following code sets up the data types.

ssSetOutputPortDataType(S, 0, DYNAMICALLY_TYPED)
ssSetOutputPortDataType(S, 1, SS_INT16)

ssGetOutputPortDataType

ssSetOutputPortDimensioninfo

Purpose

Syntax

Arguments

Description

Languages

Example

See Also

Specify information about the dimensionality of an output port

void ssSetInputPortDimensionInfoSimStruct *S, int_T port,
DimsInfo_T *dimsInfo)

S
SimStruct representing an S-function block.

port
Index of an output port.

dimsInfo
Structure of type DimsInfo_T that specifies the dimensionality of the signals
emitted by port.

See ssSetInputPortDimensionInfo for a description of this structure.

Specifies the dimension information for port. Use this function in
mdlInitializeSizes to initialize the output port dimension info. If you want
the port to inherit its dimensionality from the block to which it is connected,
specify DYNAMIC_DIMENSION as the dimsInfo for port.

C

The following example specifies that input port 0 accepts 2-by-2 matrix signals.
DECL_AND_INIT_DIMSINFO(di);
di.numDims = 2;
int dims[2];

dims[0] = 2;
dims[1] = 2;
di.dims = &dims;
di.width = 4;

ssSetOutputPortDimensionInfo(S, 0, &di);

ssSetInputPortDimensionInfo

9-203

ssSetOutputPortFrameData

Purpose

Syntax

Arguments

Description

Languages

See Also

9-204

Specify whether a port outputs framed data

void ssSetOutputPortFrameData(SimStruct *S, int_T port,
int_T outputsFrames)

S
SimStruct representing an S-Function block.

port
Index of an output port.

outputsFrames
Type of signal output by port. Acceptable values are -1 (either frame or
unframed input), 0 (unframed input only), and 1 (framed input only).

Use in md1SetInputPortFrameData to specify whether an output port issues
frame data only, unframed data only, or both.

C

ssGetOutputPortFrameData, md1lSetInputPortFrameData

ssSetOutputPortMatrixDimensions

Purpose

Syntax

Arguments

Description

Languages

Example

Specify dimension information for an output port that emits matrix signals

int_T ssSetOutputPortMatrixDimensions(SimStruct *S, int_T port,
int_T m, in_T n)

S
SimStruct representing an S-Function block.

port
Index of an output port.

m
Row dimension of matrix signals emitted by port or DYNAMICALLY SIZED.

n
Column dimension of matrix signals emitted by port or DYNAMICALLY SIZED.

Specifies that port emits an m-by-n matrix signal. If either dimension is

DYNAMICALLY SIZED, the other must be DYNAMICALLY SIZED or 1. Returns 1 if
successful; otherwise, 0.

C

The following example specifies that input port 0 emits 2-by-2 matrix signals.

ssSetOutputPortMatrixDimensions(S, 0, 2, 2);

9-205

ssSetOutputPortOffsetTime

Purpose
Syntax

Arguments

Description

Languages

See Also

9-206

Specify the offset time of an output port
ssSetOutputPortOffsetTime (SimStruct *S,outputPortIdx,offset)
S

SimStruct representing an S-Function block.

outputPortIdx
Index of the output port whose sample time is being set.

offset
Sample time of an output port.

Use in mdlInitializeSizes (after ssSetNumOutputPorts) to specify the

sample time offset value for each output port index. This should only be used if
you have specified the S-function’s sample times as port-based.

C

ssSetNumOQutputPorts, ssSetOutputPortSampleTime

ssSetOutputPortOptimOpts

Purpose
Syntax

Arguments

Description
Language

See Also

Specify reusability of the memory allocated to the output port of an S-function.
ssSetOutputPortOptimOpts(SimStruct *S, int_T port, uint_t val)
S

SimStruct representing an S-Function block or a Simulink model.

port
Index of an output port of S.

val
Reusability of port. Permissable values are

* SS_REUSABLE_AND_LOCAL
e SS_NOT_REUSABLE_AND_GLOBAL

Use this macro to specify the reusability of an S-function output port.

C

ssGetOutputPortOptimOpts, ssSetInputPortOptimOpts,
ssSetInputPortOverWritable

9-207

ssSetOutputPortOverwritesinputPort

Purpose

Syntax

Arguments

Description

Language

See Also

9-208

Specify whether an output port can share its memory buffer with an input
port.

ssSetOutputPortOverwritesInputPort(SimStruct *S, outIdx, inIdx)

S
SimStruct representing an S-Function block.

outIdx
Index of the output port

inIdx
Index of the input port

The argument inIdx tells Simulink which input port of S can share its memory
with the output port specified by outIdx. inIdx can have the following values:

¢ Index of an input port of S that can share its memory with the specified
output port.

Use must use ssSetInputPortOverWritable to tell Simulink that the
specified input port can share its memory with an output port.

® OVERWRITE_INPUT_ALL
® The output port can share its memory with any input port.
® OVERWRITE_INPUT_NONE

The output port must have its own memory buffer.

C

ssSetInputPortOverWritable

ssSetOutputPortSampleTime

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify the sample time of an output port
ssSetOutputPortSampleTime (SimStruct *S,outputPortIdx,period)

S
SimStruct representing an S-Function block.

outputPortIdx
Index of the output port whose sample time is being set.

period
Sample time of output port.

Usein mdlInitializeSizes (after ssSetNumOutputPorts) to specify the

sample time period as continuous or as a discrete value for each output port
index. This should only be used if you have specified port-based sample times.

C

ssSetNumOQutputPorts, ssSetOutputPortOffsetTime

9-209

ssSetOutputPortVectorDimension

Purpose

Syntax

Arguments

Description

Example

Languages

See Also

9-210

Specify dimension information for an output port that emits vector signals

int_T ssSetOutputPortVectorDimension(SimStruct *S, int_T port,
int_ T w)

S
SimStruct representing an S-Function block.

port
Index of an output port.

w
Width of vector or DYNAMICALLY SIZED.

Specifies that port emits a w-element vector signal. Returns 1 if successful;
otherwise, 0.

Note This macro and ssSetOutputPortWidth are functionally identical.

The following example specifies that output port 0 emits an 8-element matrix
signal.

ssSetOutputPortvVectorDimension(S, 0, 8);
C

ssSetOutputPortWidth

ssSetOutputPortWidth

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

Specify the width of an output port
void ssSetOutputPortWidth(SimStruct *S, int_T port, int_T width)

procedure ssSetOutputPortWidth(S : in SimStruct;
port : in Integer := 0; Width : in Integer);

S
SimStruct representing an S-Function block.

port
Index of the output port whose width is being set.

width
Width of an output port.

UseinmdlInitializeSizes (after ssSetNumOutputPorts) to specify a nonzero
positive integer width or DYNAMICALLY_SIZED for each output port index
starting at 0.

Ada, C

ssSetNumOutputPorts, ssSetInputPortWidth

9-211

ssSetParameterName

Purpose

Syntax

Arguments

Description

Languages

9-212

Set the name of a parameter

procedure ssSetParameterName(S : in SimStruct; Parameter :

Integer; Name : in String);
S
SimStruct representing an S-Function block.

Parameter
Index of a parameter.

Name
Name of the parameter.

Sets the name of Parameter to Name.

Ada

in

ssSetParameterTunable

Purpose

Syntax

Arguments

Description

Languages

Set the tunability of a parameter

procedure ssSetParameterTunable(S : in SimStruct; Parameter : in
Integer; IsTunable : in Boolean);

S
SimStruct representing an S-Function block.

Parameter
Index of a parameter.

IsTunable
True indicates that the parameter is tunable.

Sets the tunability of Parameter to the value of IsTunable.

Ada

9-213

ssSetPlacementGroup

Purpose
Syntax

Arguments

Description

Languages

See Also

9-214

Specify the name of the placement group of a block
void ssSetPlacementGroup(SimStruct *S, const char *groupName)

S

SimStruct representing an S-Function block. The block must be either a source
block (i.e., a block without input ports) or a sink block (i.e., a block without
output ports).

groupName
Name of the placement group of the block represented by S.

Use this macro to specify the name of the placement group to which the block
represented by S belongs. S-functions that share the same placement group
name are placed adjacent to each other in the block execution order list for the
model. This macro should be invoked in md1InitializeSizes.

Note You typically use this macro is to create Real-Time Workshop device
driver blocks.

C

ssGetPlacementGroup

ssSetPWorkValue

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

Set an element of a block’s pointer work vector

void* ssSetPWorkValue(SimStruct *S, int_T idx, void* pointer)
S

SimStruct representing an S-Function block.

idx

Index of the element to be set.

pointer

New pointer element.

Sets the idx element of S’s pointer work vector to pointer. The vector consists
of elements of type void* and is of length ssGetNumPWork (S). Typically, this
vector is initialized in md1Start or md1InitializeConditions, updated in
mdlUpdate, and used in md10utputs. You can use this macro in the simulation
loop, md1lInitializeConditions, or md1Start routines. This macro returns the
pointer that it sets.

The following statement

typedef struct Color_tag {int r; int b; int g;} Color;
Color* p = malloc(sizeof(Color));
ssSetPWorkValue(s, 0, p);

sets the first element of the pointer work vector to a pointer to the allocated
Color structure.

C

ssGetNumPWork, ssGetPWork, ssGetPWorkValue

9-215

ssSetRWorkValue

Purpose
Syntax

Arguments

Description

Example

Languages

See Also

9-216

Set an element of a block’s floating-point work vector
real_T ssSetRWorkValue(SimStruct *S, int_T idx, real_T value)
S

SimStruct representing an S-Function block.
idx

Index of the element to be set.

value

New value of element.

Sets the idx element of S’s floating-point work vector to value. The vector
consists of elements of type real T and is of length ssGetNumRWork(S).
Typically, this vector is initialized in md1Start or mdlInitializeConditions,
updated in md1lUpdate, and used in md10utputs. You can use this macro in the
simulation loop, md1InitializeConditions, or md1Start routines. This macro
returns the value that it sets.

The following statement

ssSetRWorkValue(s, 0, 1.0);

sets the first element of the work vector to 1.0.
C

ssGetNumRWork, ssGetRWork, ssGetRWorkValue

ssSetRunTimeParaminfo

Purpose

Syntax

Arguments

Description

Specify the attributes of a run-time parameter

void ssSetRunTimeParamInfo(SimStruct *S, int_T param, ssParamRec
*info)

S
SimStruct representing an S-Function block.

param
Index of a run-time parameter.

Use this function in md1SetWorkWidths or md1ProcessParameters to specify
information about a run-time parameter. Use an ssParamRec structure to pass
the parameter attributes to the function.

ssParamRec Structure
The simstruc.h macro defines this structure as follows:

typedef struct ssParamRec_tag {
const char *name;
int_T nDimensions;
int_T *dimensions;
DTypeId dataTypeld;
boolean_T complexSignal;

void *data;

const void *dataAttributes;

int_T nDlgParamIndices;

int T *dlgParamIndices;

TransformedFlag transformed; /* Transformed status */
boolean_T outputAsMatrix; /* Write out parameter as a

vector (false)
* [default] or a matrix (true)
*/
} ssParamRec;

The record contains the following fields.

name. Name of the parameter. This must point to persistent memory. Do not
set to a local variable (static char name[32] or strings name are okay).

9-217

ssSetRunTimeParaminfo

9-218

Note The first four characters of block’s run-time parameter names must be
unique. If they are not, Simulink signals an error. For example, trying to
register a parameter named param2 triggers an error if a parameter named
parami already exists.

nDimensions. Number of dimensions that this parameter has.
dimensions. Array giving the size of each dimension of the parameter.

dataTypeld. Data type of the parameter. For built-in data types, see
BuiltInDTypeld in simstruc_types.h.

complexSignal. Specifies whether this parameter has complex numbers (true) or
real numbers (false) as values.

data. Pointer to the value of this run-time parameter. If the parameter is a
vector or matrix or a complex number, this field points to an array of values
representing the parameter elements. Complex Simulink signals are stored
interleaved. Likewise complex run-time parameters must be stored
interleaved. Note that mxArrays stores the real and complex parts of complex
matrices as two separate contiguous pieces of data instead of interleaving the
real and complex parts.

dataAttributes. The data attributes pointer is a persistent storage location where
the S-function can store additional information describing the data and then
recover this information later (potentially in a different function).

nDlgParamindices.
Number of dialog parameters used to compute this run-time parameter.

digParamindices. Indices of dialog parameters used to compute this run-time
parameter.

transformed. Specifies the relationship between this run-time parameter and
the dialog parameters specified by dlgParamIndices. This field can have any
of the following values defined by TransformFlag in simstruc.h.

ssSetRunTimeParaminfo

Languages

See Also

® RTPARAM_NOT_TRANSFORMED

Specifies that this run-time parameter corresponds to a single dialog
parameter (nDialogParamIndices is one) and has the same value as the
dialog parameter.

® RTPARAM_TRANSFORMED

Specifies that the value of this run-time parameter depends on the values of
multiple dialog parameters (nDialogParamIndices > 1) or that this
run-time parameter corresponds to one dialog parameter but has a different
value or data type.

RTPARAM_MAKE_TRANSFORMED_TUNABLE

Specifies that this run-time parameter corresponds to a single tunable dialog
parameter (nDialogParamIndices is one) and that the run-time parameter’s
value or data type differs from the dialog parameter’s. During code
generation, Real-Time Workshop writes the data type and value of the
run-time parameter (rather than the dialog parameter) out to the Real-Time
Workshop file. For example, suppose that the dialog parameter contains a
workspace variable k of type double and value 1. Further, suppose the
S-function sets the data type of the corresponding run-time variable to int8
and the run-time parameter’s value to 2. In this case, during code generation,
the Real-Time Workshop writes k out to the Real-Time Workshop file as an
int8 variable with an initial value of 2.

outputAsMatrix. Specifies whether to write the values of this parameter out to
the model.rtw file as a matrix (true) or as a vector (false).

C

md1lSetWorkWidths, md1lProcessParameters, ssGetNumRunTimeParams,
ssGetRunTimeParamInfo

9-219

ssSetSampleTime

Purpose
C Syntax

Ada Syntax

Arguments

Description

Languages

See Also

9-220

Set the period of a sample time
void ssSetSampleTime(SimStruct *S, st_index, time_T period)

procedure ssSetSampleTime (S : in SimStruct; Period : in time_T;
st_index : in time_ T := 0.0);

S
SimStruct representing an S-Function block.

st_index
Index of the sample time whose period is to be set.

period
Period of the sample time specified by st_index.

Use thismacroin mdlInitializeSizes to specify the period of the sample time
where st_index starts at 0. See “Setting Sample Times and Offsets” on
page 1-15 for more information.

Ada, C

ssSetInputPortSampleTime, ssSetOutputPortSampleTime, ssSetOffsetTime

ssSetSFcnParamNotTunable

Purpose
Syntax

Arguments

Description

Languages

See Also

Make a block parameter nontunable
void ssSetSFcnParamNotTunable(SimStruct *S, int_T index)

S
SimStruct representing an S-Function block.

index
Index of the parameter to be made nontunable.

Use this macro in md1InitializeSizes to specify that a parameter doesn’t
change during the simulation, where index starts at 0 and is less than
ssGetSFcnParamsCount (S). This improves efficiency and provides error
handling in the event that an attempt is made to change the parameter.

Note This macro is obsolete. It is provided only for compatibility with
S-functions created with earlier versions of Simulink.

C

ssSetSFcnParamTunable, ssGetSFcnParamsCount

9-221

ssSetSFcnParamTunable

Purpose

Syntax

Arguments

Description

Languages

See Also

9-222

Make a block parameter tunable

void ssSetSFcnParamTunable(SimStruct *S, int_T param,
int_T isTunable)

S
SimStruct representing an S-Function block.

param
Index of the parameter.

isTunable
Valid values are SS_PRM_TUNABLE (tunable), SS_PRM_NOT_TUNABLE (not
tunable), or SS_PRM_SIM ONLY TUNABLE (tunable only during simulation).

Use this macroin mdlInitializeSizes to specify whether a user can change a
dialog parameter during the simulation. The parameter index starts at 0 and
is less than ssGetSFcnParamsCount (S). This improves efficiency and provides
error handling in the event that an attempt is made to change the parameter.

If you specify the SS_PRM_TUNABLE option, you must create a corresponding
run-time parameter (see “Creating Run-Time Parameters” on page 7-7). You
do not have to create a corresponding run-time parameter if you specify the
SS_PRM_SIM ONLY TUNABLE option.

Note Dialog parameters are tunable by default. However, an S-function
should declare the tunability of all parameters, whether tunable or not, to
avoid programming errors. If the user enables the simulation diagnostic
S-function upgrade needed, Simulink issues the diagnostic whenever it
encounters an S-function that fails to specify the tunability of all its
parameters.

C

ssGetSFcnParamsCount

ssSetSolverNeedsReset

Purpose
Syntax

Arguments

Description

Languages

Example

Ask Simulink to reset the solver
void ssSetSolverNeedsReset (SimStruct *S)

S
SimStruct representing an S-Function block or a Simulink model.

This macro causes the solver for the current simulation to reinitialize variable
step size and zero-crossing computations. This happens only if the solver is a
variable-step, continuous solver. (The macro has no effect if the user has
selected another type of solver for the current simulation.) An S-function
should invoke this macro whenever changes occur in the dynamics of the
S-function, e.g., a discontinuity in a state or output, that might invalidate the
solver’s step-size computations. Otherwise, the solver might take
unnecessarily small steps, slowing down the simulation.

Note Ifa change in the dynamics of the S-function necessitates reinitializing
its continuous states, the S-function should reinitialize the states before
invoking this macro to ensure accurate computation of the next step size.

C

The following example uses this macro to ask Simulink to reset the solver.

static void mdlOutputs(SimStruct *S, int_T tid)

{
1 <snip>
if (under_certain_conditions) {
double *x = ssGetContStates(S);
/* reset the states */
for (i=0; i<nContStates; i++) {
x[1i] = 0.0;
}
/* Ask Simulink to reset the solver. */
ssSetSolverNeedsReset(S);
}
}

9-223

ssSetSolverNeedsReset

Also see the source code for the Time-Varying Continuous Transfer Function
(matlabroot/simulink/src/stvctf.c) for an example of where and how to use
this macro.

9-224

ssSetStopRequested

Purpose
Syntax

Arguments

Description

Languages

See Also

Set the simulation stop requested flag
ssSetStopRequested (SimStruct *S, val)

S
SimStruct representing an S-Function block or a Simulink model.

val
Boolean value (int_T) specifying whether stopping the simulation has been
requested (1) or not (0).

Sets the simulation stop requested flag to val. If val is not 0, Simulink halts
the simulation at the end of the current time step.

C

ssGetStopRequested

9-225

ssSetTNext

Purpose
Syntax

Arguments

Description

Languages

See Also

9-226

Set the time of the next sample hit
void ssSetTNext(SimStruct *S, time_T tnext)

S
SimStruct representing an S-Function block.

tnext
Time of the next sample hit.

A discrete S-function with a variable sample time should use this macro in
md1GetTimeOfNextVarHit to specify the time of the next sample hit.

C

ssGetTNext, ssGetT, md1GetTimeOfNextVarHit

ssSetUserData

Purpose
Syntax

Arguments

Description
Languages

See Also

Specify user data
void ssSetUserData(SimStruct *S, void * data)

S
SimStruct representing an S-Function block.

data
User data.

Specifies user data.
C, C++

ssGetUserData

9-227

ssSetVectorMode

Purpose Specify the vector mode that an S-function supports
Syni'ax void ssSetVectorMode (SimStruct *S, ssVectorMode mode)
Arguments S

SimStruct representing an S-Function block.

mode
Vector mode.

Description Specifies the types of vector-like signals that an S-Function block’s input and
output ports support. Simulink uses this information during signal dimension
propagation to check the validity of signals connected to the block or emitted
by the block. The enumerated type ssVectorMode defines the set of values that
mode can have.

Mode Value Signal Dimensionality Supported
SS_UNKNOWN_MODE Unknown
SS 1 D OR _COL_VECT 1-D (vector) or single-column 2-D (column
vector)
SS_1_D_OR_ROW_VECT 1-D or single-row 2-D (row vector) signals
SS_1_D ROW_OR_COL_VECT Vector or row or column vector
SS_ 1 D _VECT Vector
SS_COL_VECT Column vector
SS_ROW_VECT Row vector
Languages C
Example See simulink/src/sfun_bitop.c for examples that use this macro.

9-228

ssSetZeroBasedindexinputPort

Purpose
Syntax

Arguments

Description

Languages

See Also

Specify that an input port expects zero-based indices.
void ssSetZeroBasedIndexInputPort(SimStruct *S, int_T pIdx)

S
SimStruct representing an S-Function block.

pIdx
Input port of the S-function.

Use this macro in md1InitializeSizes to specify that port pIdx expects
zero-based index values. Simulink signals an error if it detects that the signal
connected to this block is one-based when it updates a diagram containing the
S-function.

C, C++

mdlInitializeSizes, ssSetZeroBasedIndexOutputPort,
ssSetOneBasedIndexInputPort

9-229

ssSetZeroBasedindexOutputPort

Purpose
Syntax

Arguments

Description

Languages

See Also

9-230

Specify that an output port emits zero-based indices.
void ssSetZeroBasedIndexOutputPort(SimStruct *S, int_T pIdx)

S
SimStruct representing an S-Function block.

pIdx
Output port of the S-function.

Use this macro in md1InitializeSizes to specify that port pIdx emits
zero-based index values. Simulink signals an error if it detects during model
update that the port is connected to an input that expects one-based indices.

C, C++

mdlInitializeSizes, ssSetZeroBasedIndexInputPort,
ssSetOneBasedIndexOutputPort

ssUpdateAllTunableParamsAsRunTimeParams

Purpose

Syntax

Arguments

Description

Languages

See Also

Update the values of run-time parameters to be the same as those of the
corresponding tunable dialog parameters

void ssUpdateAllTunableParamsAsRunTimeParams (SimStruct *S)

S
SimStruct representing an S-Function block.

Use this macro in the S-function’s md1ProcessParameters method to update
the values of all run-time parameters created by the
ssRegAllTunableParamsAsRunTimeParams macro.

C

mdlProcessParameters, ssUpdateRunTimeParamInfo,
ssRegAllTunableParamsAsRunTimeParams

9-231

ssUpdateRunTimeParamData

Purpose
Syntax

Arguments

Description

Languages

See Also

9-232

Update the value of a run-time parameter
void ssUpdateRunTimeParambData(SimStruct *S, int_T param, void *data)
S

SimStruct representing an S-Function block.

param
Index of a run-time parameter.

data
New value of the parameter.

Use this macro in the S-function’s md1ProcessParameters method to update
the value of the run-time parameter specified by param.

C

mdlProcessParameters, ssGetRunTimeParamInfo,
ssUpdateAllTunableParamsAsRunTimeParams,
ssRegAllTunableParamsAsRunTimeParams

ssUpdateDIlgParamAsRunTimeParam

Purpose
Syntax

Arguments

Description

Languages

See Also

Update a run-time parameter that corresponds to a dialog parameter
ssUpdateDlgParamAsRunTimeParam(S, rtIdx)

S
SimStruct representing an S-Function block or a Simulink model.

rtIdx
Index of the run-time parameter.

Use in md1ProcessParameters to set the value of the run-time parameter
specified by rtIdx to the current value of the dialog parameter specified by
dlgIdx. If necessary, this function converts the data type of the value to the
data type specified by dtId.

C

ssUpdateAllTunableParamsAsRunTimeParams

9-233

ssUpdateRunTimeParaminfo

Purpose

Syntax

Arguments

Description

Languages

See Also

9-234

Update the attributes of a run-time parameter

void ssUpdateRunTimeParamInfo(SimStruct *S, int_T param, ssParamRec
*info)

S
SimStruct representing an S-Function block.

param
Index of a run-time parameter.

info
Attributes of the run-time parameter.

Use this macro in the S-function’s md1ProcessParameters method to update
specific run-time parameters. For each parameter to be updated, the method
should first obtain a pointer to the parameter’s attributes record (ssParamRec),
using ssGetRunTimeParamInfo. The method should then update the record and
pass it back to Simulink, using this macro.

Note Ifyou used ssRegAllTunableParamsAsRunTimeParams to create the
run-time parameters, use ssUpdateAllTunableParamsAsRunTimeParams to
update the parameters.

C

mdlProcessParameters, ssGetRunTimeParamInfo,
ssUpdateAllTunableParamsAsRunTimeParams,
ssRegAllTunableParamsAsRunTimeParams

ssWarning

Purpose
Syntax

Arguments

Description

Languages

See Also

Display a warning message
ssWarning(SimStruct *S, msg)

S

SimStruct representing an S-Function block or a Simulink model.
msg

Warning message.

Displays msg. Expands to mexWarnMsgTxt when compiled for use with
Simulink. When compiled for use with the Real-Time Workshop, expands to
printf("Warning:%s from '%s'\n",msg, ssGetPath(S));, if the target has
stdio facilities; otherwise, it expands to a comment.

C

ssSetErrorStatus, ssPrintf

9-235

ssWriteRTW2dMatParam

Purpose

Syntax

Arguments

Description

Languages

See Also

9-236

Write a matrix parameter to the model.rtw file

int_T ssWriteRTW2dMatParam(SimStruct *S, const char_T *name,
const void *value, int_T dataType, int_T nRows, int_T nCols)

S
SimStruct representing an S-Function block.

name
Parameter name.

value
Parameter values.

dataType
Data type of parameter elements (see “Specifying Data Type Info” on
page 9-241).

nRows
Number of rows in the matrix.

nColumns
Number of columns in the matrix.

Use this function in md1RTW to write a vector of numeric parameters to this
S-function’s model. rtw file. This function returns true if successful.

C

md1RTW

ssWriteRTWMx2dMatParam

Purpose

Syntax

Arguments

Description

Languages

See Also

Write a matrix parameter in MATLAB format to the model. rtw file

int_T ssWriteRTWMx2dMatParam(SimStruct *S, const char_T *name,
const void *rValue, const void *iValue, int_T dataType, int_T
nRows, int_T nCols)

S
SimStruct representing an S-Function block.

name
Parameter name.

rvalue
Real elements of the parameter array.

ivalue
Imaginary elements of the parameter array.

dataType
Data type of the parameter elements (see “Specifying Data Type Info” on
page 9-241).

nRows
Number of rows in the matrix.

nColumns
Number of columns in the matrix.

Use this function in md1RTW to write a matrix parameter in MATLAB format to
this S-function’s model. rtw file. This function returns true if successful.

C

md1RTW, ssWriteRTW2dMatParam

9-237

ssWriteRTWMxVectParam

Purpose Write a vector parameter in MATLAB format to the model.rtw file

Syntax int_T ssWriteRTWMxVectParam(SimStruct *S, const char_T *name,
const void *rValue, const void *iValue, int_T dataType, int_T
size)

Arguments S

SimStruct representing an S-Function block.

name
Parameter name.

rvalue
Real values of the parameter.

cValue
Complex values of the parameter.

dataType
Data type of the parameter elements (see “Specifying Data Type Info” on
page 9-241).

size
Number of elements in the vector.

Description Use this function in md1RTW to write a vector parameter in Simulink format to
this S-function’s model. rtw file. This function returns true if successful.

Languages C

See Also md1RTW, ssWriteRTWMxVectParam

9-238

ssWriteRTWParameters

Purpose

Syntax

Arguments

Description

Write tunable parameter information to the model. rtw file

int_T ssWriteRTWParameters(SimStruct *S, int_T nParams, int_T
paramType, const char_T *paramName, const char_T *stringInfo,

-)

S
SimStruct representing an S-Function block.

nParams
Number of tunable parameters.

paramType
Type of parameter (see “Parameter Type-Specific Arguments”).

paramName
Name of the parameter.

stringInfo
General information about the parameter, such as how it was derived.

Remaining arguments depend on the parameter type (see “Parameter
Type-Specific Arguments”).

Use this function in md1RTW to write tunable parameter information to this
S-function’s model. rtw file. Your S-function must write the parameters out in
the same order as they are declared at the beginning of the S-function. This
function returns true if successful.

Note This function is provided for compatibility with S-functions that do not
use run-time parameters. It is suggested that you use run-time parameters
(see “Run-Time Parameters” on page 7-6). If you do use run-time parameters,
you do not need to use this function.

9-239

ssWriteRTWParameters

9-240

Parameter Type-Specific Arguments

This section lists the parameter-specific arguments required by each
parameter type.

® SS WRITE_VALUE_VECT (vector parameter)

Argument Description
const real T *valueVect Pointer to an array of vector values
int_T vectLen Length of the vector

® SSWRITE_VALUE_2DMAT (matrix parameter)

Argument Description

const real_T *valueMat Pointer to an array of matrix elements
int_T nRows Number of rows in the matrix

int_T nCols Number of columns in the matrix

® SSWRITE_VALUE_DTYPE_2DMAT

Argument Description

const real_T *valueMat Pointer to an array of matrix elements
int_T nRows Number of rows in the matrix

int_T nCols Number of columns in the matrix
int_T dtInfo Data type of matrix elements (see

“Specifying Data Type Info” on page 9-241)

ssWriteRTWParameters

* SSWRITE_VALUE_DTYPE_ML_VECT

Argument

Description

const void *rValueVect
const void *iValueVect
int_T vectLen

int_T dtInfo

Real component of the complex vector
Imaginary component of the complex vector
Length of the vector

Data type of the vector (see “Specifying
Data Type Info” on page 9-241)

e SSWRITE_VALUE_DTYPE_ML_2DMAT

Argument

Description

const void *rValueMat

const void *iValueMat

int_T nRows
int_T nCols

int_T dtInfo

Real component of the complex matrix

Imaginary component of the complex
matrix

Number of rows in the matrix
Number of columns in the matrix

Data type of matrix

Specifying Data Type Info

You obtain the data type of the value argument passed to the ssWriteRTW

macros using

DTINFO(dTypeId, isComplex)

where dTypeId can be any one of the enum values in BuiltInDTypeID
(SS_DOUBLE, SS_SINGLE, SS_INT8, SS_UINT8, SS_INT16, SS_UINT16, SS_INT32,
SS_UINT32, SS_BOOLEAN) defined in simstuc_types.h. The isComplex

argument is either 0 or 1.

For example, DTINFO(SS_INT32,0) is a noncomplex 32-bit signed integer.

9-241

ssWriteRTWParameters

Example
Languages

See Also

9-242

If isComplex==1, the array of values is assumed to have the real and imaginary
parts arranged in an interleaved manner (i.e., Simulink format). If you prefer
to pass the real and imaginary parts as two separate arrays, you should use the
macro ssWriteRTWMxVectParam or ssWriteRTWMx2dMatParam.

See simulink/src/sfun_multiport.c for an example that uses this function.
C

md1RTW

ssWriteRTWParamSettings

Purpose

Syntax

Arguments

Description

Write values of nontunable parameters to the model.rtw file

int_T ssWriteRTWParamSettings(SimStruct *S, int_T nParamSettings,
int_T paramType, const char_T *settingName, ...)

S
SimStruct representing an S-Function block.

nParamSettings
Number of parameter settings.

paramType
Type of parameter (see “Parameter Setting Type-Specific Arguments” on
page 9-243).

settingName
Name of parameter.

Remaining arguments depend on the parameter type (see “Parameter Setting
Type-Specific Arguments”).

Use this function in md1RTW to write nontunable parameter setting information
to this S-function’s model.rtw file. A nontunable parameter is any parameter
that the S-function has declared as nontunable, using the
ssSetParameterTunable macro. You can also use this macro to write out other
constant values required to generate code for this S-function.

This function returns true if successful.
Parameter Setting Type-Specific Arguments

This section lists the parameter-specific arguments required by each
parameter type.

® SSWRITE_VALUE_STR (unquoted string)

Argument Description

const char T *value String (e.g., U.S.A.)

9-243

ssWriteRTWParamSettings

® SSWRITE_VALUE_QSTR (quoted string)

Argument Description

const char T *value String (e.g., "U.S.A.")

® SSWRITE_VALUE_VECT_STR (vector of strings)

Argument Description
const char_T *value Vector of strings (e.g., ["USA", "Mexico"])
int T nItemsInVect Size of the vector

® SSWRITE_VALUE_NUM (number)

Argument Description

const real T value Number (e.g., 2)

® SSWRITE_VALUE_VECT (vector of numbers)

Argument Description
const real T *value Vector of numbers (e.g., [300, 100])
int T vectLen Size of the vector

® SSWRITE_VALUE_2DMAT (matrix of numbers)

Argument Description

const real T *value Matrix of numbers (e.g.,
[[170, 130],[60, 401])

int_T nRows Number of rows in the vector

int_T nCols Number of columns in the vector

9-244

ssWriteRTWParamSettings

® SSWRITE_VALUE_DTYPE_NUM (data typed number)

Argument

Description

const void *value

int_T dtInfo

Number (e.g., [3+41])

Data type (see “Specifying Data Type Info”
on page 9-241)

® SSWRITE_VALUE DTYPE_VECT (data typed vector)

Argument

Description

const void *value
int_T vectLen

int_T dtInfo

Data-typed vector (e.g., [1+2i, 3+4i])
Size of the vector

Data type (see “Specifying Data Type Info”
on page 9-241)

* SSWRITE_VALUE_DTYPE_2DMAT (data-typed matrix)

Argument

Description

const void *value
int_T nRows
int_T nCols

int_T dtInfo

Matrix (e.g., [1+21 3+4i; 5 6])
Number of rows in the matrix
Number of columns in the matrix

Data type (see “Specifying Data Type Info”
on page 9-241)

9-245

ssWriteRTWParamSettings

* SSWRITE_VALUE_DTYPE_ML_VECTOR (data-typed MATLAB vector)

Argument Description
const void *RValue Real component of the vector (e.g., [1 3])
const void *IValue Imaginary component of the vector
(e.g., [2 5])
int_T vectLen Number of elements in the vector
int T dtInfo Data type (see “Specifying Data Type Info” on
page 9-241)

* SSWRITE_VALUE_DTYPE_ML_2DMAT (data typed MATLAB matrix)

Argument Description

const void *RValue Real component of the matrix
(e.g.,[1 53 6])

const void *IValue Real component of the matrix
(e.g., [2 0 4 0])

int_T nRows Number of rows in the matrix
int_T nCols Number of columns in the matrix
int_T dtInfo Data type (see “Specifying Data Type Info”

on page 9-241)

Example See simulink/src/sfun_multiport.c for an example that uses this function.
Languages C
See Also md1RTW, ssSetParameterTunable

9-246

ssWriteRTWScalarParam

Purpose

Syntax

Arguments

Description

Languages

See Also

Write a scalar parameter to the model.rtw file

int_T ssWriteRTWScalarParam(SimStruct *S, const char_T *name,
const void *value, int_T type)

S
SimStruct representing an S-Function block.

name
Parameter name.

value
Parameter value.

type

Integer ID of the type of the parameter value, for example, the ID of one of the
Simulink built-in data types (see BuiltInDTypeldin simstruc_types.hin the
MATLAB simulink/include subdirectory) or the ID of a user-defined type (see
“Custom Data Types” on page 7-16).

Use this function in md1RTW to write scalar parameters to this S-function’s
model. rtw file. This function returns true if successful.

C

md1RTW

9-247

ssWriteRTWStr

Purpose Write a string to the model. rtw file
Syntax int_T ssWriteRTWStr(SimStruct *S, const char_T *str)
Arguments S
SimStruct representing an S-Function block.
str
String.
Description Use this function in md1RTW to write strings to this S-function’s model. rtw file.

This function returns true if successful.
Languages C

See Also md1RTW

9-248

ssWriteRTWStrParam

Purpose

Syntax

Arguments

Description

Languages

See Also

Write a string parameter to the model.rtw file

int_T ssWriteRTWStrParam(SimStruct *S, const char_T *name,
const char_T *value)

S
SimStruct representing an S-Function block.

name
Parameter name.

value
Parameter value.

Use this function in md1RTW to write string parameters to this S-function’s
model.rtw file. This function returns true if successful.

C

md1RTW

9-249

ssWriteRTWStrVectParam

Purpose

Syntax

Arguments

Description

Languages

See Also

9-250

Write a string vector parameter to the model.rtw file

int_T ssWriteRTWStrVectParam(SimStruct *S, const char_T *name,
const void *value, int_T size)

S
SimStruct representing an S-Function block.

name
Parameter name.

value
Parameter values.

size
Number of elements in the vector.

Use this function in md1RTW to write a vector of string parameters to this
S-function’s model. rtw file. This function returns true if successful.

C

md1RTW

ssWriteRTWVectParam

Purpose

Syntax

Arguments

Description

Languages

See Also

Write a vector parameter to the model. rtw file

int_T ssWriteRTWVectParam(SimStruct *S, const char_T *name,
const void *value, int_T dataType, int_T size)

S
SimStruct representing an S-Function block.

name
Parameter name.

value
Parameter values.

dataType
Data type of the parameter elements (see “Specifying Data Type Info” on
page 9-241).

size
Number of elements in the vector.

Use this function in md1RTW to write a vector parameter in Simulink format to
this S-function’s model. rtw file. This function returns true if successful.

C

md1RTW, ssWriteRTWMxVectParam

9-251

ssWriteRTWWorkVect

Purpose

Syntax

Arguments

Description

Languages

See Also

9-252

Write work vectors to the model. rtw file

int_T ssWriteRTWWorkVect (SimStruct *S, const char_T *vectName,
int_T nNames, const char_T *namei, int_T sizel, ...,
const char_T * nameN, int_T sizeN)

S
SimStruct representing an S-Function block.

vectName
Name of work vector (must be "RWork", "IWork", or "PWork").

nNames
Number of names (see next argument).

namei ... nameN
Names of groups of work vector elements.

sizel ... sizeN
Size of each element group (the total of the sizes must equal the size of the work
vector).

Use this function in md1RTW to write work vectors to this S-function’s model. rtw
file. This function returns true if successful.

C

md1RTW

A
Ada S-functions

creating 5-3

example 5-10

GNAT Ada95 compiler 5-9

mex syntax 5-9

source file format 5-3

specification 5-3
additional parameters for M-file S-functions 2-7
array bounds

checking 7-39

B
block I/0 ports 7-10

block-based sample times 7-18
specifying 7-18

Build Info pane
S-Function Builder 3-27

C
C language header file

matlabroot/simulink/include/simstruc.h
9-2
C MEX S-functions
advantages 3-2
converting from level 1 to level 2 3-48
creating 3-3
definition 1-2
example 3-29
modes for compiling 3-38
S-Function Builder 3-5
Simulink interaction 3-39
C++ objects
making persistent 4-6
C++ S-functions

building 4-7
mex command 4-7
callback methods 1-10
CFortran 6-10
cg_sfun.h 3-37
checking array bounds 7-39
compiler compatibility
Fortran 6-7
continuous blocks
setting sample time 7-26
Continuous Derivatives pane
S-Function Builder 3-24
continuous state S-function example (C MEX)
7-40
continuous state S-function example (M-file)
2-10
creating persistent C++ objects 4-6
C-to-Fortran gateway S-function 6-7

D
data types
using user-defined 7-16
direct feedthrough 1-13
discrete state S-function example (C MEX) 7-45
discrete state S-function example (M-file) 2-13
Discrete Update pane
S-Function Builder 3-26
dynamically sized inputs 1-13

E

error handling
checking array bounds 7-39
exception free code 7-37
examples

I-1

Index

I-2

Ada S-function specification 5-3
C MEX S-function 3-29
continuous state S-function (C MEX) 7-40
continuous state S-function (M-file) 2-10
discrete state S-function (C MEX) 7-45
discrete state S-function (M-file) 2-13
Fortran MEX S-function 6-3
hybrid system S-function (C MEX) 7-49
hybrid system S-function (M-file) 2-15
pointer work vector 7-32
sample time for continuous block 7-26
sample time for hybrid block 7-26
time-varying continuous transfer function (C
MEX) 7-68
variable-step S-function (C MEX) 7-53
variable-step S-function (M-file) 2-18
zero-crossing S-function (C MEX) 7-57
exception free code 7-37
extern "C" statement 4-2

F
Fortran compilers 6-10
Fortran math library 6-9
Fortran MEX S-functions
example 6-3
template file 6-3
function-call subsystems 7-35

H
header files 3-36

hybrid blocks
setting sample time 7-26
hybrid sample times
specifying 7-24
hybrid system S-function example (C MEX) 7-49

hybrid system S-function example (M-file) 2-15

|
Initialization pane
S-Function Builder 3-12
input arguments for M-file S-functions 2-9
input ports
how to create 7-10
inputs, dynamically sized 1-13

L
level 1 C MEX S-functions
converting to level 2 3-48
Libraries pane
S-Function Builder 3-19

M

masked multiport S-functions 7-15

matlabroot/simulink/include/simstruc.h C
language header file 9-2

matlabroot/simulink/src/csfunc.c example file
7-42

matlabroot/simulink/src/dsfunc.c example file
7-46

matlabroot/simulink/src/mixedm.c example file
7-50

matlabroot/simulink/src/
sfun_counter_cpp.cpp

ensuring Simulink compatibility of C++

S-functions 4-2

matlabroot/simulink/src/
sfun_timestwo_for.for Fortran example
file 6-3

Index

matlabroot/simulink/src/sfun_zc_sat.c
example file 7-57

matlabroot/simulink/src/stvctf.cexamplefile
7-69

matlabroot/simulink/src/vsfunc.cexample file
7-54

matrix.h 3-36

mdlCheckParameters 8-2

mdlDerivatives 8-4

md1GetTimeOfNextVarHit 8-5

mdlInitializeConditions 8-6

mdlInitializeSampleTimes 8-8

mdlInitializeSizes 8-12

and sizes structure 1-14
calling sizes 2-6

md1lOutputs 8-16

mdlProcessParameters 8-17

md1RTW 8-19

md1lSetDefaultPortComplexSignals 8-20

mdlSetDefaultPortDataTypes 8-21

md1lSetDefaultPortDimensionInfo 8-22

md1lSetInputPortComplexSignal 8-23

mdlSetInputPortDataType 8-24

md1lSetInputPortDimensionInfo 8-25

md1lSetInputPortFrameData 8-27

md1lSetInputPortSampleTime 8-28

md1SetInputPortWidth 8-30

md1SetOutputPortComplexSignal 8-31

md1SetOutputPortDataType 8-32, 8-38

md1lSetOutputPortDimensionInfo 8-33

md1lSetOutputPortSampleTime 8-35

md1SetOutputPortWidth 8-36

md1lSetWorkWidths 8-37

md1lStart 8-39

mdlTerminate 8-40

mdlUpdate 8-41

mdlZeroCrossings 8-42

memory allocation 7-34

memory and work vectors 7-30

mex command
building Ada S-functions 5-9
building C MEX S-functions 3-34
building C++ S-functions 4-7

mex.h 3-36

M-file S-functions
arguments 2-4
creating 2-4
defining characteristics 2-6
definition 2-4
passing additional parameters 2-7
routines 2-4

multirate S-Function blocks 7-25
synchronizing 7-27

(0

obsolete macros 3-50
options, S-function 9-197
output ports

how to create 7-12
Outputs pane

S-Function Builder 3-20

P

parameters
M-file S-functions 2-7
passing to S-functions 1-4
run-time parameters 7-6
tunable parameters 7-3
penddemo demo 1-5
persistence
C++ objects 4-6
port-based sample times 7-21

I-3

Index

I-4

constant 7-22
inherited 7-22
specifying 7-21
triggered 7-23

R

reentrancy 7-30

run-time parameter names, uniqueness of 7-7
run-time parameters 7-6

run-time routines 7-38

S

S_FUNCTION_LEVEL 2, #define 3-35
S_FUNCTION_NAME, #define 3-35
sample times

block-based 7-18

continuous block example 7-26

hybrid block example 7-26

port-based 7-21

specifying block-based 7-17, 7-18

specifying hybrid 7-24

specifying port-based 7-21
scalar expansion of inputs 7-13
S-Function blocks

multirate 7-25

S-functions parameters field 7-2

synchronizing multirate 7-27
S-Function Builder

Build Info pane 3-27

Continuous Derivatives pane 3-24

customizing 3-10

Discrete Update pane 3-26

for C MEX S-functions 3-5

Initialization pane 3-12

Libraries pane 3-19

Outputs pane 3-20

setting the include path 3-9
S-function routines

M-file 2-4
S-functions

building C++ 4-7

C MEX 1-2

creating Ada 5-3

creating C MEX 3-3

creating Fortran 6-3

creating level 2 with Fortran 6-7

creating persistent C++ objects 4-6

creating run-time parameters 7-7

definition 1-2

direct feedthrough 1-13

exception free code 7-37

input arguments for M-files 2-9

level 1 and level 2 6-2

masked multiport 7-15

options 9-197

purpose 1-5

routines 1-9

run-time parameters 7-6

run-time routines 7-38

using in models 1-3

when to use 1-5

writing in C++ 4-2

See also Ada S-functions

See also C MEX S-functions

See also C++ S-functions

See also Fortran MEX S-functions

See also M-file S-functions
S-functions parameters field

S-Function block 7-2
sfuntmpl.c template 3-35
sfuntmpl.m template

M-file S-function 2-4

Index

sfuntmpl_fortran.for template 6-3
simsizes function
M-file S-function 2-6
SimStruct 3-37
SimStruct macros 9-3
simulation loop 1-6
simulation stages 1-6
simulink.c 3-37
sizes structure
fields
M-file S-function 2-6
returned in md1InitializeSizes 1-14
SS_OPTION_ALLOW_CONSTANT PORT_SAMPLE_TIME
9-200
SS_OPTION_ALLOW_INPUT_SCALAR_EXPANSION
9-197
SS_OPTION_ALLOW_PARTIAL_DIMENSIONS CALL
9-198

SS_OPTION_ALLOW_PORT_BASED_SAMPLE_TIME_IN_

TRIGSS 9-200
SS_OPTION_ASYNC_RATE_TRANSITION 9-198
SS_OPTION_ASYNCHRONOUS 9-198
SS_OPTION_CALL_TERMINATE_ON_EXIT 9-199
SS_OPTION_CAN_BE_CALLED CONDITIONALLY

9-200
SS_OPTION_DISALLOW_CONSTANT SAMPLE_TIME

9-198
SS_OPTION_DISCRETE_VALUED OUTPUT 9-197
SS_OPTION_EXCEPTION_FREE_CODE 9-197
SS_OPTION_FORCE_NONINLINED FCNCALL 9-198
SS_OPTION_PLACE_ASAP 9-197
SS_OPTION_PORT_SAMPLE_TIMES_ASSIGNED 9-198
SS_OPTION_REQ_INPUT_ SAMPLE_TIME_MATCH

9-200
SS_OPTION_RUNTIME_EXCEPTION_FREE_CODE

9-197
SS_OPTION_SFUNCTION_INLINED FOR_RTW 9-198

SS_OPTION_SIM VIEWING_DEVICE 9-199
SS_OPTION_USE_TLC WITH_ACCELERATOR 9-198
SS_OPTION_WORKS_WITH_CODE_REUSE 9-200
ssCallExternalModeFcn 9-23
ssCallSystemWithTid 9-24
ssDisableSystemWithTid 9-25
ssGetAbsTol 9-28
ssGetBlockReduction 9-29
ssGetContStateAddress 9-30
ssGetContStates 9-31
ssGetDataTypeld 9-32
ssGetDataTypeName 9-33
ssGetDataTypeSize 9-34
ssGetDataTypeZero 9-35
ssGetDiscStates 9-36
ssGetDTypeIdFromMxArray 9-37
ssGetDWork 9-39
ssGetDWorkComplexSignal 9-40
ssGetDWorkDataType 9-41
ssGetDWorkName 9-42
ssGetDWorkRTWIdentifier 9-43
ssGetDWorkRTWStorageClass 9-44
ssGetDWorkRTWTypeQualifier 9-45
ssGetDWorkUsedAsDState 9-46
ssGetDWorkwidth 9-47

ssGetdX 9-48

ssGetErrorStatus 9-49
ssGetInlineParameters 9-51
ssGetInputPortBufferDstPort 9-52
ssGetInputPortComplexSignal 9-53
ssGetInputPortConnected 9-54, 9-97
ssGetInputPortDataType 9-55
ssGetInputPortDimensions 9-56
ssGetInputPortDirectFeedThrough 9-57
ssGetInputPortFrameData 9-58
ssGetInputPortNumDimensions 9-59
ssGetInputPortOffsetTime 9-60

I-5

Index

I-6

ssGetInputPortOverWritable 9-62
ssGetInputPortRealSignal 9-63
ssGetInputPortRealSignalPtrs 9-65

ssGetInputPortRequiredContiguous 9-66

ssGetInputPortSampleTime 9-67
ssGetInputPortSampleTimeIndex 9-68
ssGetInputPortSignal 9-69
ssGetInputPortSignalAddress 9-70
ssGetInputPortSignalPtrs 9-71
ssGetInputPortWidth 9-72
ssGetIWork 9-73

ssGetModelName 9-75
ssGetModeVector 9-76
ssGetModeVectorValue 9-13, 9-77
ssGetNonsampledzCs 9-78
ssGetNumContStates 9-79
ssGetNumDataTypes 9-80
ssGetNumDiscStates 9-81
ssGetNumDWork 9-82
ssGetNumInputPorts 9-83
ssGetNumIWork 9-84

ssGetNumModes 9-85
ssGetNumNonsampledZCs 9-86
ssGetNumQutputPorts 9-87
ssGetNumParameters 9-88
ssGetNumPWork 9-90
ssGetNumRunTimeParams 9-89
ssGetNumRWork 9-91
ssGetNumSampleTimes 9-92
ssGetNumSFcnParams 9-93
ssGetOffsetTime 9-94
ssGetOutputPortBeingMerged 9-95
ssGetOutputPortComplexSignal 9-96
ssGetOutputPortDataType 9-98
ssGetOutputPortDimensions 9-99
ssGetOutputPortFrameData 9-100
ssGetOutputPortNumDimensions 9-101

ssGetOutputPortOffsetTime 9-102
ssGetOutputPortRealSignal 9-104
ssGetOutputPortSampleTime 9-105
ssGetOutputPortSignal 9-106
ssGetOutputPortSignalAddress 9-107
ssGetOutputPortWidth 9-108
ssGetParentSS 9-109

ssGetPath 9-110
ssGetPlacementGroup 9-111

ssGetPortBasedSampleTimeBlockIsTriggered

9-112
ssGetPWork 9-113
ssGetPWorkValue 9-114
ssGetRealDiscStates 9-115
ssGetRootSS 9-116
ssGetRunTimeParamInfo 9-117
ssGetRWork 9-74, 9-118
ssGetRWorkValue 9-119
ssGetSampleTime 9-120
ssGetSampleTimeOffset 9-121
ssGetSampleTimePeriod 9-122
ssGetSFcnParam 9-123
ssGetSFcnParamsCount 9-124
ssGetSimMode 9-125
ssGetSolverMode 9-126
ssGetSolverName 9-127
ssGetStateAbsTol 9-128
ssGetStopRequested 9-129
ssGetT 9-130
ssGetTaskTime 9-131
ssGetTFinal 9-132
ssGetTNext 9-133
ssGetTStart 9-134
ssGetUserData 9-135
ssIsContinuousTask 9-136
ssIsFirstInitCond 9-137
ssIsMajorTimeStep 9-138

Index

ssIsMinorTimeStep 9-139
ssIsSampleHit 9-140
ssIsSpecialSampleHit 9-141
ssIsVariableStepSolver 9-142
ssParamRec structure 9-217

returned by ssGetRunTimeParamInfo 9-117
ssPrintf 9-143
ssRegAllTunableParamsAsRunTimeParams 9-145
ssRegDlgParamAsRunTimeParam 9-144
ssRegisterDataType 9-146
ssSampleTimeAndOffsetAreTriggered 9-147
ssSetBlockReduction 9-148
ssSetCallSystemOutput 9-149
ssSetDataTypeSize 9-150
ssSetDataTypeZero 9-151
ssSetDWorkComplexSignal 9-153
ssSetDWorkDataType 9-154
ssSetDWorkName 9-155
ssSetDWorkRTWIdentifier 9-156
ssSetDWorkRTWStorageClass 9-157
ssSetDWorkRTWTypeQualifier 9-158
ssSetDWorkUsedAsDState 9-159
ssSetDWorkWidth 9-160
ssSetErrorStatus 9-161
ssSetExternalModeFcn 9-163
ssSetInputPortComplexSignal 9-164
ssSetInputPortDataType 9-165
ssSetInputPortDimensionInfo 9-166
ssSetInputPortDirectFeedThrough 9-168
ssSetInputPortFrameData 9-169
ssSetInputPortMatrixDimensions 9-170
ssSetInputPortOffsetTime 9-171
ssSetInputPortOverWritable 9-173
ssSetInputPortRequiredContiguous 9-174
ssSetInputPortSampleTime 9-175
ssSetInputPortVectorDimension 9-176
ssSetInputPortWidth 9-177

ssSetIWorkvValue 9-178
ssSetModeVectorvValue 9-180
ssSetNumContStates 9-181
ssSetNumDiscStates 9-182
ssSetNumDWork 9-183
ssSetNumInputPorts 9-184
ssSetNumIWork 9-185

ssSetNumModes 9-186
ssSetNumNonsampledzCs 9-187
ssSetNumOutputPorts 9-188
ssSetNumPWork 9-189
ssSetNumRunTimeParams 9-190
ssSetNumRWork 9-191
ssSetNumSampleTimes 9-192
ssSetNumSFcnParams 9-193
ssSetOffsetTime 9-194
ssSetOneBasedIndexInputPort 9-195
ssSetOneBasedIndexOutputPort 9-196
ssSetOptions 9-197
ssSetOutputPortComplexSignal 9-201
ssSetOutputPortDataType 9-202
ssSetOutputPortFrameData 9-204
ssSetOutputPortMatrixDimensions 9-205
ssSetOutputPortOffsetTime 9-206
ssSetOutputPortSampleTime 9-209
ssSetOutputPortVectorDimension 9-210
ssSetOutputPortWidth 9-211
ssSetParameterName 9-212
ssSetParameterTunable 9-213
ssSetPlacementGroup 9-214
ssSetPWorkvalue 9-215
ssSetRunTimeParamInfo 9-217
ssSetRWorkValue 9-216
ssSetSampleTime 9-220
ssSetSFcnParamNotTunable 9-221
ssSetSFcnParamTunable 9-222
ssSetSolverNeedsReset 9-223

I-7

Index

I-8

ssSetStopRequested 9-225
ssSetTNext 9-226
ssSetUserData 9-227
ssSetVectorMode 9-228
ssSetZeroBasedIndexInputPort 9-229
ssSetZeroBasedIndexOutputPort 9-230
ssUpdateAllTunableParamsAsRunTimeParams
9-231
ssUpdateRunTimeParamData 9-232
ssUpdateRunTimeParamInfo 9-234
ssWarning 9-235
ssWriteRTW2dMatParam 9-236
ssWriteRTWMx2dMatParam 9-237
ssWriteRTWMxVectParam 9-238
ssWriteRTWParameters 9-239
ssWriteRTWParamSettings 9-243
ssWriteRTWScalarParam 9-247
ssWriteRTWStr 9-248
ssWriteRTWStrParam 9-249
ssWriteRTWStrVectParam 9-250
ssWriteRTWVectParam 9-251
ssWriteRTWWorkVect 9-252

synchronizing multirate S-Function blocks 7-27

T

templates
M-file S-function 2-4
time-varying continuous transfer function
example (C MEX) 7-68
tmwtypes.h 3-36
tunable parameters 7-3

\'

variable-step S-function example (C MEX) 7-53

variable-step S-function example (M-file) 2-18

w

work vectors 7-30

writing S-functions in Ada 5-3
writing S-functions in C++ 4-2
writing S-functions in MATLAB 2-4

y 4
zero-crossing S-function example (C MEX) 7-57

	Overview of S-Functions
	What Is an S-Function?
	Using S-Functions in Models
	Passing Parameters to S-Functions
	When to Use an S-Function

	How S-Functions Work
	Mathematics of Simulink Blocks
	Simulation Stages
	S-Function Callback Methods

	Implementing S-Functions
	M-File S-Functions
	MEX-File S-Functions
	MEX-File Versus M-File S-Functions

	S-Function Concepts
	Direct Feedthrough
	Dynamically Sized Arrays
	Setting Sample Times and Offsets

	S-Function Examples
	M-File S-Function Examples
	C S-Function Examples
	Fortran S-Function Examples
	C++ S-Function Examples
	Ada S-Function Examples

	Writing M S-Functions
	Level-1 Versus Level-2 M-File S-Functions
	Writing Level-2 M-File S-Functions
	Writing Level-1 M-File S-Functions
	S-Function Arguments
	S-Function Outputs
	Defining S-Function Block Characteristics
	Processing S-Function Parameters
	Examples of Level-1 M-File S-Functions
	Simple Level-1 M-File S-Function Example
	Example - Continuous State S-Function
	Example - Discrete State S-Function
	Example - Hybrid System S-Function
	Example - Variable Sample Time S-Function

	Writing S-Functions in C
	Introduction
	Creating C MEX S-Functions

	Building S-Functions Automatically
	Deploying the Generated S-Function
	How the S-Function Builder Builds an S-Function
	Setting the Include Path

	S-Function Builder Dialog Box
	Parameters/S-Function Name Pane
	S-function name
	S-function parameters

	Port/Parameter Pane
	Initialization Pane
	Number of discrete states
	Discrete states IC
	Number of continuous states
	Continuous states IC
	Sample mode
	Sample time value
	Interval between updates of the S-function’s outputs. This field is enabled only if you have sele...

	Data Properties Pane
	Input Ports Pane
	Port name
	Dimensions
	Row
	Column
	Complexity
	Frame

	Output Ports Pane
	Port name
	Dimensions
	Row
	Column
	Complexity
	Frame
	Specifies whether this port accepts frame-based signals generated by the Communications Blockset....

	Parameters Pane
	Parameter name
	Data type
	Complexity

	Data Type Attributes Pane
	Port
	Data Type

	Libraries Pane
	Library/Object/Source files
	Includes
	External function declarations

	Outputs Pane
	Code for the mdlOutputs function
	Inputs are needed in the output function

	Continuous Derivatives Pane
	Discrete Update Pane
	Build Info Pane
	Show compile steps
	Create a debuggable MEX-file
	Generate wrapper TLC
	Save code only

	Example of a Basic C MEX S-Function
	Defines and Includes
	Callback Implementations
	mdlInitializeSizes
	mdlInitializeSampleTimes
	mdlOutputs
	mdlTerminate

	Simulink/Real-Time Workshop Interface
	Building the Timestwo Example

	Templates for C S-Functions
	S-Function Source File Requirements
	Statements Required at the Top of S-Functions
	Statements Required at the Bottom of S-Functions

	The SimStruct
	Compiling C S-Functions

	How Simulink Interacts with C S-Functions
	Process View
	Calling Structure for the Real Time Workshop
	Alternate Calling Structure for External Mode

	Data View
	Accessing Signals Using Pointers
	Accessing Contiguous Input Signals
	Accessing Input Signals of Individual Ports

	Writing Callback Methods
	Converting Level 1 C MEX S-Functions to Level 2
	Obsolete Macros

	Creating C++ S-Functions
	Source File Format
	Making C++ Objects Persistent
	Building C++ S-Functions

	Creating Ada S-Functions
	Introduction
	Ada S-Function Source File Format
	Ada S-Function Specification
	Ada S-Function Body

	Writing Callback Methods in Ada
	Callbacks Invoked by Simulink
	Implementing Callbacks
	Omitting Optional Callback Methods
	SimStruct Functions

	Building an Ada S-Function
	Ada Compiler Requirements

	Example of an Ada S-Function
	Timestwo Package Specification
	mdlInitializeSizes
	mdlOutputs
	Building the Timestwo Example

	Creating Fortran S-Functions
	Introduction
	Level 1 Versus Level 2 S-Functions

	Creating Level 1 Fortran S-Functions
	The Fortran MEX Template File
	Example
	Inline Code Generation Example

	Creating Level 2 Fortran S-Functions
	Template File
	C/Fortran Interfacing Tips
	Mex Environment
	Compiler Compatibility
	Symbol Decorations
	Fortran Math Library
	CFortran
	Obtaining a Fortran Compiler

	Constructing the Gateway
	Simple Case
	Code with States
	Setup Code
	SUBROUTINE Versus PROGRAM
	Arguments to a SUBROUTINE
	Arguments to a FUNCTION
	Interfacing to COMMON Blocks

	Example C-MEX S-Function Calling Fortran Code

	Porting Legacy Code
	Find the States
	Sample Times
	Multiple Instances
	Use Flints If Needed
	Considerations for Real Time

	Implementing Block Features
	Dialog Parameters
	Tunable Parameters
	Tuning Parameters in External Mode

	Run-Time Parameters
	Creating Run-Time Parameters
	Creating Run-Time Parameters All at Once
	Creating Run-Time Parameters Individually

	Updating Run-Time Parameters
	Updating All Parameters at Once
	Updating Parameters Individually

	Tuning Runtime Parameters

	Creating Input and Output Ports
	Creating Input Ports
	Initializing Input Port Dimensions
	Sizing an Input Port Dynamically

	Creating Output Ports
	Scalar Expansion of Inputs
	Masked Multiport S-Functions

	Custom Data Types
	Sample Times
	Block-Based Sample Times
	Specifying the Number of Sample Times in mdlInitializeSizes
	Setting Sample Times and Specifying Function Calls in mdlInitializeSampleTimes
	Example: mdlInitializeSampleTimes

	Specifying Port-Based Sample Times
	Specifying Inherited Sample Time for a Port
	Specifying Constant Sample Time for a Port
	Configuring Port-Based Sample Times for Use in Triggered Subsystems

	Hybrid Block-Based and Port-Based Sample Times
	Multirate S-Function Blocks
	Example of Defining a Sample Time for a Continuous Block
	Example of Defining a Sample Time for a Hybrid Block

	Synchronizing Multirate S-Function Blocks
	Specifying Model Reference Sample Time Inheritance
	Sample-Time Inheritance Rule Example

	Work Vectors
	Work Vectors and Zero Crossings
	Example Involving a Pointer Work Vector
	Memory Allocation

	Function-Call Subsystems
	Handling Errors
	Exception Free Code
	ssSetErrorStatus Termination Criteria
	Checking Array Bounds

	S-Function Examples
	Example of a Continuous State S-Function
	matlabroot/simulink/src/csfunc.c

	Example of a Discrete State S-Function
	matlabroot/simulink/src/dsfunc.c

	Example of a Hybrid System S-Function
	matlabroot/simulink/src/mixedm.c

	Example of a Variable-Step S-Function
	matlabroot/simulink/src/vsfunc.c

	Example of a Zero Crossing S-Function
	matlabroot/simulink/src/sfun_zc_sat.c

	Example of a Time-Varying Continuous Transfer Function
	matlabroot/simulink/src/stvctf.c

	S-Function Callback Methods
	mdlCheckParameters
	mdlDerivatives
	mdlGetTimeOfNextVarHit
	mdlInitializeConditions
	mdlInitializeSampleTimes
	mdlInitializeSizes
	mdlOutputs
	mdlProcessParameters
	mdlRTW
	mdlSetDefaultPortComplexSignals
	mdlSetDefaultPortDataTypes
	mdlSetDefaultPortDimensionInfo
	mdlSetInputPortComplexSignal
	mdlSetInputPortDataType
	mdlSetInputPortDimensionInfo
	mdlSetInputPortFrameData
	mdlSetInputPortSampleTime
	mdlSetInputPortWidth
	mdlSetOutputPortComplexSignal
	mdlSetOutputPortDataType
	mdlSetOutputPortDimensionInfo
	mdlSetOutputPortSampleTime
	mdlSetOutputPortWidth
	mdlSetWorkWidths
	mdlSimStatusChange
	mdlStart
	mdlTerminate
	mdlUpdate
	mdlZeroCrossings

	SimStruct Functions
	Introduction
	Language Support
	The SimStruct

	SimStruct Macros and Functions Listed by Usage
	Miscellaneous
	Error Handling and Status
	I/O Port
	Dialog Box Parameters
	Run-Time Parameters
	Sample Time
	State and Work Vector
	Simulation Information�
	Function Call
	Data Type
	Real-Time Workshop

	Function Reference
	FssCallExternalModeFcn
	ssCallSystemWithTid
	ssDisableSystemWithTid
	ssEnableSystemWithTid
	ssGetAbsTol
	ssGetBlockReduction
	ssGetContStateAddress
	ssGetContStates
	ssGetDataTypeId
	ssGetDataTypeName
	ssGetDataTypeSize
	ssGetDataTypeZero
	ssGetDiscStates
	ssGetDTypeIdFromMxArray
	ssGetDWork
	ssGetDWorkComplexSignal
	ssGetDWorkDataType
	ssGetDWorkName
	ssGetDWorkRTWIdentifier
	ssGetDWorkRTWStorageClass
	ssGetDWorkRTWTypeQualifier
	ssGetDWorkUsedAsDState
	ssGetDWorkWidth
	ssGetdX
	ssGetErrorStatus
	ssGetExplicitFCSSCtrl
	ssGetInlineParameters
	ssGetInputPortBufferDstPort
	ssGetInputPortComplexSignal
	ssGetInputPortConnected
	ssGetInputPortDataType
	ssGetInputPortDimensions
	ssGetInputPortDirectFeedThrough
	ssGetInputPortFrameData
	ssGetInputPortNumDimensions
	ssGetInputPortOffsetTime
	ssGetInputPortOptimOpts
	ssGetInputPortOverWritable
	ssGetInputPortRealSignal
	ssGetInputPortRealSignalPtrs
	ssGetInputPortRequiredContiguous
	ssGetInputPortSampleTime
	ssGetInputPortSampleTimeIndex
	ssGetInputPortSignal
	ssGetInputPortSignalAddress
	ssGetInputPortSignalPtrs
	ssGetInputPortWidth
	ssGetIWork
	ssGetIWorkValue
	ssGetModelName
	ssGetModeVector
	ssGetModeVectorValue
	ssGetNonsampledZCs
	ssGetNumContStates
	ssGetNumDataTypes
	ssGetNumDiscStates
	ssGetNumDWork
	ssGetNumInputPorts
	ssGetNumIWork
	ssGetNumModes
	ssGetNumNonsampledZCs
	ssGetNumOutputPorts
	ssGetNumParameters
	ssGetNumRunTimeParams
	ssGetNumPWork
	ssGetNumRWork
	ssGetNumSampleTimes
	ssGetNumSFcnParams
	ssGetOffsetTime
	ssGetOutputPortBeingMerged
	ssGetOutputPortComplexSignal
	ssGetOutputPortConnected
	ssGetOutputPortDataType
	ssGetOutputPortDimensions
	ssGetOutputPortFrameData
	ssGetOutputPortNumDimensions
	ssGetOutputPortOffsetTime
	ssGetOutputPortOptimOpts
	ssGetOutputPortRealSignal
	ssGetOutputPortSampleTime
	ssGetOutputPortSignal
	ssGetOutputPortSignalAddress
	ssGetOutputPortWidth
	ssGetParentSS
	ssGetPath
	ssGetPlacementGroup
	ssGetPortBasedSampleTimeBlockIsTriggered
	ssGetPWork
	ssGetPWorkValue
	ssGetRealDiscStates
	ssGetRootSS
	ssGetRunTimeParamInfo
	ssGetRWork
	ssGetRWorkValue
	ssGetSampleTime
	ssGetSampleTimeOffset
	ssGetSampleTimePeriod
	ssGetSFcnParam
	ssGetSFcnParamsCount
	ssGetSimMode
	ssGetSolverMode
	ssGetSolverName
	ssGetStateAbsTol
	ssGetStopRequested
	ssGetT
	ssGetTaskTime
	ssGetTFinal
	ssGetTNext
	ssGetTStart
	ssGetUserData
	ssIsContinuousTask
	ssIsFirstInitCond
	ssIsMajorTimeStep
	ssIsMinorTimeStep
	ssIsSampleHit
	ssIsSpecialSampleHit
	ssIsVariableStepSolver
	ssPrintf
	ssRegDlgParamAsRunTimeParam
	ssRegAllTunableParamsAsRunTimeParams
	ssRegisterDataType
	ssSampleAndOffsetAreTriggered
	ssSetBlockReduction
	ssSetCallSystemOutput
	ssSetDataTypeSize
	ssSetDataTypeZero
	ssSetDWorkComplexSignal
	ssSetDWorkDataType
	ssSetDWorkName
	ssSetDWorkRTWIdentifier
	ssSetDWorkRTWStorageClass
	ssSetDWorkRTWTypeQualifier
	ssSetDWorkUsedAsDState
	ssSetDWorkWidth
	ssSetErrorStatus
	ssSetExplicitFCSSCtrl
	ssSetExternalModeFcn
	ssSetInputPortComplexSignal
	ssSetInputPortDataType
	ssSetInputPortDimensionInfo
	ssSetInputPortDirectFeedThrough
	ssSetInputPortFrameData
	ssSetInputPortMatrixDimensions
	ssSetInputPortOffsetTime
	ssSetInputPortOptimOpts
	ssSetInputPortOverWritable
	ssSetInputPortRequiredContiguous
	ssSetInputPortSampleTime
	ssSetInputPortVectorDimension
	ssSetInputPortWidth
	ssSetIWorkValue
	ssSetModelReferenceSampleTimeInheritanceRule
	ssSetModeVectorValue
	ssSetNumContStates
	ssSetNumDiscStates
	ssSetNumDWork
	ssSetNumInputPorts
	ssSetNumIWork
	ssSetNumModes
	ssSetNumNonsampledZCs
	ssSetNumOutputPorts
	ssSetNumPWork
	ssSetNumRunTimeParams
	ssSetNumRWork
	ssSetNumSampleTimes
	ssSetNumSFcnParams
	ssSetOffsetTime
	ssSetOneBasedIndexInputPort
	ssSetOneBasedIndexOutputPort
	ssSetOptions
	ssSetOutputPortComplexSignal
	ssSetOutputPortDataType
	ssSetOutputPortDimensionInfo
	ssSetOutputPortFrameData
	ssSetOutputPortMatrixDimensions
	ssSetOutputPortOffsetTime
	ssSetOutputPortOptimOpts
	ssSetOutputPortOverwritesInputPort
	ssSetOutputPortSampleTime
	ssSetOutputPortVectorDimension
	ssSetOutputPortWidth
	ssSetParameterName
	ssSetParameterTunable
	ssSetPlacementGroup
	ssSetPWorkValue
	ssSetRWorkValue
	ssSetRunTimeParamInfo
	ssSetSampleTime
	ssSetSFcnParamNotTunable
	ssSetSFcnParamTunable
	ssSetSolverNeedsReset
	ssSetStopRequested
	ssSetTNext
	ssSetUserData
	ssSetVectorMode
	ssSetZeroBasedIndexInputPort
	ssSetZeroBasedIndexOutputPort
	ssUpdateAllTunableParamsAsRunTimeParams
	ssUpdateRunTimeParamData
	ssUpdateDlgParamAsRunTimeParam
	ssUpdateRunTimeParamInfo
	ssWarning
	ssWriteRTW2dMatParam
	ssWriteRTWMx2dMatParam
	ssWriteRTWMxVectParam
	ssWriteRTWParameters
	ssWriteRTWParamSettings
	ssWriteRTWScalarParam
	ssWriteRTWStr
	ssWriteRTWStrParam
	ssWriteRTWStrVectParam
	ssWriteRTWVectParam
	ssWriteRTWWorkVect

	Index

