
IPv4/IPv6 Transition Using DNS64/NAT64:
Deployment Issues

Enis Hodzic
BH Telecom.d.o.o

Sarajevo, Bosnia & Herzegovina
enis.hodzic@bhtelecom.ba

Sasa Mrdovic
Faculty of Electrical Engineering

University of Sarajevo
Sarajevo, Bosnia & Herzegovina

sasa.mrdovic@etf.unsa.ba

Abstract—IPv4 address space is almost exhausted. Usage of
IPv6 address by client end hosts is limited due to small percentage
of domain names that have IPv6 address. This paper presents
practical testing in ISP that gives its users IPv6 addresses and
provides them transparent access to both IPv4 and IPv6 Internet
locations. DNS64/NAT64 translation mechanism is used for this
purpose. Tests measure resource requirements on ISP side and
effects on client experience. Results show that additional DNS64
processing causes no visible impact on DNS server CPU load.
There is requirement for NAT64 device at ISP on path between
IPv6 users and IPv4 Internet. Test results show that memory
requirements for this device are small and achievable with
standard hardware devices used by ISPs. Measured increase
in RTT from IPv6 clients to IPv4 Internet is less than 2%.
Conclusion is that DNS64/NAT64 translation system is viable
solution for ISP.

Index Terms—IPv6; IPv4/v6 transition; DNS64; NAT64, ISP
implementation

I. INTRODUCTION

Internet Service Providers (ISP) are running out of IPv4 ad-
dresses to give to their client. ISPs have enough IPv6 addresses
but they are not very useful. IPv6 clients can only visit IPv6
sites. Percentage of all domain names that have IPv6 address
records is only around 2% [1]. This means that the rest of
the Internet is out of reach for client that have IPv6 addresses
only. It would be very useful for ISPs if they could provide
their IPv6 clients with access to all Internet locations IPv4 and
IPv6. Providing such access requires additional processing of
packets at ISP. This additional processing increases operating
costs. ISPs should be able to evaluate this cost. The cost
depends on number of factors. Number of users is one of them.
The other important factor is IPv4/v6 translation mechanism
used. Additional processing per packet or session depends
directly on this mechanism.

This paper presents test implementation of ISP with IPv6
only clients that have access to IPv4 as well as IPv6 sites. The
implementation is based on DNS64/NAT64 combination. All
tests are performed with a real client of a real ISP. The tests
are designed to evaluate impact that this setup has on ISP and
clients. Required ISP resources for additional processing and
increase in response time for clients are measured.

The rest of the paper is organized as follows. Related work
is addressed in section 2. Section 3 explains DNS64/NAT64
translation. Experiment environment is presented in section 4.

Section 5 presents conducted tests and analyzes their results.
Conclusion and discussion on directions for future research
work are in section 6.

II. RELATED WORK

Basic transition mechanisms for IPv4/IPv6 have been pro-
posed by IETF [2]. Two mechanisms are specified: Dual
IP layer and IPv6 over IPv4 tunneling. The idea was to
enable IPv6 on networks and use dual stack routers to enable
tunneling between IPv6 islands. This left open a question of
communication between IPv6 and IPv4 hosts and networks.
One approach to this issue was NAT-PT [3] based on stateless
IP/ICMP translator (SIIT) [4]. Due to various issues this
approach was abandoned [5]. Last year, IETF readdressed
this issue with RFC 6144 [6]. It defines new framework for
IPv4/IPv6 translation. Various scenarios of connecting IPv4
and IPv6 networks are considered in this RFC. The first
scenario, an IPv6 network to the IPv4 Internet, is the one
discussed in this paper. There are several components that
enable implemnetation of this scenario. One component is
DNS64 [7]. It provides mechanism for synthesizing AAAA
records (IPv6 addresses) from A records (IPv4 addresses).
Other components deal with various aspects of translation:
address [8], IP and ICMP [9], maintaining state [10] and ap-
plication level gateways for other application layer protocols.

Practical implementations based on above approach, usually
called DNS64/NAT64, have been introduced recently. There
are proprietary implementations that come from big com-
panies. Microsoft implements DNS64/NAT64 with Forefront
Unified Access Gateway (UAG) DirectAccess [11]. Recent
versions of Cisco IOS, from XE 3.4S for ASR 1000 series
routers and XR 4.1.2 for Carrier Routing System (CRS-
1) support stateful NAT64 [12]. Juniper Networks operating
system Junos implements stateful NAT64 in Services Physical
Interface Card (PIC) i Services Dense Port Concentrator
(DPC) [13]. Another popular DNS64/NAT64 implementation
Brocade ServerIron ADX and Secure64 DNS Cache Platforms
comes from Brocade Communications Systems [14].

Open source community has several DNS64 and NAT64
implementations. ISC Bind supports DNS64 from recent ver-
sion 9.8 [15]. For previous Bind versions, synthetization of
AAAA records from A records was possible with support of
trick-or-treat-daemon [16]. Another DNS resolver Unbound



also supports DNS64 in recent versions [17]. Stateless NAT64
implementation for Linux is Tayga [18]. Stateful NAT64 im-
plementation is provided by Linuxnat64 project [19]. Ecdysis
project developed open source implementations of DNS64 and
stateful NAT64 [20].

There were several practical experiments with
DNS64/NAT64 as translation mechanism to support IPv6
only networks access to IPv4 Internet. IETF RFC6586
[21] describes experiences from experiment with IPv6 only
network, with access to the IPv4 only parts of the Internet
via a NAT64 device with DNS64 support. Three IETF
drafts also present experiences and issues with IPv6 only
networks and describe issues that were resolved, that can
and those that cannot be resolved [22], [23], [24]. Paper
[25] describes similar experience. None of the mentioned
documents considers performance issues.

Only two papers were found that deal with NAT64 perfor-
mance issues. Paper [26] tested NAT64 performance versus
NAT44. Their testing showed that NAT64 has lower CPU and
memory utilization. Authors of [27] compared round trip times
of three open source implementation of IPv4/IPv6 translators:
NAT-PT, NAT64 and HTTP proxy. Their results suggest that
NAT64 is better overall solution, but that dual stack HTTP
proxy might be reasonable alternative for HTTP only traffic.

III. DNS64/NAT64

DNS64 and NAT64 are explained in detail in their respective
RFCs [7], [10]. Here, the protocols will be briefly explained
with accent on performance issues that might affect ISPs using
them to provide access to IPv4 Internet for their IPv6 only
clients.

DNS64/NAT64 system enables IPv6 only hosts to access
IPv4 servers in the following way. IPv6 host asks DNS, in
this case DNS64, for IP address for the domain name of
server it is trying to connect to. Since the server is IPv4
only and does not have IPv6 address, DNS64 embeds server’s
IPv4 address into an IPv6 address by using predefined prefix
and the actual IPv4 address. IPv6 host uses this IPv6 address
to initialize connection to the server. The packet, host sends,
goes through NAT64. NAT64 recognizes the predefined prefix,
extracts servers IPv4 address from destination IPv6 address
in packet. From there it behaves like any NAT. It contacts
destination server using extracted IPv4 address and creates
translation state that maps this connection to IPv4 server with
connection from IPv6 client that initiated it.

A. DNS64

DNS64 performs synthetization of AAAA records based on
an A record. DNS64 functionality works on all DNS servers
based on DNS RFCs [28], [29]. DNS64 also supports the
translation of multiple IPv6 prefixes. This allows that different
ranges of IPv4 addresses can be mapped to different IPv6
prefixes. These separated mappings can be used to achieve
load balancing between multiple NAT64 devices.

There are two possible options for the use of prefixes in
translation, Well-Known Prefix (WKP) and Network-Specific

Prefix (NSP). WKP is always 64:ff9b::/96. NSP, on the other
hand, can have a variable length prefix, and prefix depends on
the organization that uses this type of translation.

DNS64 can initiate two queries simultaneously, one for the
A record and one for the AAAA record. These parallel queries
can reduce delays in cases where the corresponding AAAA
record is not found. Normally, DNS64 first sends a query
for an AAAA records and in the case when that record is
not found DNS64 than sends another query for an A record,
which is then used for the synthetization of an AAAA record.
If the required record is available locally, as in the case
of the authoritative DNS, parallel queries are not required.
Theoretically, the use of parallel queries can half the time
delays compared to the sequential queries.

Additional processing that DNS64 has to perform, compared
to standard IPv4 only DNS, is creation of AAAA records
from A records returned by query. This processing requires
additional resources. These resources are measured in this
paper.

B. Stateful NAT64

NAT64 works like NAT44 with one important exception.
It performs address translation of IPv6 addresses into IPv4
addresses and vice versa. Because it is extremely similar to
the NAT44, NAT64 also has the same problems, like problems
with end-to-end communication. NAT64 is defined in two
RFC’s. RFC6145 [9] defines the Stateless IP / ICMP Trans-
lation (SIIT) algorithm, which in fact, represents a stateless
NAT64, and RFC6146 [10] defines a stateful NAT64.

Simple setting of NAT64 device can be visualized as a
network device (router) with at least two interfaces. One
interface is connected to the IPv4 network, while the other
is connected to the IPv6 network. The network is configured
in the manner that the packets from the IPv6 network go to the
IPv4 network through the router. Router performs all necessary
translations needed for the transfer of packets from the IPv6
network to IPv4 network and vice versa.

In stateless NAT64 translation state is not kept, which means
that every IPv6 user requires a unique IPv4 address. Since
there is a lack of IPv4 addresses, this NAT64 mode is not a
good solution for ISPs that want to solve it by giving clients
IPv6 address.

Stateful NAT64 multiplexes many IPv6 devices into a single
IPv4 address. It can be assumed that this technology will be
used mainly where IPv6-only networks and clients (ie. mobile
handsets, IPv6 only wireless, etc...) need access to the IPv4
internet and its services.

The main difference between stateful and stateless NAT64
is the elimination of the algorithmic binding between the IPv6
address and the IPv4 address. Instead, stateful NAT64 creates
translation state for each session. NAT64 only supports IPv6
initiated sessions. Unlike stateless NAT64, stateful NAT64
does not consume an IPv4 address for each IPv6 node that
wants to communicate to the IPv4 Internet. In practice, it
means that a number of IPv6-only users consume only one
IPv4 address in a similar manner to the way IPv4-to-IPv4



Figure 1. Stateful NAT64

network address and port translation works. This works well
if the request for a connection is initiated from IPv6 towards
the IPv4 Internet. If an IPv4-only device wants to speak to
an IPv6-only server, manual configuration of the translation
slot will be required, making this mechanism less attractive to
provide IPv6 services towards the IPv4 Internet. Fig. 1 presents
the implementation of stateful NAT64.

Traditional ISPs that provide their IPv4 clients with public
IP addresses access to IPv4 Internet do not need to have
NAT device between clients and IPv4 Internet. This means
that providing IPv6 only clients access to IPv4 Internet would
require additional NAT64 device and additional processing.
This paper tests resource requirements for such a device and
measures its influence on round trip time from clients to
servers.

IV. EXPERIMENT ENVIRONMENT

Block diagram, as well as IP addressing of DNS64/NAT64
test platform, are shown in Fig. 2. The experimental envi-
ronment was mostly virtualized and consisted of a NAT64
translator, DNS64 server and DHCPv6 servers – Linux Ubuntu
10.04 LTS with Ecdysis, BIND9 and wide-dhcpv6 servers, and
few IPv6-only or dual-stack clients with Ubuntu Linux and
Windows operating systems. Cisco Networks equipment was
used for routing purposes.

Software used for the implementation and testing of
DNS64/NA64:

• VMware Workstation v8.0 for creation of virtual ma-
chines [30],

• Ecdysis NAT64 for NAT64 [31],
• BIND9 version 9.8.1 for DNS64 [15],
• wide-dhcpv6-server for DHCPv6 [32].

Linux server is a virtual machine (named dns64nat64) which
is assigned one CPU core, 1.5 GB RAM and 8 GB of
hard disk space. The amount of resources allocated to the
virtual machine dns64nat64 was more than enough. In this
way, virtual machines were not limiting the functionality of
DNS64/NAT64. IPv6 WKP prefix was used as a DNS64 prefix.
WKP prefix is defined in [8] as 64: ff9b:: / 96.
root@dns64nat64:/etc# cat named.conf
options {
directory "/etc/named";
dns64 64:ff9b::/96 {

clients { any; };
};
listen-on-v6 { any; };
};
NAT64 prefix used the same IPv6 prefix WKP 64: ff9b ::

/ 96. It should be noted that DNS64/NAT64 system can work
only if NAT64 and DNS64 use the same prefix.
root@dns64nat64:/# cat nat64-config.sh
#!/bin/bash
IPV4_ADDR="10.100.13.65"
PREFIX_ADDR="64:ff9b::"
PREFIX_LEN="96"
DHCPv6 server was configured to operate as a stateless, and

its only function was to send IPv6 address of DNS64 server
to the hosts.
root@dns64nat64:/etc/wide-dhcpv6# cat

dhcp6s.conf
option domain-name-servers

2a02:27b0:2:13::65;
The complete functionality of DNS64/NAT64 system can

be presented using the case where an IPv6-only host wants
to access a Web site that is located on IPv4 HTTP server.
Fig. 3 shows such an IPv6 host with IPv4 Facebook Web
server communication over DNS64/NAT64 test platform with
the following steps:

1) DNS query from IPv6-only client to DNS64 server:
AAAA record for www.facebook.com.

2) DNS query from DNS64 server to authoritative DNS
server: AAAA record for www.facebook.com.

3) DNS response from an authoritative DNS
server to DNS64 server: no AAAA records for
www.facebook.com.

4) DNS query from DNS64 server to authoritative DNS
server: A record for www.facebook.com.

5) DNS response from an authoritative DNS server to
DNS64 server: A record of www.facebook.com is
69.171.228.11.

6) DNS64 server synthesizes AAAA records
64:ff9b::45ab:e40b and sends the DNS64 answer:
IPv6 address of www.facebook.com is 64: ff9b :: 45ab:
e40b.

7) HTTP GET packet from an IPv6 client to the HTTP
server facebook.com routed to NAT64

8) NAT64 translates the header of HTTP GET packet and
forwards it to the HTTP server using the IPv4 address.

9) HTTP server sends the page content using IPv4 address.
10) NAT64 translates the content of HTTP packet header

and forwards it to the IPv6 client.

V. EXPERIMENT AND RESULTS

Using described test platform three test were run. Aim
of two tests was to help evaluation of additional resources
required at ISP side if it wants to have IPv6 only clients.
The third test compared round trip times for IPv4 clients
and IPv6 clients accessing the same IPv4 locations through
DNS64/NAT64 system.



Figure 2. DNS64/NAT64 test platform

Figure 3. IPv6 host - IPv4 server communication over DNS64/NAT64 system



Table I
COMPARISON OF DNS64 CPU LOAD

DNS requests [requests/s] CPU Load [%]
A record AAAA record

200 7 8
800 21 20
1200 30 34
2000 49 45
2300 59 55
3200 78 75
3800 85 87

A. DNS64 CPU test

This test measured CPU usage for DNS server. In the
first test server was queried for A record for domain name
“ekupon.ba”. This domain does not have IPv6 address and
therefore no AAAA record. In the second test the same DNS64
server was queried for AAAA record for the same domain
name. In this case DNS64 server had to perform additional
processing in order to synthesize AAAA record from A record.
During both tests number of requests per second was increased
until CPU usage was 90%. This test was designed to measure
additional CPU load caused by creation of AAAA records
from A records. This would be a main difference on DNS
server in case it has to serve IPv6 only clients. Test results are
given in Table I.

Results show that creation of AAAA records for domain
names that have only A records does not have visible impact
on CPU load of DNS server. CPU load for both tests was
similar.

B. NAT64 RAM test

This test measured RAM usage for NAT64 device. Since
NAT64 device is a virtual machine in this setup it uses memory
even without performing NAT64 translation. Test compared
RAM usage when there were no NAT64 translations against
period when there were 103 active NAT64 connections. NAT64
connections were created with HTTP GET request for default
web page at site "source.ba”. This site does not have IPv6
address and no DNS AAAA record. Requests were generated
with rate of 100 per second. Test results are presented in Fig
4.

Results show that minimal memory load, when there were
no NAT64 connections, was 433.25 MB. Maximal memory
load for 103 NAT64 connections per second was 571.26 MB.
Difference is 138 MB. If this difference is divided by 103
connections RAM cost per connection comes to approximately
13,5 MB. As it was concluded in [26] NAT64 memory load
is comparable to that of NAT44.

C. Round trip time test

For this test two measurements of RTT to two IPv4 hosts
were made. The first measurement included comparison of
ping to “bbc.com”. First IPv4 host pinged “bbc.com” on IP
address 212.58.241.131. Then IPv6 only host pinged the same
“bbc.com” through DNS64/NAT64 system on its synthesized
IPv6 address 64:ff9b::d43a:f183. Average RTT for the first,

Figure 4. Stateful NAT64 RAM usage

IPv4, ping was 46.68 ms, and average time for the second
ping was 47.53 ms. Standard deviations were 0.19 and 0.71
respectively. Average difference was 0.85 ms which is less
than 2%.

The second measurement measured RTT to ”juniper.net”
from IPv4 and IPv6 host. Again IPv4 ping went to IPv4
address 207.17.137.239 and IPv6 ping went through
DNS64/NAT64 system to synthesized IPv6 address
64:ff9b::cf11:89ef. This time average RTT for IPv4 was
203.7 ms and for IPv6 was 205.9 ms. Standard deviations
were 0.7 and 0.1 ms. Average difference was 2.2 ms which
approximately 1%. Graph with results for this test is given in
Fig. 5.

Theses tests show that from client prospective round trip
times increase less than 2%

VI. CONCLUSION AND FUTURE WORK

IPv4/v6 transition using DNS64/NAT64 translation mech-
anism is not complicated or expensive. ISPs that do not
have enough IPv4 addresses to give to all their client can
give them IPv6 addresses and still provide the same service.
DNS64/NAT64 translation mechanism enables IPv6 clients to
access IPv4 Internet sites transparently. ISP needs to provide
DNS64 and NAT64 services. DNS64 creates IPv6 address
from IPv4 address for locations that do not have IPv6 address.
This is the only additional work that DNS has to perform in
this setup. Test results show that this additional work does
not have visible impact on DNS server CPU load. NAT64
performs network address translation from IPv6 client address
and port to IPv4 NAT64 outside address and port. It has been
shown previously that NAT64 memory and CPU load is not



Figure 5. Ping RTT

bigger than NAT. Our test show NAT64 memory load of 13.5
MB per connection. From (IPv6) client perspective there is
negligible increase in RTT time for requests to IPv4 locations
that go through DNS64/NAT64 system when compared with
direct request to IPv6 locations. This increase was measured
to be less than 2%.

It must be stated that things will only get better. As more and
more sites are reachable through IPv6 address there will be less
need for traffic to go through DNS64/NAT64 translation. There
will be decrease in resource requirements on ISP. IPv6 client
traffic has to go through DNS64/NAT64 system only when it
communicates with locations that do not have IPv6 address.
Communication with IPv6 locations is direct, it does not have
to go through NAT64 and there is no need to create IPv6
address for such locations. Although percentage of domain
names that have IPv6 address is now little over 2% [1], it is
increasing. It rose half percent during the period it took us to
finish this paper. Since World IPv6 Launch Day, June 6, 2012,
a number of sites have IPv6 address that did not have them
previously. One of such sites is Facebook that was used in our
presentation of DNS64/NAT64 functionality.

REFERENCES

[1] M. Leber, “Global IPv6 Deployment Progress Report.”, Hurricane
Electric, [Online]. Available: http://bgp.he.net/ipv6-progress-report.cgi.
[Accessed: 18-Jun-2012].

[2] R. E. Gilligan and E. Nordmark, “Basic Transition Mech-
anisms for IPv6 Hosts and Routers.” [Online]. Available:
https://tools.ietf.org/html/rfc4213. [Accessed: 18-Jun-2012].

[3] G. T. <george.tsirtsis@bt.com>, “Network Address Translation
- Protocol Translation (NAT-PT).” [Online]. Available:
https://tools.ietf.org/html/rfc2766. [Accessed: 18-Jun-2012].

[4] E. N. <nordmark@sun.com>, “Stateless IP/ICMP Translation Algo-
rithm (SIIT).” [Online]. Available: https://tools.ietf.org/html/rfc2765.
[Accessed: 18-Jun-2012].

[5] E. B. Davies and C. Aoun, “Reasons to Move the Network Address
Translator - Protocol Translator (NAT-PT) to Historic Status.” [Online].
Available: https://tools.ietf.org/html/rfc4966. [Accessed: 18-Jun-2012].

[6] C. Bao, X. Li, K. Yin, and F. Baker, “Framework for IPv4/IPv6 Transla-
tion.” [Online]. Available: https://tools.ietf.org/html/rfc6144. [Accessed:
18-Jun-2012].

[7] P. Matthews, M. Bagnulo, A. Sullivan, and I. van Beijnum, “DNS64:
DNS Extensions for Network Address Translation from IPv6 Clients
to IPv4 Servers.” [Online]. Available: https://tools.ietf.org/html/rfc6147.
[Accessed: 11-Jun-2012].

[8] M. Boucadair, C. Bao, X. Li, C. Huitema, and M. Bagnulo,
“IPv6 Addressing of IPv4/IPv6 Translators.” [Online]. Available:
https://tools.ietf.org/html/rfc6052. [Accessed: 18-Jun-2012].

[9] C. Bao, X. Li, and F. Baker, “IP/ICMP Translation Algorithm.” [Online].
Available: https://tools.ietf.org/html/rfc6145. [Accessed: 18-Jun-2012].

[10] P. Matthews, M. Bagnulo, and I. van Beijnum, “Stateful NAT64:
Network Address and Protocol Translation from IPv6 Clients to IPv4
Servers.” [Online]. Available: http://rsync.tools.ietf.org/html/rfc6146.
[Accessed: 11-Jun-2012].

[11] T. Kopczynski, “DirectAccess and UAG DirectAccess - Deployment
Guide.” Microsoft, 2010.

[12] I. Kakonyi, “Cisco Knowledge Network: NAT64 Theory and Applica-
tions in Service Provider Networks.” Cisco Systems, 2011.

[13] Juniper Networks, “Configuring Stateful NAT64 for Handling IPv4
Address Depletion.” Juniper Networks, 2011.

[14] Brocade, “Deploying NAT64 and DNS 64 with the Brocade ServerIron
ADX and Secure64 DNS Cache Platforms.” Brocade Communications
Systems, 2011.

[15] “BIND | Internet Systems Consortium.” [Online]. Available:
https://www.isc.org/software/bind. [Accessed: 19-Jun-2012].

[16] “Trick or Treat DNS proxy.” [Online]. Available:
http://www.dillema.net/software/totd.html. [Accessed: 19-Jun-2012].

[17] “Unbound.” [Online]. Available: http://unbound.net/. [Accessed: 19-Jun-
2012].

[18] “TAYGA - NAT64 for Linux.” [Online]. Available:
http://www.litech.org/tayga/. [Accessed: 19-Jun-2012].

[19] “linuxnat64 Project Top Page - SourceForge.JP.” [Online]. Avail-
able: http://en.sourceforge.jp/projects/sfnet_linuxnat64/. [Accessed: 19-
Jun-2012].

[20] S. Perreault, J.-P. Dionne, and M. Blanchet, “Ecdysis: Open-Source
DNS64 and NAT64.” Viagenie, 2010.

[21] J. Arkko and A. Keranen, “Experiences from an IPv6-Only Network.”
[Online]. Available: https://tools.ietf.org/html/rfc6586. [Accessed: 19-
Jun-2012].

[22] G. Chen, Z. Cao, C. Byrne, and Q. Niu, “NAT64 Operational Expe-
riences.” [Online]. Available: http://tools.ietf.org/html/draft-chen-v6ops-
nat64-experience-01. [Accessed: 19-Jun-2012].

[23] S. Sivakumar, M. Boucadair, R. Penno, and T. Saxena,
“Analysis of Stateful 64 Translation.” [Online]. Available:
http://tools.ietf.org/html/draft-ietf-behave-64-analysis-07. [Accessed:
19-Jun-2012].

[24] R. Hiromi, O. Nakamura, H. Hazeyama, and T. Ishihara, “Experiences
from IPv6-Only Networks with Transition Technologies in the WIDE
Camp Spring 2012.” [Online]. Available: http://tools.ietf.org/html/draft-
hazeyama-widecamp-ipv6-only-experience-01. [Accessed: 19-Jun-
2012].

[25] H. Hazeyama, Y. Yamagishi, Y. Ueno, T. Yokoishi, H. Sato, and H.
Ishibashi, “How much can we survive on an IPv6 network?: experience
on the IPv6 only connectivity with NAT64/DNS64 at WIDE camp
2011 Autumn,” in Proceedings of the 7th Asian Internet Engineering
Conference, New York, NY, USA, 2011, pp. 144–151.

[26] K. J. O. Llanto and W. E. S. Yu, “Performance of NAT64 versus NAT44
in the Context of IPv6 Migration,” Proceedings of the International
MultiConference of Engineers and Computer Scientists, vol. 1, 2012.

[27] S. Yu and B. Carpenter, “Measuring IPv4-IPv6 translation techniques,”
http://www.cs.auckland.ac.nz/~brian/IPv4-IPv6coexistenceTechnique-
TR.pdf, 2012.

[28] P. V. Mockapetris, “Domain names - concepts and facilities.” [Online].
Available: https://tools.ietf.org/html/rfc1034. [Accessed: 20-Jun-2012].

[29] P. V. Mockapetris, “Domain names - implementation and specification.”
[Online]. Available: https://tools.ietf.org/html/rfc1035. [Accessed: 20-
Jun-2012].

[30] “Download VMware Workstation 8.0.” [Online]. Available:
http://www.vmware.com/go/downloadworkstation& [Accessed: 20-
Jun-2012].

[31] “Ecdysis: open-source nat64.” [Online]. Available:
http://ecdysis.viagenie.ca/. [Accessed: 20-Jun-2012].

[32] “WIDE-DHCPv6 | Free System Administration software
downloads at SourceForge.net.” [Online]. Available:
http://sourceforge.net/projects/wide-dhcpv6/. [Accessed: 20-Jun-2012].


