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Abstract 
 

  This paper presents a novel payload analysis 

method. Consecutive bytes are separated by 

boundary symbols and defined as words. The 

frequencies of word appearance and word to word 

transitions are used to build a model of normal 

behavior. A simple anomaly score calculation is 

designed for fast attack detection. The method was 

tested using real traffic and recent attacks to 

demonstrate that it can be used in IDS.  Tolerance to 

small number of attack in training data is shown.  

 

1. Introduction 
 

The intrusion detection is a standard part of the 

system for the information system protection. It is 

designed to detect security policy violations. In a 

perfect world preventive controls would stop such 

violations, but so far this is not a realistic assumption 

[1]. Since 1980s, intrusion detection systems (IDS) 

have evolved following changes in environment they 

operate in. Most of the recent network attacks are 

aimed to the application level [2] [3] because most of 

the lately found vulnerabilities appear in networked 

applications [4] [5]. Moreover, most of the attacks at 

lower protocol levels may now be prevented with 

well established network protection tools as firewall. 

Thus, the current network IDS as a rule analyze 

network packet payload.  

A properly configured signature based IDS can 

detect all known attacks with very little false alarms, 

if any. Such IDS also aims to detect variations of 

known attacks. However, that effort might be futile 

[6]. With the present rate of 10 and more new 

vulnerabilities discovered every day [7] new attacks 

without a signature cannot be detected by a signature 

based IDS. The anomaly based IDS, however, should 

be able to detect unknown attacks. Although the 

complete anomaly detection paradigm has been 

recently challenged [8], it still remains the only 

realistic option for these, so called, zero-day attacks. 

This paper presents a novel method for network 

intrusion detection based on anomalies found in the 

network packet payload. The payload is divided into 

multi-byte sequences defined as words. These words 

are used to model normal behavior. The model is 

built using the frequency of occurrence of words and 

the frequencies of one word following another. The 

obtained evaluation results seem very promising. 

The following section describes related work. The 

Section 3 introduces the idea and the method based 

on it. The method implementation is presented in the 

Section 4. The evaluation results are provided in 

Section 5. Finally, concluding remarks are given, and 

possible future work is discussed in Section 6. 

 

2. Related work 
 

Network intrusion detection systems that analyze 

packet payload anomalies are focus of an intensive 

current research. Various approaches have been 

proposed. Specific knowledge on applications that 

offer network services is used in [9], where type, 

length, and character frequencies of the request are 

analyzed. Frequencies of first 48 bytes for nine most 

used protocols are basis for the model in [10]. 

Combination of signature and anomaly based 

detection using state-machine for analysis of a small 

payload portion is topic of [11]. Two-tier 

architecture is proposed in [12]. The first tier 

calculates one byte value from packet payload. The 

second tier uses self-organizing maps to classify 

packets using both this value and packed header data.  

Packet payload byte frequencies are the main 

constituent of the model in [13]. This approach is 

improved in [14]. Syntax and semantic information 

from packet payload are used in [15] and [16]. 

Detection of executable code bytes in packet payload 

is considered in [17] and [18]. Analysis of payload 

based application level network anomaly detection 

with some new ideas for improvements is focus of 

[19]. Based on suggestions from [20], [21] explains 

how to create attacks that methods suggested in [9], 

[22], [10] and [13] cannot detect. Authors claim that 

byte frequency based anomaly IDS are open to 

attacks and may be easily evaded. Inspection and 

analysis of network traffic using three levels of 

granularities, traffic flow, packet header, and payload 

is subject of [23]. 



The division of payload by using delimiters was 

first suggested in [24], but the main issue of that 

paper was the choice of the boundary characters, 

delimiters, not analysis of payload parts. The 

frequency analysis of multiple consecutive bytes, n-

grams, in payload has been proposed in [25].  The 

use of payload words, seen as consecutive bytes 

separated by delimiters, to make a language model 

was considered in [26]. Authors of [27] take a 

different view and use HTTP GET request 

parameters and their values as the starting point for 

the model: the length, character positions, the 

structure, the values and existence of parameters are 

considered. This idea is further developed and 

improved in later papers [28] [29]. Yet another 

approach to analysis of HTTP request parameters is 

taken by [30], where Deterministic Finite Automata 

induction algorithm is used to detect malicious 

requests.  

 

3. Method 
 

The method proposed here uses words to model 

normal behavior. Words are defined as groups of 

consecutive bytes in the network packet payload 

delimited by boundary symbols.  The meaningful 

words are defined as key words from the used 

protocol or as words in the language of the 

transmitted message. If proper boundary symbols are 

used as delimiters, the percentage of meaningful 

words might be sizeable. Most of the text based 

protocols use similar sets of boundary symbols, as 

required by their semantics.  

The testing of proposed approach uses HTTP. The 

majority of effective malicious activity has become 

Web-based [2]. Here are some of the reasons. The 

standard HTTP TCP port 80 is almost always open 

for outgoing and incoming traffic on firewalls. Web 

application vulnerabilities account for almost a half 

of all vulnerabilities discovered in the past year [31]. 

In addition, the much used e-mail service is now 

normally offered through Webmail.  

Based on the results from [24], and [26], and our 

own experiments, a set of 20 boundary symbols that 

provides the highest percentage of meaningful words 

for HTTP is defined. These 20 delimiters are:  

CR LF TAB SPACE , . : / \ & ? = ( ) [ ] " ; < > 

 The above set of boundary symbols may result in 

any length of a word. In order to keep the number of 

words down, and get a smaller model, allowed word 

length is limited to the range from 3 to 16. Words 

shorter than 3 bytes are ignored, since they hardly 

may be an important part of an attack. Even if there 

is no boundary symbol the word ends after 16 

consecutive bytes and a new word begins. This word 

length limit was successfully applied in [26]. 

The next issue is how to build a model of normal 

behavior. Recent comparisons of anomaly detection 

techniques for HTTP [32] imply the following 

conclusion: since normal requests have a meaning, if 

an algorithm can get the sense of a HTTP request, it 

improves its ability to discriminate between a normal 

and an abnormal message. A conversation in some 

language or an HTTP request-reply must have an 

implication and should be easily set apart from a 

conversation in some other language or gibberish. 

The words in a language have a probability of 

appearance, and they follow some rules of 

precedence Therefore, to build a model, word 

frequencies and word transitions may be used. Word 

transitions are probabilities that certain word would 

come after some other word. Those transitions are a 

part of the Markov model proposed in the first IDS 

paper [1]. It may be expected that malicious requests 

and attacks would have both a significantly different 

distribution of word frequencies and considerably 

different distribution of word transitions. 

 

4. Implementation 
 

To test hypothesis stated in previous section an 

application implementing the proposed method was 

created and tested. It should be noted that IDS testing 

is still an open issue. In particular, the HTTP 

intrusion detection has its specific difficulties. The 

current testing methods problems are point out in 

[32]. The best known and most widely used data sets 

for IDS testing were proposed by DARPA/MIT 

Lincoln Laboratories in 1998 and 1999 [33] [34]. 

The choice of these data sets was questioned soon 

after their publication [35] [36]. Two main reasons 

why DARPA data sets are not adequate for current 

HTTP IDS testing may be summarized as follows: 

To begin with, both traffic and even more attacks in 

those data sets are obsolete. Next, there are only four 

web attacks in the data sets.  Therefore in this paper 

EE department of the Sarajevo University traffic was 

used for testing as a typical traffic. 

  

4.1. Learning 
 

During the learning phase a model of normal, 

which is attack free, traffic is built. There are number 

of issues with machine learning [37] but it is out of 

scope of this paper. One important issue is the 

availability of a really clean traffic [8]. To deal with 

this problem, the proposed method is created to be 

rather tolerant to few attacks in training data.  

The supervised learning was used for the making 

of the model of the normal behavior. The 96 hours of 

recorded traffic from the EE department Web server 

was cleaned using a combination of signature based 

network intrusion detection Snort [38] fully tuned, 

with all rules activated, and supplied with latest 

signature content of Snort rules. Lastly, the manual 

inspection was applied. Such training data were 

supplied to the system as an apparently attack free 

traffic.  



All incoming traffic packet payloads were 

scanned and divided into words using set of 20 

previously defined delimiters. All words found in 

normal traffic were stored in a hash table, together 

with the frequencies with which they appear. 

Number of learned words leveled after the 96 hours 

of learning as seen in the Fig, 1. Total number of 

learned normal words was in the region of 33 000.  

A huge 33 000 x 33 000 matrix is needed to store 

all transitions from one word to another. Since hash 

table showed a big diversity of numbers of word 

appearances, a smaller matrix was likely to meet 

requirements. Consequently, the transition matrix 

was made using only the words that appear more 

than ten times, since these words comprise 10% of 

all words. Word transitions not found this in matrix 

are considered as rare and a high anomaly score 

would be assigned to them. 

 

4.2. Detection 
 

To test the ability to detect attacks, all Web server 

incoming traffic payloads were scanned and divided 

into words as described above. Each packet payload 

was first scored based on the learned frequencies of 

the words in packet using the following formula: 
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In this formula k is the number of words in a 

payload and n(wi) is the number of appearances of 

the word wi in learned model. For the words that 

were not seen in normal traffic thus having n(wi) = 0, 

the corresponding term in the sum is set to 2. In this 

way the words that seldom appear in normal traffic 

would make the score higher. On the other hand, 

words that have a high frequency of appearance in 

normal traffic would make almost no contribution to 

the sum. This prevents malicious payloads, padded 

with frequent words to mask attack vector, to have a 

low score.  Besides, even if the training traffic is not 

absolutely clean of attacks, these attacks would still 

have a score higher than normal traffic, assuming 

that the number of such attacks in training data was 

low. This assumption is more realistic than the 

standard assumption that there is an attack free 

traffic available for learning. Test with attacks in 

training data will be presented later. 

First test was with one hour of a traffic containing 

a vulnerability scan performed using Nikto, Web 

server scanner. Although there is no real attack, such 

scan is not a usual traffic on Web servers. The Fig. 2 

shows word scores for all packets within one hour 

that included Nikto scan that lasted from 6th to 12th 

minute. Scores for full hour are shown to provide 

comparison between normal traffic and scan. The 

scan traffic can be clearly distinguished from the 

normal one, although some of the packets in the 

normal traffic had higher scores than the others. This 

issue will be addressed later. The results confirm 

prediction that an abnormal traffic, as a scan, has 

different distribution of word frequencies than a 

normal traffic. 

Next, each packet payload was scored based on 

the learned frequencies of the word transitions in 

packet using formula similar to the one for words: 
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Here m is the number of word transitions in a 

payload and n(ti) is the number of times transition ti 

occurred during training. Similarly to word score, 

transitions that are rare in normal traffic would make 

the score higher. For the transitions that were not 

seen in normal traffic thus having n(ti) = 0, term of 

sum is again set to 2. Frequent transitions would 

have very little effect on total transition score.  

The importance of putting into service word 

transition in the model of the normal behavior may 

be explained in the following way: The stuffing of 

frequent words into the attack packet to lower its 

word score, and so mask the attack, might be 

 
Fig. 1.  Number of learned words as a function of hours of traffic 

 
Fig. 2.  Word scores for one hour of traffic that includes Nikto 

scan 



difficult, but it is still possible. Doing something 

similar with word transitions is also possible, but 

without doubt much harder to do. 

The same hour of traffic with Nikto scan was 

scored with transition score. Fig. 3 shows transition 

scores for all packets within that hour. At first look 

the scores are similar to the word scores. But, a 

careful analysis of the numbers showed that the scan 

packet transition scores were generally higher and 

the normal traffic transition scores generally lower 

than the words scores in the same traffic. This can be 

seen on the Fig. 3. Another important fact is that if a 

normal packet had a higher than normal score it was 

usually either higher word score or a higher 

transition score, only rarely both. Scan packets, on 

the other hand, had both scores high. This is a very 

convenient property that suggests how to combine 

these scores to get an indicative total score. Since 

both scores have to be high for a packet to be 

considered abnormal, the multiplication of word and 

transition score is a logical choice.  So for the total 

score the following simple formula is used: 

tw SSS   (3) 

The Fig. 4 shows the total scores for the same 

hour of traffic with Nikto scan. The results are much 

better than for either of single scores, as predicted. 

The scan traffic is scored significantly different from 

the normal one. The scores for the normal packets 

are very low with very few minor exceptions. These 

exceptions still have much lower total score than the 

scan packets.  

 For the better visualization purposes only a half 

of the theoretical scale was shown. A real detection 

uses scores, not their visual representation and only 

thing that matters is that malicious packets have 

significantly higher scores. 

A similar test with a scan using general 

vulnerability scanner Nessus, was performed with 

similar results. The results are not shown here for the 

lack of space. 

Note that for a faster calculation of both scores 

inverse values of n(wi) and n(ti) are calculated and 

stored before the detection phase. 

 

5. Evaluation 
 

The first evaluation test was performed using 

Metasploit framework for creation of real attacks. 

Metasploit has a database of various exploits for 

known vulnerabilities. It is possible to use different 

attack payloads depending on wanted attack result. 

The attacks in this test were made using various 

combinations of seven vulnerabilities and seven 

attack payloads. In this way eleven HTTP attacks 

over TCP port 80 were made. The particulars of each 

attack are given in the Table I.   

These 11 attacks were inserted in normal traffic 

during one hour. Every five minutes one of the 

attacks was inserted. The Fig. 5 shows scores for that 

hour of traffic. The moment of the attack inception is 

very clearly seen in the graph. Since each packet was 

individually scored and each attack session has 

different number of packets, peaks have different 

widths. The lowest score of any attack packet was 

 
Fig. 3.  Transition scores for one hour of traffic that includes 

Nikto scan 

 
Fig. 4.  Total scores for one hour of traffic that includes Nikto 

scan 

TABLE I 

ATTACKS WITH RELATED VULNERABILITY AND USED PAYLOAD 

 No. Vulnerability / payload  CVE 

  Apache Chunked-Encoding 2002-0392 

1 meterpreter-reverse_tcp   

2 shell-reverse_http   

  Apache mod_jk overflow 2007-0774 

3 adduser   

  Apache mod_rewrite 2006-3747 

4 shell-bind_tcp   

5 vncinject-reverse_tcp   

  IIS 5.0 IDQ Path Overflow  2001-0500  

6 shell-reverse_http   

7 shell-reverse_tcp   

  IIS ISAPI w3who.dll  2004-1134 

8 exec   

9 shell-reverse_tcp   

  Oracle 9i XDB HTTP PASS  2003-0727 

10 shell-reverse_tcp   

  Xitami If_Mod_Since 2007-5067 

11 shell-reverse_tcp   

 

 



1.15.  

The number of attacks was then expanded to 18 

and more combinations of vulnerabilities and 

payloads were used for their construction. Total 

number of attack packets was 200 and all of them 

had scores above 1.15. The next test was carried out 

with normal traffic. Six days of traffic from the 

department Web server were scored. The aim was to 

get the number of false positive alarms. Threshold 

for an anomalous score was varied in the range from 

0.2 to 2.0. Receiver operating characteristics (ROC) 

curve, which is usual tool for reporting accuracy of 

IDS results, for the system is shown on Fig. 6. False 

positive rate scale goes from 0 to 0.005 to provide 

enough detail in the part of the picture where ROC 

changes. With threshold of 1.0 the system detection 

rate is 100% with 12 false alarms a day. Results are 

promising and seem better than most results reported 

by authors mentioned in related work section. Real 

comparison is difficult due to reasons explained in 

[32]. 

As it was previously mentioned proposed method 

is tolerant to attacks in training data to some extent. 

It measures how unusual incoming HTTP packet is. 

A single attack that was a part of training data should 

still be unusual compared to normal traffic that 

makes majority of other learning data.  Tests to 

check this feature of the algorithm were created for 

three attacks, number 2, 3 and 8 from Table I. Each 

of the attacks was first included in training data and 

then scored using the proposed approach. Results are 

given in Table II. Scores for these attacks, after they 

have been added to training data, have halved at 

least. This is not good, but it may be expected. On 

the other hand all packet scores, except for three, 

were still much higher than scores for normal 

packets. Although last one or two last packets of 

these attacks might have very low score, there are 

enough other packets in attack with scores high 

enough for detection. Consequently, even if training 

data is not 100% attack free system should be able to 

detect attacks, as long as number of attacks in 

training data is small enough. 

 

6. Conclusion and future work 
 

This paper presents a novel method for detection 

of attacks inserted in network packet payload. The 

method is simple, yet showed as successful in 

detection of all attacks it was tested with. False 

positive rate and number of false alarms per day are 

very low. The method is resistant to the padding of 

attacks with normal traffic patterns. Small number of 

attacks in training data is tolerable and does not 

prevent detection of these attacks. 

Implementation is tested with HTTP traffic that 

we found to be currently the most in need to be 

protected. The method could work with other text 

based protocols like SMTP and FTP. This should be 

tested and is one of directions for future work. 

Further testing with different data should be 

performed to confirm the presented results. Using 

different set of boundary symbols, for each 

implementation, suggested in [39], should provide an 

additional resistance to the detection evasion. 

 
Fig. 6.  ROC curve 

 
Fig. 5.  Total scores for one hour of traffic that includes 11 attacks 

TABLE II 
ATTACKS SCORES COMPARISON FOR (UN)CLEAN TRAINING DATA 

 Attack no. in Table I Not in training data  In training data 

2 1,697458 0,568382 

2 1,788083 0,900336 

2 1,745897 0,877035 

2 1,803798 0,004466 

2 1,987421 0,000016 

   

3 1,736318 0,872588 

3 1,864706 0,936275 

3 1,761585 0,885549 

3 1,728683 0,000946 

   

8 1,720629 0,484422 

8 2,392497 0,602977 

8 2,574378 0,64711 

8 2,5483 0,639208 

8 2,609535 0,655562 

8 1,661021 0,416667 
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