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Abstract—The scope, scale, and intensity of real, as well as
potential, attacks on the Smart Grid have been increasing and
thus gaining more attention. An important component of the
Smart Grid cybersecurity efforts addresses the availability and
access to the power and related information and communications
infrastructures. In this paper, we provide a holistic and method-
ical presentation of taxonomies and solutions for DoS attacks
in the Smart Grid. The emerging threats of cybertattacks are
raising serious concerns for many critical infrastructures. In this
regards, The scope, scale, and intensity of real as well as potential
attacks on the Smart Grid are on the rise and with devastating
consequences. An important component of Smart Grid cyberse-
curity efforts addresses the availability and access to the power
and related information and communications infrastructures. In
this paper, a holistic and methodical presentation of taxonomies
and solution for DoS attacks in the Smart Grid is presented.
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I. INTRODUCTION

The power grid is considered to be the largest machine in the
world. Recently, worldwide initiatives have started upgrading
the power grid infrastructure to the Smart Grid (SG). This
vast upgrade involves integration of a variety of digital,
computing, communications, and industrial control systems
and technologies into a modernized and advanced power grid.
A key element of the SG effort is in the incorporation of
the bidirectional flow of power (for distributed and renewable
energy sources) as well as the two- way communications
and control capabilities. Even before the SG initiatives, the
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Fig. 1. Number of smart meters (electricity, gas & water) worldwide from
2014 to 2020 (in millions), real data up to 2015, and then forecast thereafter.

nature of the power grid was vulnerable to malfunction that
could disturb its precarious equilibrium and its applications for
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reliability purposes. Both top-down governmental and bottom-
up-societal trends to incorporate more distributed resources,
including renewables, exacerbate the known power grid de-
ficiencies and make it more vulnerable to deliberate attacks.
For example, the number of smart meters show (Figure 1) a
quadratic increase in worldwide deployment, which in turn
increases the attack vectors with the same proportion. As a
result, a critical need emerges to address a variety of security
and privacy related challenges.

Cybersecurity becomes an indispensable component and key
enabler for the successful transformation from the electric
power grid of yesterday into the SG of the future. The essential
nature of the SG cybersecurity spans availability, integrity, and
confidentiality of computing, communications, and/or control
devices from intentional or accidental harm and damage. Out
of so many other real incidents, in December 2015 in Ukraine,
cyber attacks were directly responsible for power outages
[1]. These attacks as well as other potential attack vectors
on power grid [2] have revealed tenuous vulnerabilities of
systems, components, and people in both the private and
public sectors. There is definitely an imperative to implement
and adopt cybersecurity technology, both within the SG and
beyond.

Conventionally, availability, the target of Denial-of-Service
(DoS) attacks, is defined as “ensuring timely and reliable
access to and use of information”[3]. However in the context
of SG “ensuring access to enough power” should also be
considered as part of the definition.

With this expanded definition, availability is regarded as a
crucial security objective for SG [3]. DoS attacks disrupting
the Internet traffic have already cost billions of dollars world-
wide. With the increasing connectedness of grid systems,
a DoS attack to the infrastructure causing a major power
failure becomes quite possible and could be undoubtedly
more harmful and costly. This is because in modern society
electricity is a utility we depend on mightily not only for
communication but also for many other life-critical functions.

In this work, we present a structured, methodical, holistic,
and comprehensive view of the availability dimension of
the SG cybersecurity by proposing a taxonomy of denial-of-
service attacks and a very high-level glimpse (due to space
limitation) of potential solutions. To the best of our knowledge,
a comprehensive study about DoS attacks and solutions on
the SG does not exist in the literature. Hereby, we would like
to draw the various research communities’ attentions to these
important cybersecurity issues to draw more concerted efforts
towards more viable and readily available solutions.

The rest of this paper is organized as follows: We pro-



vide a taxonomy of DoS attacks on the SG from multiple
perspectives in Section II with brief discussions of each for
brevity. Section III follows it up with a synopsis discussion
of some potential solution approaches without details due to
space limitation but with a summarizing comparative table.
Concluding remarks are provided in Section IV.

II. SMART GRID DOS ATTACKS

In this section, we summarize five different classifications
of DoS attacks on the SG.
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Fig. 2. Spatial classification of DoS attacks on the SG.

First classification may be stated in the terms of the spatial
dimension, as shown in Fig. 2. DoS attacks may target
all the segments of the SG, from generation, transmission,
distribution, and consumption to control centers and Electric
Vehicles (EVs) charging/discharging infrastructure.

The SG comprises bidirectional transmission of both power
and information. From the communications perspective, the
attacks may originate at different layers, from physical and
data link layers all the way to the network, transport, and
application layers, as shown in Fig. 3.
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Fig. 3. SG DoS attacks in terms of communications layers.

A DoS attack may exploit vulnerabilities with respect to
the commonly used communications protocols peculiar to
the utility companies, as shown in Figure 4. IEC 61850
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Fig. 4. Smart Grid DoS attacks in terms of the major power grid communi-
cations protocols.

is a networking protocol for substation automation. Besides
running on top of TCP/IP, and hence inheriting all the DoS
vulnerabilities from the Internet domain, possible DoS attacks
exploiting two of IEC 61850’s protocols (GOOSE and SV) are
reported in [4]. A general discussion of security threats with
DoS focus can be found in [5], [6]. ANSI C12.22/IEEE 1703
defines a communications protocol for Advanced Metering
Infrastructure (AMI). A distributed DoS attack scenario is
presented in [7], [8] for C12.22 service. IEEE C37.118 is
the networking protocol for the Phasor Measurement Unit
(PMU) data. DoS attacks on C37.118 are studied in [9], [10].
The IEC 60870 family of standards cover communications
for SCADA (supervisory control and data acquisition). [11]
discusses potential DoS attacks. Simulation-based analysis of
DoS attacks from the IEC 62351’s perspective is presented in

[11]. Finally, DNP3, an alternative protocol for SCADA used
by utility companies, has its own set of DoS related problems,
as detailed in [12].

Another taxonomy may be analyzed by means of the major
power grid applications, as depicted in Figure 5. As the cru-
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Fig. 5. Smart Grid DoS attacks in terms of the major power grid applications.

cial application of the SG, Advanced Metering Infrastructure
(AMI) is the last mile where smart meter to the utility bidi-
rectional communication and data transfers take place. Several
studies highlight the DoS attacks in AMI [13], [14], [15], [16].
An example DoS attack on an AMI network is depicted in
Fig. 6 [7]. An integral component of SG is the Distribution
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Fig. 6. An attack scenario on the AMI [7].

Management System (DMS) that is in charge of monitoring,
protection, control, and optimization of distribution assets.
[14], [17] introduce load frequency disturbance as a result of
a DoS attack and load altering attack is discussed in [18].
DoS attacks to energy markets, especially pricing, are covered
in [6], [19]. Wide Area Monitoring, Protection, and Control
Systems (WAMPAC) [20] are also prone to DoS attacks, as
described in [10], [21]. Demand Side Management (DSM) in-
volves techniques to maintain the load and supply equilibrium
from the demand side. DoS potentials are presented in [6],
[18]. The North American Electric Reliability Corporation
(NERC)’s Cyber Attack Task Force from 2012 outlines the risk
of DoS on Energy Management System (EMS) with targeted
attack scenario is detailed in [22].

A final taxonomy of the DoS attacks in terms of the
techniques employed is given in Figure 7. We posit seven
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Fig. 7. A taxonomy of the DoS attack techniques in the Smart Grid.

different main categories of techniques that a DoS attack
may utilize: Signal jamming at the physical layer may be
initiated to deny, delay, or degrade information or electricity
service [5], [14] [23]-[25]. Resource exhaustion DoS attacks
may target a device or a network. For the former [11],



[12], [26], spatial types are for depleting some dimension of
memory while processing and battery target the computing
and power resources, respectively. For the latter [6], [15],
[27], flooding is an indiscriminate transmission of traffic to
saturate the bandwidth while the directed is a more targeted
transfer of deluge of data. One cryptographic DoS attack
scenario is explained in [28] where a Message Authentication
Code used to prevent data corruption may be exploited to
trigger a DoS attack. Data manipulation may be used as a
stepping stone to launch DoS attacks [2], [18], [19]. While
the goal of the false data injection attacks [6] may be on
integrity, it may also be easily used as a DoS tool [2], [29].
Data aggregation is an important part of the data collection
subsystem of the SG. A typical hierarchical data collection
by means of data aggregators is a boon for initiating a DoS
attack [6], [12], [14], [16], [30]. Many applications of the
SG is highly sensitive to the timeliness of the data and the
transactions. De-synchronization attacks can be utilized as
another form of DoS. SG involves bidirectional data transfers
and routing, in this respect, becomes an important mechanism
and attractive target for DoS attacks. Typical routing-based
DoS attacks are directly applicable for the SG domain, such as
the sybil, wormhole, blackhole, and puppet attacks. Reflector
attack involves spoofed requests to a set of servers that will
in return send their replies to the target node having the
spoofed address. In [7], ANSI C12.22 protocol is shown to
be vulnerable to a distributed DoS attack in which a number
of compromised smart meters generate trace requests carrying
the source address of a victim machine.

III. DISCUSSION ON COUNTERBALANCING

Table I shows a preliminary synopsis of potential remedial
approaches for the aforementioned attack techniques. Due to
the page limit, we discuss these briefly below.

Filtering could be used against certain jamming attacks
as demonstrated in [31]. Filtering is the de-facto standard
mechanism against resource exhaustion attacks. Crypto attacks
could not be avoided by filtering since firewalls do not have
the capability to inspect packets based on their cryptographic
properties. Although not specifically discussed in the literature,
filtering could be used against de-synchronization attacks.
Perimeter defense is helpless against most routing attacks but
host-based filtering combined with exchanged alarm messages
[31] could prevent malicious nodes to participate in the routing
protocol. Finally, reflector attacks could be blocked by egress
filtering implemented on a perimeter firewall if the attacker
and the victim are not in the same network.

Although IDS/IPS (Intrusion Detection/Prevention System)
is regarded as a more sophisticated defense mechanism, it is
similar to firewalls in the sense that the kind of DoS attacks it
could be used against are broadly similar. The key difference
is the fact that some attacks could be avoided by an IDS/IPS
but not by firewalls.

If DoS traffic could not be distinguished from the legitimate
one, rate limiting may be the only mitigation option. For in-
stance, the rate of jamming pertaining to a single source could
be reduced. However, especially in time-critical applications it
seems unlikely that rate-limiting, by itself, could be sufficient.

We define ”jamming" as attacks only in the physical layer
and thus cryptography authentication does not help. Crypto-
attacks may not be completely avoided by cryptographic
authentication but may be limited using lightweight cryp-
tographic primitives. Most of the time, de-synchronization,
routing and reflector attacks are initiated as a result of
spoofing. Cryptographic authentication is the de-facto solution
against spoofing. It works unless the devices are compromised.
Although not specifically designed for the SG, coordinated and
uncoordinated protocols can be used against jamming [31].
Protocol solutions could be applied against all SG DoS attacks
while secure communication protocol design is a challenge.
Against jamming attacks, use of wired instead of wireless com-
munication is an extreme example for an architectural solution.
The network architecture is not relevant against crypto attacks.
Some of the reflector attacks could be addressed by a logical
re-architecture [47].

Honeypots are generic DoS countermeasures. However, it
could not be the only solution since the attacker could always
attack the real target at the same time.

Device solutions prevent the attackers from compromising
SG devices. They are not effective against jamming and crypto
attacks since these attacks could be performed using external
devices. Device solutions and cryptographic authentication
complement each other and provide a perfect solution against
many different kinds of DoS attacks.

The ability to listen nearby wireless communication by
special ”watchdog" nodes is proven useful against some other
types of DoS attacks including routing and reflector attacks.

If we could model the effects of crypto attacks and reflector
attacks at a system level, system-theoretic solutions could even
be applied to these sophisticated cyber attacks.

IV. CONCLUSION

In this review study, we have focused on an important
dimension of the SG cybersecurity: DoS attacks and solutions.
DoS vulnerabilities for the SG has been expanding with ever
increasing severity of successful compromises. The literature
does not seem to have any other study as presented here in
terms of the scope and coverage.
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