
25th Telecommunications forum TELFOR 2017 Serbia, Belgrade, November 21-22, 2017.

978-1-5386-3073-0/17/$31.00 c©2017 IEEE

IoT honeypot: a multi-component solution for
handling manual and Mirai-based attacks

Haris Šemić and Sasa Mrdovic, Member, IEEE

Abstract—This paper proposes an implementation of honeypot
that detects and reports telnet attacks on Internet-of-Things (IoT)
devices. The honeypot operates with manual and Mirai-based
attacks. A multi-component design is implemented in order to
attain sufficient exposure to malicious traffic and security of
collected data. Settings and additional files needed to run the
honeypot are explained. Honeypot is tested using Mirai and
results are discussed. After that, conclusion and directions for
future work are given.

Keywords - Honeypot, Internet-of-Things, manual attacks, Mi-
rai, multi-component

I. INTRODUCTION

Internet-of-Things (IoT) has introduced billions of special-
purpose devices that connect and share their data over the
Internet. The number of IoT devices on the Internet is expected
to reach 24 billion by the year 2020 [1]. Those devices
often have limited hardware and software capabilities which
leaves little room for implementation of sufficient security
mechanisms.

Username and password are usually the only security mea-
sure that IoT devices use against potential attacks and in the
majority of cases passwords are not sufficiently complex and
long, as described in [2]. This lack of security has left IoT
devices vulnerable to various attacks that aim to take control of
said devices and utilize them for various malicious purposes.

One of the most widespread tools for such purposes is Mirai
malware. Mirai scans the Internet using random IP address
generation with goal of finding and infecting vulnerable IoT
devices, turning them into Mirai bots. After sufficient number
of devices have been infected, they can collectively be used
for DDoS attacks. One such attack was unleashed upon Kerbs
on Security website with network traffic reaching 620 Gbs [3].

Honeypots are widely used security controls for capturing
and analyzing malicious network traffic. They can emulate
various web services or operating systems to induce attackers
to attempt to compromise them. The main goal of honeypots
is to monitor and log received data which can later be used to
help prevent future similar attacks.

Honeypots were found particularly useful in analyzing
malicious traffic that exploits well-known and zero-day IoT

Haris Šemić is with the Faculty of Electrical Engineering, University of
Sarajevo, Ul. Zmaja od Bosne bb., 71000 Sarajevo, Bosnia and Herzegovina
(phone: 387-62-367462; e-mail: hsemic2@etf.unsa.ba).

Corresponding Sasa Mrdovic is with the Faculty of Electrical Engineering,
University of Sarajevo, Ul. Zmaja od Bosne bb., 71000 Sarajevo, Bosnia and
Herzegovina (phone: 387-61-171137; e-mail: sasa.mrdovic@etf.unsa.ba).

vulnerabilities. Honeypot mimics interaction between emu-
lated device and attacker with goal of acquiring enough data
for successful analysis and future attack prevention. Special
effort must be put into securing collected data, lest it be
tampered with by the attacker. There are various commercial
honeypots available together with a large number of honeypot
implementations on Github. We found out that the majority of
IoT honeypot implementations deal with one type of attack or
don’t pay enough attention to protection of the acquired data.

In this paper we propose a multi-component low-interaction
honeypot which operates with telnet traffic. Front-end compo-
nents carry out interaction with attackers and are designed to
be exposed and access to them is protected only by a weak,
generic password. Due to various differences between coping
with human attackers and coping with malware such as Mirai,
two front-end components are implemented, each dealing
with one out of two said types of interactions. The back-
end component, protected by the firewall, receives encrypted
captured data from front-end components, decrypts it, reports
it to the user and stores it permanently for future access.
This approach has proven successful in granting the honeypot
sufficient exposure to attacks and in the same time securing
captured data. We share our findings with goal of contributing
towards further improvement of IoT security.

The rest of the paper is organized as follows.
Section 2 addresses the related work. Section 3 describes

the implementation of our honeypot, which includes both
front-end and back-end components, together with application
of firewall during deployment. Analysis of captured data is
described in section 4. Section 5 presents our conclusion and
directions for future work.

II. RELATED WORK

With development of the Internet-of-Things (IoT), new
threats are constantly emerging. Malware that would target
IoT devices appeared relatively recently. In [4] authors showed
increase in number of telnet-based attacks since 2014. Authors
of said paper also proposed IoT honeypot which emulated
IoT devices running on different CPU architectures and helped
them analyze malicious telnet traffic.

In thesis [5] author implemented honeypot which deals
with multiple types of attacks. Front-end module of the
honeypot logs received network traffic while back-end parses
and responds to queries related to any of the four protocols
supported by the honeypot. We would like to point out one
interesting contrast between that system and the one we
propose. The attacker of that honeypot interacts solely with

Fig. 1. Structure of the implemented honeypot

back-end component and is unaware of existence of the front-
end component which logs his actions. In case of our own
implementation the attacker doesn’t know about the back-end
component, which receives and stores log data, and interacts
solely with the front-end.

We would like to mention one more paper which deals
with thematic of IoT honeypots. In [6] authors implemented
honeypot that uses machine learning for attaining behavioral
knowledge of IoT devices. They identified this new type of
honeypot as ”intelligent-interaction”.

Mirai-based DDoS attacks have shown the world the danger
that IoT botnets pose for global Internet security and a
number of Mirai-related publications emerged. IoT botnets
were analyzed in [7] including Mirai. Detailed analysis of
Mirai code and behavior can be found in [8].

III. IOT HONEYPOT

Implemented honeypot is of low-interaction and intended
mainly for research purposes. It captures manual and Mirai
traffic, reports it and stores it permanently for future access. As
stated before, the front-end component carries out interaction
with the attacker while the back-end deals with reporting and
storage. Fig. 1 shows basic structure of the honeypot.

A. Front-end

Front-end is implemented using Node.js. It doesn’t offer
attacker a live terminal; instead, it generates answers based on
attacker’s input. Due to differences in handling automatic and
manual traffic front-end is divided into two separate executable
scripts: MANUALpot.js and MIRAIpot.js.

Fig. 2. Text file for uCLinux 2.6.19

1) MANUALpot.js: The first one is MANUALpot.js
which is tasked with dealing with manual attacks. Focus here
is on what attacker sees on their terminal. There are three key
aspects of communication that need to be emulated in this
case:

1) Telnet login banner: The initial message that pops up
on attacker’s terminal upon establishing telnet connection
with the honeypot, akin to the real telnet banner expected
from the emulated Internet-of-Things (IoT) device.

2) Command responses: Responses to various commands as
implemented in the OS of the emulated device.

3) File system: File system of the emulated OS, focusing
mainly on opening and closing directories and listing their
contents.

During its execution, MANUALpot.js component uses
complementary text file which defines aspects of emulation
listed above. Every response that attacker receives based on
his/her input is listed in that file. Thus, the script is executed
with the following command:
sudo node ./MANUALpot.js path-to-file

If emulation of another IoT device is needed, one only needs
to create dedicated text file for that device; there is no need to
tamper with the code. If emulation of additional commands is
needed, they are also added to the text file. Fig. 2 shows the
emulation file for operating system uCLinux 2.6.19. Before
creating the file said OS was run in virtual environment in
order to obtain information regarding the system’s behavior
upon receiving inputs that would later comprise the file.

Upon establishing a telnet connection to our honeypot
the attacker receives telnet banner and login and password
prompts. After successful login, attacker is allowed to enter
commands. At the moment of writing this paper, supported
commands include: ping, cd, ls, help, free and exit.
If a non-supported command is entered, appropriate response
is sent. Fig. 3 shows how attacker’s console looks like upon

Fig. 3. Fake directory dev in emulated uCLinux 2.6.19

attempting to access the directory dev using command cd
and list its contents with command ls.

2) MIRAIpot.js: The second front-end script is
MIRAIpot.js which handles Mirai traffic. Since the
goal is to trick an automated malicious network traffic
generator into perceiving our honeypot as a valid IoT device,
focus here is on emulating strictly defined responses that
Mirai expects during various phases of infecting an IoT
device. The emulation file is not needed; all logic is defined
within the code. Thus, the script is executed using the
following command:
sudo node ./MIRAIpot.js

Another major difference is that Mirai requires successful
telnet handshake before continuing with its attempt to infect
found IoT device. The script successfully completes this phase,
allowing for further data capture.

B. Back-end

Back-end is implemented using Python programming lan-
guage and includes the LOG.py script. The main purpose
of the back-end is to receive encrypted captured data from
front-end components, decrypt it, transform it into readable
form, report it to the user and store it permanently. We
stationed it behind a firewall to ensure protection of captured
data and keep attackers oblivious of its existence, but other
deployment strategies are possible. Cypher used for encrypting
the communication between front-end and back-end is AES-
256 [9]. Fig. 4 shows how captured data is reported to the
user via the LOG.py script.

Captured data is organized into textual files for permanent
storage. One log file is created for every unique source
IP address registered by our honeypot. If multiple attacks
originate from the same IP address, all their data is placed
within the same log file, allowing for access to entire history
of attacks with one common source IP address.
LOG.py script uses threads to support multiple simul-

taneous connections to our honeypot, enabling the user to
observe multiple attackers at the same time. Connections are
independent, meaning that every attacker receives their own

Fig. 4. Reporting attacker’s actions via the LOG.py script

instance of terminal and is required to successfully login
before entering commands. This is also shown in fig. 4 where
two simultaneous connections are established towards our
honeypot.

The back-end also uses complementary text file which in
this case contains the list of username/password combinations
used to validate login attempts. Usernames and passwords
contained within the file are taken from table containing
62 factory default combinations [10]. Since both front-end
scripts connect to LOG.py, they share the same login data.
The file is automatically loaded upon executing the back-end
script and is not specified upon execution which is done using
the following command:
python LOG.py

IV. ANALYSIS OF CAPTURED DATA

We tested our honeypot using the Mirai source code [11].
Fig. 5 shows that the testing environment was comprised of
four virtual machines, three of which were Mirai-dedicated:
command and control server, DNS server and Mirai bot,
all running Kubuntu 15.10 operating system with settings as
described in [8]. Fourth virtual machine run our honeypot on
Ubuntu 16.04 OS.

Fig. 6 shows communication between Mirai bot and our
honeypot during Mirai’s recon phase. It can be seen that,
after establishing connection, doing the telnet handshake and
successful login, honeypot receives several successive inputs
from the Mirai bot. Four received commands after login are:
enable, system, shell and sh. The purpose of these four
inputs is to attain access to system’s shell, if it already wasn’t
granted upon login.

The last received input is /bin/busybox/ MIRAI
which aims to check validity of the targeted device. Based
on response, Mirai decides if the device is valid with working
telnet, in which case the device’s IP address and login data
are sent to command server for further infection and usage in
DDoS attacks, or not, in which case the attack terminates.

It is important to point out that Mirai doesn’t rely on any
device-specific vulnerabilities; it relies solely on weak and
factory default passwords. Simple mitigation techniques would
be using passwords of sufficient length and complexity, doing

Fig. 5. Testing environment

Fig. 6. Mirai recon phase

regular software and firmware updates and killing unneeded
processes listening for incoming traffic.

V. CONCLUSION AND FUTURE WORK

We implemented a multi-component honeypot with the
front-end component that is easily detectable and penetrable by
potential attackers and the back-end component that securely
and permanently stores collected data. Part of our implemen-

tation was flexible design which allows easy modifications of
our honeypot to emulate different IoT devices. We tested our
honeypot with Mirai source code and documented our findings.

Next step in research would be inclusion of SSH module
to cope with SSH-specific attacks and turning our honeypot
into a honeynet that would simultaneously emulate multiple
IoT devices.

REFERENCES

[1] M. Sujithra and G. Padmavathi, “Internet of things–an overview,”
Avinashilingam, 2016.

[2] D. Roe, “Top 5 Internet of Things Security Concerns.”
http://www.cmswire.com/cms/internet-of-things/top-5-internet-of-
things-security-concerns-026043.php, 2014. [Accessed 24.9.2017.].

[3] B. Krebs, “Krebsonsecurity Hit with Record DDoS.”
https://krebsonsecurity.com/2016/09/krebsonsecurity-hit-with-record-
ddos/, 2016. [Accessed 24.9.2017.].

[4] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “Iotpot: analysing the rise of iot compromises,” EMU, vol. 9,
p. 1, 2015.

[5] P. Krishnaprasad, Capturing attacks on IoT devices with a multi-purpose
IoT honeypot. PhD thesis, INDIAN INSTITUTE OF TECHNOLOGY
KANPUR, 2017.

[6] T. Luo, Z. Xu, X. Jin, Y. Jia, and X. Ouyang, “Iotcandyjar: Towards an
intelligent-interaction honeypot for iot devices,” Black Hat, 2017.

[7] K. Angrishi, “Turning internet of things(iot) into internet of vulnerabil-
ities (iov) : Iot botnets,” CoRR, vol. abs/1702.03681, 2017.

[8] H. Sinanović and S. Mrdovic, “Analysis of mirai malicious software,”
25th International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), 2017.

[9] J. Daemen and V. Rijmen, “The design of rijndael: Aes-the advanced
encryption standard,” Springer Science & Business Media, 2013.

[10] Anna-senpai, “Mirai-source-code/mirai/bot/scanner.c:// set
up passwords.” https://github.com/jgamblin/Mirai-Source-
Code/blob/master/mirai/bot/scanner.c#L124, 2016. [Accessed
26.9.2017.].

[11] Anna-senpai, “Mirai-Source-Code.” https://github.com/jgamblin/Mirai-
Source-Code, 2016. [Accessed 27.9.2017.].

