
NIDS Based on Payload Word Frequencies and Anomaly of Transitions

Sasa Mrdovic

University of Sarajevo

Faculty of Electrical Engineering

sasa.mrdovic@etf.unsa.ba

Branislava Perunicic

University of Sarajevo

Faculty of Electrical Engineering

brana_p@hotmail.com

Abstract

 This paper presents a novel payload analysis

method. Consecutive bytes are separated by

boundary symbols and defined as words. The

frequencies of word appearance and word to word

transitions are used to build a model of normal

behavior. A simple anomaly score calculation is

designed for fast attack detection. The method was

tested using real traffic and recent attacks to

demonstrate that it can be used in IDS. Tolerance to

small number of attack in training data is shown.

1. Introduction

The intrusion detection is a standard part of the

system for the information system protection. It is

designed to detect security policy violations. In a

perfect world preventive controls would stop such

violations, but so far this is not a realistic assumption

[1]. Since 1980s, intrusion detection systems (IDS)

have evolved following changes in environment they

operate in. Most of the recent network attacks are

aimed to the application level [2] [3] because most of

the lately found vulnerabilities appear in networked

applications [4] [5]. Moreover, most of the attacks at

lower protocol levels may now be prevented with

well established network protection tools as firewall.

Thus, the current network IDS as a rule analyze

network packet payload.

A properly configured signature based IDS can

detect all known attacks with very little false alarms,

if any. Such IDS also aims to detect variations of

known attacks. However, that effort might be futile

[6]. With the present rate of 10 and more new

vulnerabilities discovered every day [7] new attacks

without a signature cannot be detected by a signature

based IDS. The anomaly based IDS, however, should

be able to detect unknown attacks. Although the

complete anomaly detection paradigm has been

recently challenged [8], it still remains the only

realistic option for these, so called, zero-day attacks.

This paper presents a novel method for network

intrusion detection based on anomalies found in the

network packet payload. The payload is divided into

multi-byte sequences defined as words. These words

are used to model normal behavior. The model is

built using the frequency of occurrence of words and

the frequencies of one word following another. The

obtained evaluation results seem very promising.

The following section describes related work. The

Section 3 introduces the idea and the method based

on it. The method implementation is presented in the

Section 4. The evaluation results are provided in

Section 5. Finally, concluding remarks are given, and

possible future work is discussed in Section 6.

2. Related work

Network intrusion detection systems that analyze

packet payload anomalies are focus of an intensive

current research. Various approaches have been

proposed. Specific knowledge on applications that

offer network services is used in [9], where type,

length, and character frequencies of the request are

analyzed. Frequencies of first 48 bytes for nine most

used protocols are basis for the model in [10].

Combination of signature and anomaly based

detection using state-machine for analysis of a small

payload portion is topic of [11]. Two-tier

architecture is proposed in [12]. The first tier

calculates one byte value from packet payload. The

second tier uses self-organizing maps to classify

packets using both this value and packed header data.

Packet payload byte frequencies are the main

constituent of the model in [13]. This approach is

improved in [14]. Syntax and semantic information

from packet payload are used in [15] and [16].

Detection of executable code bytes in packet payload

is considered in [17] and [18]. Analysis of payload

based application level network anomaly detection

with some new ideas for improvements is focus of

[19]. Based on suggestions from [20], [21] explains

how to create attacks that methods suggested in [9],

[22], [10] and [13] cannot detect. Authors claim that

byte frequency based anomaly IDS are open to

attacks and may be easily evaded. Inspection and

analysis of network traffic using three levels of

granularities, traffic flow, packet header, and payload

is subject of [23].

The division of payload by using delimiters was

first suggested in [24], but the main issue of that

paper was the choice of the boundary characters,

delimiters, not analysis of payload parts. The

frequency analysis of multiple consecutive bytes, n-

grams, in payload has been proposed in [25]. The

use of payload words, seen as consecutive bytes

separated by delimiters, to make a language model

was considered in [26]. Authors of [27] take a

different view and use HTTP GET request

parameters and their values as the starting point for

the model: the length, character positions, the

structure, the values and existence of parameters are

considered. This idea is further developed and

improved in later papers [28] [29]. Yet another

approach to analysis of HTTP request parameters is

taken by [30], where Deterministic Finite Automata

induction algorithm is used to detect malicious

requests.

3. Method

The method proposed here uses words to model

normal behavior. Words are defined as groups of

consecutive bytes in the network packet payload

delimited by boundary symbols. The meaningful

words are defined as key words from the used

protocol or as words in the language of the

transmitted message. If proper boundary symbols are

used as delimiters, the percentage of meaningful

words might be sizeable. Most of the text based

protocols use similar sets of boundary symbols, as

required by their semantics.

The testing of proposed approach uses HTTP. The

majority of effective malicious activity has become

Web-based [2]. Here are some of the reasons. The

standard HTTP TCP port 80 is almost always open

for outgoing and incoming traffic on firewalls. Web

application vulnerabilities account for almost a half

of all vulnerabilities discovered in the past year [31].

In addition, the much used e-mail service is now

normally offered through Webmail.

Based on the results from [24], and [26], and our

own experiments, a set of 20 boundary symbols that

provides the highest percentage of meaningful words

for HTTP is defined. These 20 delimiters are:

CR LF TAB SPACE , . : / \ & ? = () [] " ; < >

 The above set of boundary symbols may result in

any length of a word. In order to keep the number of

words down, and get a smaller model, allowed word

length is limited to the range from 3 to 16. Words

shorter than 3 bytes are ignored, since they hardly

may be an important part of an attack. Even if there

is no boundary symbol the word ends after 16

consecutive bytes and a new word begins. This word

length limit was successfully applied in [26].

The next issue is how to build a model of normal

behavior. Recent comparisons of anomaly detection

techniques for HTTP [32] imply the following

conclusion: since normal requests have a meaning, if

an algorithm can get the sense of a HTTP request, it

improves its ability to discriminate between a normal

and an abnormal message. A conversation in some

language or an HTTP request-reply must have an

implication and should be easily set apart from a

conversation in some other language or gibberish.

The words in a language have a probability of

appearance, and they follow some rules of

precedence Therefore, to build a model, word

frequencies and word transitions may be used. Word

transitions are probabilities that certain word would

come after some other word. Those transitions are a

part of the Markov model proposed in the first IDS

paper [1]. It may be expected that malicious requests

and attacks would have both a significantly different

distribution of word frequencies and considerably

different distribution of word transitions.

4. Implementation

To test hypothesis stated in previous section an

application implementing the proposed method was

created and tested. It should be noted that IDS testing

is still an open issue. In particular, the HTTP

intrusion detection has its specific difficulties. The

current testing methods problems are point out in

[32]. The best known and most widely used data sets

for IDS testing were proposed by DARPA/MIT

Lincoln Laboratories in 1998 and 1999 [33] [34].

The choice of these data sets was questioned soon

after their publication [35] [36]. Two main reasons

why DARPA data sets are not adequate for current

HTTP IDS testing may be summarized as follows:

To begin with, both traffic and even more attacks in

those data sets are obsolete. Next, there are only four

web attacks in the data sets. Therefore in this paper

EE department of the Sarajevo University traffic was

used for testing as a typical traffic.

4.1. Learning

During the learning phase a model of normal,

which is attack free, traffic is built. There are number

of issues with machine learning [37] but it is out of

scope of this paper. One important issue is the

availability of a really clean traffic [8]. To deal with

this problem, the proposed method is created to be

rather tolerant to few attacks in training data.

The supervised learning was used for the making

of the model of the normal behavior. The 96 hours of

recorded traffic from the EE department Web server

was cleaned using a combination of signature based

network intrusion detection Snort [38] fully tuned,

with all rules activated, and supplied with latest

signature content of Snort rules. Lastly, the manual

inspection was applied. Such training data were

supplied to the system as an apparently attack free

traffic.

All incoming traffic packet payloads were

scanned and divided into words using set of 20

previously defined delimiters. All words found in

normal traffic were stored in a hash table, together

with the frequencies with which they appear.

Number of learned words leveled after the 96 hours

of learning as seen in the Fig, 1. Total number of

learned normal words was in the region of 33 000.

A huge 33 000 x 33 000 matrix is needed to store

all transitions from one word to another. Since hash

table showed a big diversity of numbers of word

appearances, a smaller matrix was likely to meet

requirements. Consequently, the transition matrix

was made using only the words that appear more

than ten times, since these words comprise 10% of

all words. Word transitions not found this in matrix

are considered as rare and a high anomaly score

would be assigned to them.

4.2. Detection

To test the ability to detect attacks, all Web server

incoming traffic payloads were scanned and divided

into words as described above. Each packet payload

was first scored based on the learned frequencies of

the words in packet using the following formula:

k

wn
S

k

i i
w


 1)(

1

 (1)

In this formula k is the number of words in a

payload and n(wi) is the number of appearances of

the word wi in learned model. For the words that

were not seen in normal traffic thus having n(wi) = 0,

the corresponding term in the sum is set to 2. In this

way the words that seldom appear in normal traffic

would make the score higher. On the other hand,

words that have a high frequency of appearance in

normal traffic would make almost no contribution to

the sum. This prevents malicious payloads, padded

with frequent words to mask attack vector, to have a

low score. Besides, even if the training traffic is not

absolutely clean of attacks, these attacks would still

have a score higher than normal traffic, assuming

that the number of such attacks in training data was

low. This assumption is more realistic than the

standard assumption that there is an attack free

traffic available for learning. Test with attacks in

training data will be presented later.

First test was with one hour of a traffic containing

a vulnerability scan performed using Nikto, Web

server scanner. Although there is no real attack, such

scan is not a usual traffic on Web servers. The Fig. 2

shows word scores for all packets within one hour

that included Nikto scan that lasted from 6th to 12th

minute. Scores for full hour are shown to provide

comparison between normal traffic and scan. The

scan traffic can be clearly distinguished from the

normal one, although some of the packets in the

normal traffic had higher scores than the others. This

issue will be addressed later. The results confirm

prediction that an abnormal traffic, as a scan, has

different distribution of word frequencies than a

normal traffic.

Next, each packet payload was scored based on

the learned frequencies of the word transitions in

packet using formula similar to the one for words:

m

tn
S

m

i i
t





1)(

1

 (2)

Here m is the number of word transitions in a

payload and n(ti) is the number of times transition ti

occurred during training. Similarly to word score,

transitions that are rare in normal traffic would make

the score higher. For the transitions that were not

seen in normal traffic thus having n(ti) = 0, term of

sum is again set to 2. Frequent transitions would

have very little effect on total transition score.

The importance of putting into service word

transition in the model of the normal behavior may

be explained in the following way: The stuffing of

frequent words into the attack packet to lower its

word score, and so mask the attack, might be

Fig. 1. Number of learned words as a function of hours of traffic

Fig. 2. Word scores for one hour of traffic that includes Nikto

scan

difficult, but it is still possible. Doing something

similar with word transitions is also possible, but

without doubt much harder to do.

The same hour of traffic with Nikto scan was

scored with transition score. Fig. 3 shows transition

scores for all packets within that hour. At first look

the scores are similar to the word scores. But, a

careful analysis of the numbers showed that the scan

packet transition scores were generally higher and

the normal traffic transition scores generally lower

than the words scores in the same traffic. This can be

seen on the Fig. 3. Another important fact is that if a

normal packet had a higher than normal score it was

usually either higher word score or a higher

transition score, only rarely both. Scan packets, on

the other hand, had both scores high. This is a very

convenient property that suggests how to combine

these scores to get an indicative total score. Since

both scores have to be high for a packet to be

considered abnormal, the multiplication of word and

transition score is a logical choice. So for the total

score the following simple formula is used:

tw SSS  (3)

The Fig. 4 shows the total scores for the same

hour of traffic with Nikto scan. The results are much

better than for either of single scores, as predicted.

The scan traffic is scored significantly different from

the normal one. The scores for the normal packets

are very low with very few minor exceptions. These

exceptions still have much lower total score than the

scan packets.

 For the better visualization purposes only a half

of the theoretical scale was shown. A real detection

uses scores, not their visual representation and only

thing that matters is that malicious packets have

significantly higher scores.

A similar test with a scan using general

vulnerability scanner Nessus, was performed with

similar results. The results are not shown here for the

lack of space.

Note that for a faster calculation of both scores

inverse values of n(wi) and n(ti) are calculated and

stored before the detection phase.

5. Evaluation

The first evaluation test was performed using

Metasploit framework for creation of real attacks.

Metasploit has a database of various exploits for

known vulnerabilities. It is possible to use different

attack payloads depending on wanted attack result.

The attacks in this test were made using various

combinations of seven vulnerabilities and seven

attack payloads. In this way eleven HTTP attacks

over TCP port 80 were made. The particulars of each

attack are given in the Table I.

These 11 attacks were inserted in normal traffic

during one hour. Every five minutes one of the

attacks was inserted. The Fig. 5 shows scores for that

hour of traffic. The moment of the attack inception is

very clearly seen in the graph. Since each packet was

individually scored and each attack session has

different number of packets, peaks have different

widths. The lowest score of any attack packet was

Fig. 3. Transition scores for one hour of traffic that includes

Nikto scan

Fig. 4. Total scores for one hour of traffic that includes Nikto

scan

TABLE I

ATTACKS WITH RELATED VULNERABILITY AND USED PAYLOAD

 No. Vulnerability / payload CVE

 Apache Chunked-Encoding 2002-0392

1 meterpreter-reverse_tcp

2 shell-reverse_http

 Apache mod_jk overflow 2007-0774

3 adduser

 Apache mod_rewrite 2006-3747

4 shell-bind_tcp

5 vncinject-reverse_tcp

 IIS 5.0 IDQ Path Overflow 2001-0500

6 shell-reverse_http

7 shell-reverse_tcp

 IIS ISAPI w3who.dll 2004-1134

8 exec

9 shell-reverse_tcp

 Oracle 9i XDB HTTP PASS 2003-0727

10 shell-reverse_tcp

 Xitami If_Mod_Since 2007-5067

11 shell-reverse_tcp

1.15.

The number of attacks was then expanded to 18

and more combinations of vulnerabilities and

payloads were used for their construction. Total

number of attack packets was 200 and all of them

had scores above 1.15. The next test was carried out

with normal traffic. Six days of traffic from the

department Web server were scored. The aim was to

get the number of false positive alarms. Threshold

for an anomalous score was varied in the range from

0.2 to 2.0. Receiver operating characteristics (ROC)

curve, which is usual tool for reporting accuracy of

IDS results, for the system is shown on Fig. 6. False

positive rate scale goes from 0 to 0.005 to provide

enough detail in the part of the picture where ROC

changes. With threshold of 1.0 the system detection

rate is 100% with 12 false alarms a day. Results are

promising and seem better than most results reported

by authors mentioned in related work section. Real

comparison is difficult due to reasons explained in

[32].

As it was previously mentioned proposed method

is tolerant to attacks in training data to some extent.

It measures how unusual incoming HTTP packet is.

A single attack that was a part of training data should

still be unusual compared to normal traffic that

makes majority of other learning data. Tests to

check this feature of the algorithm were created for

three attacks, number 2, 3 and 8 from Table I. Each

of the attacks was first included in training data and

then scored using the proposed approach. Results are

given in Table II. Scores for these attacks, after they

have been added to training data, have halved at

least. This is not good, but it may be expected. On

the other hand all packet scores, except for three,

were still much higher than scores for normal

packets. Although last one or two last packets of

these attacks might have very low score, there are

enough other packets in attack with scores high

enough for detection. Consequently, even if training

data is not 100% attack free system should be able to

detect attacks, as long as number of attacks in

training data is small enough.

6. Conclusion and future work

This paper presents a novel method for detection

of attacks inserted in network packet payload. The

method is simple, yet showed as successful in

detection of all attacks it was tested with. False

positive rate and number of false alarms per day are

very low. The method is resistant to the padding of

attacks with normal traffic patterns. Small number of

attacks in training data is tolerable and does not

prevent detection of these attacks.

Implementation is tested with HTTP traffic that

we found to be currently the most in need to be

protected. The method could work with other text

based protocols like SMTP and FTP. This should be

tested and is one of directions for future work.

Further testing with different data should be

performed to confirm the presented results. Using

different set of boundary symbols, for each

implementation, suggested in [39], should provide an

additional resistance to the detection evasion.

Fig. 6. ROC curve

Fig. 5. Total scores for one hour of traffic that includes 11 attacks

TABLE II
ATTACKS SCORES COMPARISON FOR (UN)CLEAN TRAINING DATA

 Attack no. in Table I Not in training data In training data

2 1,697458 0,568382

2 1,788083 0,900336

2 1,745897 0,877035

2 1,803798 0,004466

2 1,987421 0,000016

3 1,736318 0,872588

3 1,864706 0,936275

3 1,761585 0,885549

3 1,728683 0,000946

8 1,720629 0,484422

8 2,392497 0,602977

8 2,574378 0,64711

8 2,5483 0,639208

8 2,609535 0,655562

8 1,661021 0,416667

References

 [1] D.E. Denning, ―An intrusion-detection model.,‖ IEEE

Transactions on Software Engineering, vol. 13, 1987, pp.

222-232.

[2] Internet Security Threat Report, Volume XII, Symantec

Corporation, 2008.

[3] 2008 INTERNET SECURITY TRENDS, IronPort and

Cisco, 2008.

[4] ―CVE - Common Vulnerabilities and Exposures

(CVE)‖; http://cve.mitre.org/.

[5] ―SecurityFocus - Vulnerabilities‖;

http://www.securityfocus.com/vulnerabilities.

[6] Y. Song et al., ―On the infeasibility of modeling

polymorphic shellcode,‖ 14th ACM conference on

Computer and communications security, 2007, pp. 541-

551.

[7] US –National Institute of Standards and Technology,

―National Vulnerability Database Home‖;

http://nvd.nist.gov/.

[8] C. Gates and C. Taylor, ―Challenging the anomaly

detection paradigm: a provocative discussion,‖ 2006

workshop on New security paradigms, 2006, pp. 21-29.

[9] C. Krügel, T. Toth, and E. Kirda, ―Service specific

anomaly detection for network intrusion detection,‖ 2002

ACM symposium on Applied computing, 2002, pp. 201-

208.

[10] M.V. Mahoney, ―Network traffic anomaly detection

based on packet bytes,‖ 2003 ACM symposium on

Applied computing, 2003, pp. 346-350.

[11] R. Sekar et al., ―Specification-based anomaly

detection: a new approach for detecting network

intrusions,‖ 9th ACM conference on Computer and

communications security, 2002, pp. 265-274.

[12] S. Zanero and S.M. Savaresi, ―Unsupervised learning

techniques for an intrusion detection system,‖ 2004 ACM

symposium on Applied computing, 2004, pp. 412-419.

[13] K. Wang and S.J. Stolfo, ―Anomalous Payload-Based

Network Intrusion Detection,‖ 7th International

Symposium on Recent Advances in Intrusion Detection

(RAID), 2004.

[14] K. Wang, G. Cretu, and S.J. Stolfo, ―Anomalous

Payload-Based Worm Detection and Signature

Generation,‖ 8th International Symposium on Recent

Advances in Intrusion Detection (RAID), 2005.

[15] R. Chinchani and E. van den Berg, ―A Fast Static

Analysis Approach to Detect Exploit Code Inside Network

Flows,‖ 8th International Symposium on Recent Advances

in Intrusion Detection (RAID), 2005.

[16] P. Akritidis et al., ―Stride: Polymorphic sled detection

through instruction sequence analysis,‖ 20th IFIP

International Information Security Conference (IFIP/SEC

2005), 2005.

[17] C. Kruegel et al., ―Polymorphic Worm Detection

Using Structural Information of Executables,‖ 8th

International Symposium on Recent Advances in Intrusion

Detection (RAID), 2005.

[18] X. Wang et al., ―SigFree: a signature-free buffer

overflow attack blocker,‖ 15th conference on USENIX

Security Symposium - Volume 15, 2006, p. 16.

[19] L. Zhang and G.B. White, ―Analysis of Payload

Based Application level Network Anomaly Detection,‖

40th Hawaii International Conference on System Sciences,

IEEE Computer Society, 2007, p. 99.

[20] O. Kolesnikov and W. Lee, Advanced Polymorphic

Worms: Evading IDS by Blending in with Normal Traffic,

College of Computing, Georgia Tech, 2005.

[21] P. Fogla et al., ―Polymorphic blending attacks,‖ 15th

conference on USENIX Security Symposium - Volume 15,

2006, p. 17.

[22] T. Toth and C. Kruegel, ―Accurate Buffer Overflow

Detection via Abstract Pay load Execution,‖ Recent

Advances in Intrusion Detection (RAID), 2002, pp. 274-

291.

[23] Y. Al-Nashif et al., ―Multi-Level Intrusion Detection

System (ML-IDS),‖ Autonomic Computing, 2008. ICAC

'08. International Conference on, 2008, pp. 131-140.

[24] R. Vargiya and P. Chan, ―Boundary Detection in

Tokenizing Network Application Payload for Anomaly

Detection,‖ Workshop on Data Mining for Computer

Security, 2003.

[25] K. Wang, J. Parekh, and S. Stolfo, ―Anagram: A

Content Anomaly Detector Resistant to Mimicry Attack,‖

Recent Advances in Intrusion Detection (RAID), 2006, pp.

226-248.

[26] K. Rieck and P. Laskov, ―Language models for

detection of unknown attacks in network traffic,‖ Journal

in Computer Virology, vol. 2, 2007, pp. 243-256.

[27] C. Kruegel and G. Vigna, ―Anomaly detection of

web-based attacks,‖ 10th ACM conference on Computer

and communications security, 2003, pp. 251-261.

[28] C. Kruegel, G. Vigna, and W. Robertson, ―A multi-

model approach to the detection of web-based attacks,‖

Computer Networks, vol. 48, Aug. 2005, pp. 717-738.

[29] W. Robertson et al., ―Using Generalization and

Characterization Techniques in the Anomaly-based

Detection of Web Attacks,‖ 13th Symposium on Network

and Distributed System Security (NDSS), 2006.

[30] K. Ingham et al., ―Learning DFA representations of

HTTP for protecting web applications,‖ Computer

Networks, vol. 51, Apr. 2007, pp. 1239-1255.

[31] SANS Institute, ―SANS Top-20 2007 Security Risks

(2007 Annual Update)‖; http://www.sans.org/top20/.

[32] K. Ingham and H. Inoue, „Comparing Anomaly

Detection Techniques for HTTP―, 2007 Conference on

Recent Advances in Intrusion Detection (RAID), 2007.

 [33] R. Lippmann et al., ―Evaluating intrusion detection

systems: the 1998 DARPA off-line intrusion detection

evaluation,‖ DARPA Information Survivability

Conference and Exposition, 2000, pp. 12-26 vol.2.

[34] L. Richard et al., ―The 1999 DARPA off-line

intrusion detection evaluation,‖ Computer Networks, vol.

34, Oct. 2000, pp. 579-595.

[35] J. McHugh, ―The 1998 Lincoln Lab IDS Evaluation—

A Critique,‖ 3rd International Workshop on Recent

Advances in Intrusion Detection (RAID), 2000.

[36] J. McHugh, ―Testing Intrusion detection systems: a

critique of the 1998 and 1999 DARPA intrusion detection

system evaluations as performed by Lincoln Laboratory,‖

ACM Trans. Inf. Syst. Secur., vol. 3, 2000, pp. 262-294.

[37] M. Barreno et al., ―Can machine learning be secure?,‖

2006 ACM Symposium on Information, computer and

communications security, 2006, pp. 16-25.

[38] M. Roesch, ―Snort-Lightweight Intrusion Detection

for Networks,‖ 1999 USENIX LISA Systems

Administration Conference, 1999, pp. 229–238.

[39] S. Mrdovic and B. Perunicic, ―Kerckhoffs’ Principle

for Intrusion Detection‖, Networks 2008, (to be published)

