
Secured Intrusion Detection System
Infrastructure

S. Mrdović* , E. Zajko**
* University of Sarajevo/Faculty of Electrical Engineering, Sarajevo, Bosnia and Herzegovina

sasa.mrdovic@etf.unsa.ba

** University of Sarajevo/Faculty of Electrical Engineering, Sarajevo, Bosnia and Herzegovina
ernedin.zajko@etf.unsa.ba

Abstract—This paper will present building of secured
intrusion detection system (IDS) infrastructure. For its
function IDS is often the first target of intruders and must
be properly secured. Main components of IDS and
principles for their hardening will be explained. Application
of these principles in practice will be shown on the secured
IDS infrastructure that will be built using open source
products.

Keywords – intrusion detection, network security

I. INTRODUCTION

Intrusion detection systems (IDS) are becoming
standard part of comprehensive security system. They are
feature of the defense-in-depth strategy. A firewall is an
essential and important part of network security but it does
not have the ability to detect hostile intent. Unlike a
firewall, an intrusion detection system has the ability to
evaluate solitary packets and generate an alarm if it
detects a packet with hostile potential.

Intrusion detection is a set of techniques and methods
that are used to detect suspicious activity both at the
network and host level. Intrusion detection systems fall
into two basic categories: signature-based intrusion
detection systems and anomaly detection systems.
Intruders have signatures, like computer viruses, that can
be detected using software. IDS tries to find data packets
that contain any known intrusion-related signatures or
anomalies related to Internet protocols. Based upon a set
of signatures and rules, the detection system is able to find
and log suspicious activity and generate alerts. Anomaly-
based intrusion detection usually depends on packet
anomalies present in protocol header parts. In some cases
these methods produce better results compared to
signature-based IDS. Usually an intrusion detection
system captures data from the network and applies its
rules to that data or detects anomalies in it.

Network IDS (NIDS) are intrusion detection systems
that capture data packets traveling on the network media
(cables, wireless) and match them to a database of
signatures. Depending upon whether a packet is matched
with an intruder signature, an alert is generated or the
packet is logged to a file or database.

Host-based intrusion detection systems or HIDS are
installed as agents on a host. These intrusion detection
systems can look into system and application log files to
detect any intruder activity. Some of these systems are

reactive, meaning that they inform you only when
something has happened. Some HIDS are proactive; they
can sniff the network traffic coming to a particular host on
which the HIDS is installed and alert you in real time.

There is a great deal of work that is currently being
performed in the area of intrusion detection. Much of the
work centers around improvement in the ability of
systems to detect attacks and the speed of network traffic
that can be handled.

This paper will concentrate on IDS security, area less
explored in recent papers. IDS acts as a guard monitoring
for suspicious activity. If guard is removed or prevented
from seeing intrusion it is useless. We will present
principles and build Network IDS based on those
principles using open source tools. The paper does not
consider rules used do detect attacks, just secured
infrastructure as basis for building efficient IDS.

II. IDS COMPONENTS

There are number of different ID system designs. The
Common Intrusion Detection Framework (CIDF) [1]
defines a set of components that together define an
intrusion detection system. These components include
event generators (``E-boxes''), analysis engines (``A-
boxes''), storage mechanisms (``D-boxes''), and even
countermeasures (``C-boxes''). A CIDF component can be
a software package in and of itself, or part of a larger
system. Figure 1 shows the manner in which each of these
components relates.

As Ptacek and Newsham [2] pointed out, each
component identified by the CIDF model has unique
security implications, and can be attacked for different
reasons.

Figure 1. Common Intrusion Detection Framework (CIDF)
Components

Figure 2. NIDS architecture

As the only inputs of raw data into the system, E-boxes
act as the eyes and ears of an IDS. An attack against the
event generation capabilities of an IDS blinds it to what's
actually happening in the system it's monitoring. For
example, an attack against the E-box of a network IDS
could prevent it from obtaining packets off the network, or
from appropriately decoding these packets.

Some intrusion detection systems rely on sophisticated
analysis to provide security information. In such systems,
the reliability of the A-box components used is important
because an attacker that knows how to fool them can
evade detection --- and complicated analytical techniques
may provide many avenues of attack. On the other hand,
overly simplistic systems may fail to detect attackers that
intentionally mask their attacks with complex, coordinated
system interactions from multiple hosts [3].

The need for reliable data storage is obvious. An
attacker that can subvert the D-box components of an IDS
can prevent it from recording the details of her attack;
poorly implemented data storage techniques can even
allow sophisticated attackers to alter recorded information
after an attack has been detected, eliminating its forensic
value.

The C-box capability can also be attacked. If a network
relies on these countermeasures for protection, an attacker
who knows how to thwart the C-box can continue
attacking the network, immune to the safety measures
employed by the system. More importantly,
countermeasure capabilities can be fooled into reacting
against legitimate usage of the network --- in this case, the
IDS can actually be turned against the network using it
(often undetectably).

It is apparent that there are many different points at
which an intrusion detection system can be attacked. This
paper will try to compile advices on securing each of the
components of IDS and apply them on distributed network
intrusion detection system that we build.

There are other problems with the use of passive
protocol analysis as an event-generation source for
signature-analysis intrusion detection systems. This paper
does not consider those problems since they are inherent
to NIDS design and can not be removed by improved IDS
security.

III. SECURED NIDS

A. Architecture
We build distributed IDS. Term distributed IDS is used

to indicate system in which more then one sensor is used
to collect network traffic. For each network segment that
we want to detect intrusion we place a sensor. Data from
all sensors is sent to a central location and stored and
analyzed from there. Distributed IDS can be centrally
managed and cover all important parts of the network.
Typical places where sensors are positioned include
Internet entry points, just inside routers and/or firewalls,
and DMZ. Those positions enable detection of external
intrusions. In order to detect internal intrusions sensors
must be placed on internal network segments as well.

From the aspect of securing IDS selection of network
segments to be monitored does not have too much
influence on the way the sensor is protected. If network
segment warrants monitoring sensor must be considered
to be working in unfriendly environment and all of them
must be secured in the same way. Position of central IDS

storage and connection of storage with sensors and
management consoles has major impact on the security of
the IDS. We selected to implement the system where all
sensors have two network cards. One connected to the
network segment being monitored and the other one
connected to isolated network segment dedicated to IDS.
This isolated network segment includes central storage
server, internal sides of all sensors and management
console. By isolating IDS storage and management system
we reduce its exposure to external attacks. We also use
secured connection within this network segment in spirit
of layered security. In the event that intruders are
somehow able to monitor traffic on this segment secured
connections would prevent them from understanding and
modifying data being exchanged among components of
IDS. Described architecture is shown on Figure 2.

B. Sensors
In our implementation sensors are computers that

implement two CIDF defined components: event
generators (E – boxes) and analysis engines (A – boxes).
We will describe steps needed and taken in order to
harden sensors and secure their functions within IDS.

Since event generators monitor traffic that might be
malicious they are directly exposed to attacks. There are
several steps that can be taken to harden sensor boxes.
First of all is installation of fully patched operating
system. The network card that is connected to network
segment being monitored must be put in promiscuous
mode so it can listen to all the traffic on that segment.
That card should not be configured with an IP address, so
it will be invisible to hosts on that network. This is
commonly referred to as a stealth interface. Keeping the
listening interface invisible to the other systems on the
network makes keeping the sensor secure much easier [4].
Sensor computer will be used only as NIDS sensor, so all
unnecessary services should be disabled.

We built our sensor boxes on AMD Athlon XP 2500+
based machines, with 1 GB RAM and 80 GB hard disk,
that we had available, but sensor could be implemented on
much older hardware platform [5] [6]. Operating system
installed for sensors was OpenBSD 3.7 with minimal
distribution set, no X, and all the patches applied.
OpenBSD is operating system oriented to security and
considered to be safest choice for implementations that
need to be very secure. OS was secured as described in
[7]. We disabled all services except for sshd [8], that we
configured with public key authentication. We installed
Snort 2.1.2. [9], open source network IDS, to be used as
analysis engine. We configured Snort to run chrooted and
drop privileges to unprivileged user with completely

locked out account. We installed MySQL 4.0.23 [10]
client to enable Snort to log events to MySQL database
located on central storage server. MySQL is open source
database. For protection of MySQL communication
between MySQL client on sensor and MySQL server on
central storage we installed Stunnel 4.08. [11]. Stunnel is
open source program that allows encryption of arbitrary
TCP connections inside SSL. Sensor computer is
firewalled, using Open BSD pf, to prevent any inbound
connections except for ssh from management console.

In this manner we built secured sensor invisible from
the network segment it monitors that communicates
securely with central storage server that will be described
next.

C. Central storage system
Central storage server is located on isolated network

segment dedicated to IDS. This makes it less exposed to
direct attack. Nevertheless, security should be
implemented at host level as well. Fully patched and
hardened OS creates base for secure server. Next step is
determining what services should this server provide and
corresponding applications that provide those services.
We need this server to be database server that stores
events generated by sensors so we must install and secure
database server application and provide enough space to
store data. We also need means to review events from
database from management console. Web based
application is usual and convenient way of doing this so
we must install and secure web server and web
application.

Hardware platform on which we built central storage
server is identical to the one used for sensors. Important
thing to keep in mind when selecting hardware is disk
space needed to store alerts database. Space requirement
depends on number of sensors and amount of traffic.
Installed operating system was, same as for sensors,
OpenBSD 3.7, and was hardened in the same way. For
database server we used MySQL 4.0.23 server and
secured it as described in [12]. For web server we used
Apache 1.3 that comes as part of basic OpenBSD
installation. OpenBSD Apache is already chrooted for
added security. Additional security measures were
implemented as described in [7]. SSL is enabled and
server certificate issued locally using OpenSSL [13], open
source toolkit for implementing SSL. This enables SSL
secured connection from management console to this web
server. Application we used for presenting IDS events in
database is ACID (Analysis Console for Intrusion
Detection) 0.9.6 [14], open source application specially
designed for this purpose. ACID has no authentication
built in, so we used Apache authentication with mod_ssl

based on X.509 certificates to allow connections only to
user with certificate connecting from management console
[15]. As with sensor we installed Stunnel to SSL protect
MySQL communication with sensors. Server management
is enabled through sshd configured with public key
authentication. OpenBSD firewall pf is used to allow
incoming connections only from sensors for Stunnel
protected MySQL traffic and ssh from management
console.

Central storage server built and configured in this way
does all of its functions within intrusion detection system
but in a very secure manner.

D. Management console
Management console is the computer used to monitor

and control IDS. It is the only computer allowed to
connect to sensors and central storage server. It does not
need any special software except for the web browser.

We used the same hardware and operating system as for
the sensors and the central storage server. Since user of
this console needs to be able to ssh into sensors and
central storage server we created private-public key pair
and distributed public key to sensors and server, and
protected private key on console with pass phrase as
described in [16]. Login to ACID is allowed only through
SSL with client certificate we created. We also imported
server certificate into web browser on console to prevent
browser warnings.

E. Integration
Figure 3. shows integrated system with all important

components. All communications are encrypted and
authenticated with public key certificates. On all boxes
only needed services are installed and enabled, and all of
them are secured. It is of utmost importance to insure
physical security of all IDS computers, since without
physical security all other protections are useless.

IDS built in this way can be made portable, since the
only thing that is different for different networks being
monitored are sensor rules. This enables preparing
complete IDS setup in the lab and makes installation on
site just a matter of plugging sensor monitoring interface
at right points in the network. Such configured and ready
to go IDS could be a product on hot IDS market.

IV. CONCLUSION

We described IDS components based on CIDF. We
explained security implications for each of the
components. We proposed secured distributed network
IDS architecture with physical components corresponding
to CIDF. Principles to harden each component were

Figure 3. NIDS components and interactions

explained and applied using standard hardware and open
source software. We built secured intrusion detection
system infrastructure. It provides safe platform to
implement intrusion detection logic based on IDS policy.
We did not consider any rules to detect network attacks.

Further steps might include work on defining intrusion
detection rules for a particular environment. In the area of
management it might be worth exploring ways of having
management console located on different network
segment and providing secure communication with central
storage server and sensors. Host intrusion detection
systems could be installed on all DMZ servers as well as
all LAN servers. Distributed Host IDS programs, like
Osiris [17], could be made part of integrated IDS.
Inclusion of honeypots [18] using tools like Honeyd [19]
would be a nice addition to system. Counter measures,
CIDF C-boxes, might be activated turning system into
intrusion prevention system (IPS). This could be achieved
by connecting firewall, OpenBSD pf, to system and
changing filtering rules based on detected intrusions.

Area of intrusion detection is in its full development
now and there are many new ideas being considered. We
tried to provide secure foundation for implementation of
those ideas.

REFERENCES
[1] Staniford-Chen, S., B. Tung, and D. Schnackenberg. “The

common intrusion detection frame-work (CIDF).” In Proceedings
of the Information Survivability Workshop, 1998.

[2] T. Ptacek and T. Newsham. Insertion, evasion, and denial of
service: eluding network intrusion detection. Technical report.
Secure Networks Inc., January 1998.

[3] N. F. Puketza, K. Zhang, M. Chung, B. Mukherjee and R. A.
Olsson, ``A Methodology for Testing Intrusion Detection
Systems,'' IEEE Transactions on Software Engineering, vol. 22,
pp. 719-729, October 1996.

[4] K. Cox, C. Gerg, “Managing Security with Snort & IDS Tools”,
O’Reilly, 2004.

[5] TJ Vanderpoel, “Deploying Open Sourced Network Intrusion
Detection for the Enterprise”, SANS, 2001,
http://www.sans.org/resources/idfaq/open_source.php

[6] M. P. Brennan, “Using Snort For a Distributed Intrusion Detection
System”, SANS, 2002,
http://www.sans.org/rr/whitepapers/detection/352.php

[7] Y. Korff, P. Hope, B. Potter, “Mastering FreeBSD and OpenBSD
Security”, O’Reilly, 2005.

[8] http://www.openssh.org
[9] http://www.snort.org
[10] http://www.mysql.org
[11] http://www.stunnel.org
[12] http://dev.mysql.com/doc/mysql/en/security.html
[13] http://www.openssl.org
[14] http://www.cert.org/kb/acid
[15] “Client certificates with apache“, http://www.garex.net/apache/
[16] “OpenSSH Public Key Authentication”

http://cfm.gs.washington.edu/security/ssh/client-pkauth
[17] http://www.hostintegrity.com/osiris/
[18] http://www.honeypots.net/
[19] http://www.honeyd.org/

